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Abstract: 

This paper proposes an algorithm to derive a general formula for counting the total number of onto functions from a set A 

with cardinality 𝑚 to a set B with cardinality 𝑚, and verification of Cantor theorem. Let f: A→B is a function such that 

│𝐴│ = 𝑚 and │𝐵│ = 𝑛, where A and B are finite and non-empty sets,  𝑚 and 𝑛 are finite integer values. To count the total 

number of onto functions using “Stirling number of the second kind”, with the help of Inclusion-exclusion principal. This 

paper will help for counting all possible onto mappings by means of partition method and will provide the direct count on 

onto functions using the formula derived in it.  
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Introduction: 

One of the results in the Set theory is that Cantor’s theorem which says “If A is any set, then ∄ any surjection (onto) of 𝐴 

onto set 𝑃(𝐴) of all subsets of 𝐴. " In fact Cantor proved a more general theorem: for any set X, the cardinality of X is strictly 

less than the cardinality of the power set of X” [1] 

Cantor is known as the founder of modern set theory and he was the first to study the concept of infinite set in attentive 

detail. In 1874 he proved that Q is countable set and in disparity, that R is uncountable, and arising a question that there are 

two types of infinity. Cantor’s theorem on sets of subsets shown there are many different orders of infinity and this led him to 

create a theory of “transfinite” numbers that he published in 1895 and 1897 [2]. 

One of the greatest revolutions in mathematics occurred when Georg Cantor (1845-1918) promulgated his theory of 

transfinite sets. Set theory has been widely adopted in mathematics and philosophy. 

Least of upper bound is supremum or least upper bound. Greatest of lower bounds is known as greatest lower bound or 

infimum. A number "𝑝" is limit point, if every neighborhood of “p” contains infinite number of points of the sequence. Limit 

Point of the sequence need not be a member of the sequence. A set "𝐴"  of real number is dence provided between any two 

real number their lies a member of A. (Irrational/Rational number are dense in  𝑅. Every set “E” of real number, bounded 

below has an infimum. Each real number is supremum of a set of rational number and also for irrational number.  

 

Literature Review 

Some important types of function like relation are a subset of Cartesian product of set A and B defined as 𝑅 ⊆ 𝐴 × 𝐵.  In 

case of Function, let A and B be two sets. then a function from A to B is a set denoted by 𝑓 of the ordered pair   𝐴 × 𝐵. 

1. One-One function- 𝑓  is known as one-one function if 𝑥1 ≠ 𝑥2 ⇒ 𝑓(𝑥1) ≠ 𝑓(𝑥2) 

2. Onto function- 𝑓  is known as onto function (map 𝐴 𝑜𝑛𝑡𝑜 𝐵), if range 𝑅(𝑓) = 𝐵.  

3. Any set is called bijection function, if the function is One-One and onto function. 

4. Denumerable set-If ∃ a bijection between set A and set of N, then A is known denumerable set. 

5. Power set – The collection of all subset of any set "𝐴"  is known as power set of 𝐴, and is denoted by      𝑃(𝐴) 

We are using finite set, empty set, Infinite set. 

 

http://www.jetir.org/
mailto:viveksinha7885@gmail.com
mailto:parejiyajay@gmail.com


© 2025 JETIR July 2025, Volume 12, Issue 7                                                                      www.jetir.org (ISSN-2349-5162) 

 
 

JETIR2507125 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b222 
 

Onto function has used mostly for mapping different object of any set with another set like different men can enter into 

different houses. with the condition that number of houses is equal or less with the number of men. So how can we fit the 

onto function or, how many ways can four (or more) different men enter into three indistinguishable houses, when 

each house can contain any number of men?  

Solution: We will solve this problem by enumerating all the ways these men’s can be placed into the houses. We 

represent the four men’s by 𝑀1, 𝑀2, 𝑀3, and 𝑀4.  

(1) First, we note that we can distribute 4 men’s so that all four are put into one house,  

(2) three are put into one house and a fourth is put into a second house, 

(3) two men are put into one house and two put into a second house, and finally,  

(4) two are put into one house, and one each put into the other two house. 

Each way to distribute these men to these houses can be represented by a way to partition the elements 𝑀1, 𝑀2, 

𝑀3, and 𝑀4 into disjoint subsets.  

We can put all four men into one house in exactly one way, represented by 𝑀1𝑀2𝑀3𝑀4. We can put three men 

into one house and the fourth men into a different house in exactly four ways, represented by 𝑀1𝑀2𝑀3, 𝑀4, 

𝑀1𝑀2𝑀4 , 𝑀3, 𝑀1𝑀3𝑀4 , 𝑀2 and 𝑀4𝑀2𝑀3, 𝑀1. We can put two men into one house and two into a second house in 

exactly three ways, represented by 𝑀1𝑀2, 𝑀3𝑀4, 𝑀1𝑀3, 𝑀2𝑀4, and 𝑀1𝑀4, 𝑀2𝑀3. 

Finally, we can put two men into one house, and one each into each of the remaining two houses in six ways, 

represented by 𝑀1𝑀2, 𝑀3,𝑀4, 𝑀1𝑀3, 𝑀2,𝑀4, 𝑀1𝑀4, 𝑀2, 𝑀3, 𝑀2𝑀3, 𝑀1, 𝑀4, 𝑀2𝑀4, 𝑀1, 𝑀3and 𝑀3𝑀4, 𝑀1, 

𝑀2[2].  

The Stirling formula of the second kind has discussed by ∑ 𝑛𝑐𝑟−1
𝑛
𝑟=1 (−1)𝑟−1{(𝑛 − 𝑟 − 1)̅̅ ̅̅ ̅̅ ̅̅ 𝑚  [3]. 

For finite set, while for infinite set, continuum hypothesis has used as, if set A is not a denumerable set, then |𝐴| = 𝑐 

and |𝑃(𝐴)| = 2𝑐 

By continuum hypothesis, 𝑐 < 2𝑐. i.e. |𝐴| < |𝑃(𝐴)|  [4], and the important formula has discussed in [5] as the generating 

function as (𝑒𝑥 − 1)𝑟 = 𝑟! ∑ 𝑆(𝑛, 𝑟)
𝑥𝑛

𝑟!
∞
𝑛=𝑟 .also Stirling numbers of the second kind show up more often than those of the 

other variety, so let’s consider The symbol {𝑖} stands for the number of ways to partition a set of 𝑛 things into 𝑘 nonempty 

subsets. For example, there are seven ways to split a four-element set into two parts: {1,2,3}∪{4}, {1,2,4}∪{3}, thus 

{1,3,4}∪{2}, {2,3,4}∪ {1}, {1,2}∪ {3,4}, {1,3}∪ {2,4}, {1,4}∪ {2,3}[6]. 

The principle of inclusion–exclusion, especially when it is used to count the number of elements in the union of two sets. 

Suppose that X and Y are sets. Then, there are X ways to select an element from X and Y ways to select an element from Y. 

The number of ways to select an element from X or from Y, that is, the number of ways to select an element from their 

union, is the sum of the number of ways to select an element from X and the number of ways to select an element from Y, 

minus the number of ways to select an element that is in both X and Y. Because there are X ∪ Y ways to select an element in 

either X or in Y and 𝑋 ∩  𝑌 ways to select an element common to both sets, we have |𝑋 ∪ 𝑌|  = |𝑋 | + |𝑌 | − |𝑋 ∩ 𝑌 |  [7] 

and for three sets 𝑋 ,𝑌 and 𝑍  |𝑋 ∪ 𝑌 ∪ 𝑍| = |𝑋 | + |𝑌 | + |𝑍 | − |𝑋 ∩ 𝑌 | − |𝑌 ∩ 𝑍 | − |𝑋 ∩ 𝑍 |+|𝑋 ∩ 𝑌 ∩ 𝑍 | [8]. Cantor 

could not find any sets whose cardinalities were greater than 𝑁0 but less than 2𝑁0, so Cantor hypothesized that 22𝑁0 is 

actually the next cardinal after 𝑁0, i.e. 22𝑁0= 2𝑁1[9]. Some more work has done in Stirling number as well So, obviously 

there arise a question is there any possibility to make onto function or if set 𝐴 has less or more element as compare 

to set 𝐵? That’s why Cantor’s theorem is important here for getting these types of relation Results - Cantor's 

Theorem implies that there is an unending progression of larger and larger sets [10]. In particular, it implies that the 

collection 𝑃(𝑁) of all subsets of the natural numbers 𝑁 is uncountable.  
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Results - Cantor's Theorem implies that there is an unending progression of larger and larger sets. In particular, it implies that 

the collection 𝑃(𝑁) of all subsets of the natural numbers 𝑁 is uncountable.  

 

Cantor’s theorem: - “If A is any set, then ∄ any surjection (onto) of 𝐴 onto set 𝑃(𝐴) of all subsets of 𝐴. " 

 

Proposed Method: 

Observation:  

1. We can check when 𝑚 < 𝑛, then no onto function can be mapped. 

2. We have element of 𝑃(𝐴) always greater than to Set 𝐴. 

3. If |𝐴| = 𝑚 and |𝐵| = 𝑛, total number of functions counted as  𝑛𝑚. 

4. Number of one-one function can be assigned by the rule as  

First element of Set 𝐴 has 𝑛 options for mapping of set 𝐵 

2nd element of Set 𝐴 has 𝑛 − 1 options for mapping of set 𝐵 

3rd element of Set 𝐴 has 𝑛 − 2 options for mapping of set 𝐵 

And similarly, for the 𝑚𝑡ℎ element of Set 𝐴 has {𝑛 − (𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ )}options for mapping of set 𝐵 

So, total number of one -one function will be 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3(𝑛 − 4). . . . . . . (𝑛 − 𝑚 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑛!

(𝑛−𝑚)!
 

 

Let A and B be two finite sets, respectively, of 𝑚 and 𝑛 distinct elements with 𝑚 > 𝑛 ; and consider all mappings 

from the set A to the set B. Here We will discuss about the ’Stirling Number of the Second Kind’ and determines the 

numbers of all ’onto ‘type and all ’into ‘type functions from set A to set B. We will derive the expression for 

𝑆 (𝑚, 𝑛) using the properties of these functions. 

 First, note that the number of all possible distinct functions from A to B is clearly 𝑛𝑚.  

Suppose now that we partition set A into 𝑛 nonempty disjoint blocks (or unordered subsets) and then connect these 

blocks (or their individual elements) one-to-one to each of the 𝑛 elements of set B. One such partition, upon 

permuting the 𝑛 distinct elements of set B, leads to 𝑛! ’onto’ mappings. Since 𝑆 (𝑚, 𝑛) is the number of such 

partitions of A, the total number of all distinct’ onto ’mappings from A to B turns out to be 𝑛!  𝑆 (𝑚, 𝑛).  

Accordingly, while the total number of all possible distinct functions from A to B is 𝑛𝑚, the number of all ’onto’ 

type function from A to B is only 𝑛!  𝑆 (𝑚, 𝑛) [2] 

 Further, note that the total number of ’into’ type function from A to B, ( those whose range misses at least one 

element of B), can be obtained from the inclusion-Exclusion Theorem as  𝑛𝐶1(𝑛 − 1)𝑚− 𝑛𝐶2(𝑛 − 2)𝑚+ 𝑛𝐶3(𝑛 −

3)𝑚−...+(−1)𝑛𝑛𝐶𝑛−1(1)𝑚. 

  

5. Number of onto function= ∑ 𝑛𝑐𝑟−1
𝑛
𝑟=1 (−1)𝑟−1{(𝑛 − 𝑟 − 1)̅̅ ̅̅ ̅̅ ̅̅ 𝑚 

6. No. of onto function = 𝑛𝑚 −
𝑛!

(𝑛−1)!1!
(𝑛 − 1)𝑚 +

𝑛!

(𝑛−2)!2!
(𝑛 − 2)𝑚 −

𝑛!

(𝑛−3)!3!
(𝑛 − 3)𝑚. . . .. 

Case-I: Now taking |𝐴| = 𝑚 = 2, then |𝑃(𝐴)| = 𝑛 = 22 = 4 

Using observation no. 3  

No. of onto function = 42 −
4!

(4−1)!1!
(4 − 1)2 +

4!

(4−2)!2!
(4 − 2)2 −

4!

(4−3)!3!
(4 − 3)2+

4!

(4−4)!4!
(4 − 4)2 
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                                     = 16 − 4(3)2 + 6(4 − 2)2 − 4(4 − 3)2+0 

                                     =16 − 4 × 9 + 6 × 4 − 4 × 1 

                                      =16 − 36 + 24 − 4 

                                      =0   

Which shows ∄ any surjection from set A   onto   P(A).  

 

Case-II: when set 𝐴 is an empty set, i.e.  𝐴 = { }, then |𝐴| = 𝑚 =0  

                    Then power set of 𝐴   will be     𝑃(𝐴) =   {{ }}         Hence, |𝑃(𝐴)| = 𝑛 = 20 = 1 

Number of one-one function=
𝑛!

(𝑛−𝑚)!
=

1!

(1−0)!
=

1!

(1)!
= 1 

While No. of onto function = 10 −
1!

(1−1)!0!
(1 − 1)0 +

1!

(1−2)!2!
(1 − 2)0 −

1!

(1−3)!3!
(1 − 3)0-……. 

                                                 = 1 − 1(00)  (00 = 1)  

                                                 = 1 − 1 

                                                 = 0 

(We have the binomial expansion as:  

(1 − 𝑥)𝑘 = 1 − 𝑘𝑥 +
𝑘(𝑘 − 1)

2!
𝑥2 −

𝑘(𝑘 − 1)(𝑘 − 2)

3!
𝑥2 + ⋯ 

Taking 𝑘 = 0,  

(1 − 𝑥)0 = 1 − 0𝑥 +
0(0 − 1)

2!
𝑥2 −

0(0 − 1)(0 − 2)

3!
𝑥2 + ⋯ 

                                   ⇒  (1 − 𝑥)0 = 1 

Also taking 𝑥 = 1,   ⇒ (1 − 1)0 = 1 

Hence, we get  00 = 1.) 

Which shows ∄ any surjection from set A   onto   P (A). 

 0 < 1, i.e. cardinality of  𝐴 always less than that of 𝑃(𝐴). 

i.e.  |𝐴| < |𝑃(𝐴)|. 

 

Case III: For infinite set A and P (A), suppose A= N (set of natural number) 

We know |𝑁| = 𝑎  and |𝑃(𝑁)| = 2𝑎 = 𝑐 

and by continuum hypothesis, 𝑎 < 𝑐. 

And if set A is not a denumerable set, then |𝐴| = 𝑐 and |𝑃(𝐴)| = 2𝑐 

By continuum hypothesis, 𝑐 < 2𝑐. i.e. |𝐴| < |𝑃(𝐴)|  (The continuum hypothesis, introduced by mathematician George 

Cantor in 1877).[4] 

 

 

Conclusion: 

This paper has proposed an algorithm for the number of onto functions from a set 𝐴 to the power set (𝐴) . All in three cases 

we have proved that ∄ any onto function from the set 𝐴  to the power set 𝑃(𝐴) .Which shows cardinality of any set is always 

less than the cardinality of its power set. The proposed algorithm is valid for all finite, empty and infinite set 𝐴. 
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