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Abstract : Background music is frequently used in academic and professional settings to enhance focus and 

mood; however, its actual impact on cognitive task performance, particularly the speed-0.2accuracy of 

trade-off, remains inconclusive. This study investigated the influence of background music and incidental 

memory recall on student performance during a brief, time‑constrained arithmetic task. A total of 300 

university students were self‐selected into ‘Music’ or ‘Silence’ conditions. Participants completed a 10‑item 

arithmetic quiz followed by a free‑recall task involving a 15‑word list. To identify the key predictors of high 

performance, this study employed logistic regression and tree-based machine-learning classifiers with 

stratified cross-validation. The results indicate that completion time is the most significant determinant of 

performance, whereas background music exposure and incidental recall ability have minimal influences. 

Machine learning models achieved approximately 70 percent classification accuracy in distinguishing high 

performers, emphasizing the importance of processing speed. These findings suggest that in time-sensitive 

academic or occupational contexts, interventions aimed at enhancing cognitive efficiency may be more 

effective than adjusting ambient sounds or incidental learning stimuli. 

Index Terms – background music, cognitive performance, memory recall, machine learning, statistical 

analysis, timed tasks 

 

 

1 INTRODUCTION 

The relationship between environmental stimuli and cognitive performance has been the central focus of 

educational psychology for decades [1]. Researchers have long posited that background music, a ubiquitous 

feature of modern learning and work environments, can modulate affective states, including mood and 

arousal, and direct attentional resources toward task-relevant stimuli [2]. By shaping the emotional climate, 

music may either facilitate sustained concentration or introduce distractions that impair cognitive processes. 

Understanding this dual potential is critical for designing optimal learning contexts in both traditional 

classrooms and digital study applications. 

Despite the intuitive appeal of music as a motivational aid, empirical outcomes remain fragmented. Early 

laboratory investigations reported that background music enhances simple cognitive operations, such as 

accelerating arithmetic calculations or improving mental rotation accuracy, suggesting that moderate 

auditory stimulation raises alertness [3]. In contrast, subsequent studies have revealed that the same musical 

environments negatively impact complex reasoning tasks, such as deductive problem-solving and creative 

http://www.jetir.org/


© 2025 JETIR July 2025, Volume 12, Issue 7                                                            www.jetir.org (ISSN-2349-5162) 

 

JETIR2507258 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c484 
 

thinking, by overloading limited working memory resources [4]. This divergence highlights the need to 

examine the specific boundary conditions under which music confers cognitive benefits and drawbacks. 

To address these inconsistencies, experimental research has systematically varied musical attributes, 

including tempo, structural complexity, and genre familiarity, to isolate their unique effects [5]. Increasing 

tempo often correlates with elevated physiological arousal, including a faster heart rate and skin 

conductance, which can translate into quicker reaction times in vigilance tasks [6]. Conversely, music 

containing lyrics or dynamic rhythmic patterns can impose an extraneous cognitive load, interfering with 

verbal rehearsal mechanisms and reducing memory span [7]. Moreover, familiarity with a particular genre 

may either enhance engagement through positive associations or provoke distraction if the piece elicits 

strong personal memories [8]. 

Meta-analytic reviews offer a comprehensive synthesis of these heterogeneous findings, confirming that the 

impact of background music is moderated by task characteristics and individual differences [9]. For 

instance, instrumental compositions tend to support visuospatial processing tasks while impairing verbal 

encoding, whereas vocal or lyrical music disproportionately disrupts language-based activities [10]. 

Additionally, personality traits such as introversion or high baseline arousal interact with auditory 

conditions to produce variable-performance outcomes. Despite these insights, the precise mechanisms 

driving these moderating effects remain unknown. 

Significant gaps persist in our understanding of how background music influences incidental memory 

encoding and performance under time constraints [11]. Few investigations have simultaneously evaluated 

memory recall and analytical problem-solving within a unified experimental paradigm, leaving unanswered 

questions regarding the generalizability of the results across tasks. Moreover, most past research relies on 

traditional inferential statistics without leveraging advanced predictive modeling, which limits the ability to 

forecast individual performance trajectories based on the auditory context [12]. 

To address these limitations, we conducted a controlled trial with 300 undergraduate students from 14 

higher‑education institutions in Lahore, Pakistan [13]. Participants self‑selected into one of two conditions: 

instrumental background music played at a moderate volume or complete silence. Each participant 

completed two assessments: a timed arithmetic problem-solving task designed to tax working memory, and 

a memory-recall exercise involving word-list learning. 

Performance was evaluated using a multi-faceted metric that incorporated accuracy, number of correct 

responses, task completion time, and recall volume, which were subsequently integrated into a composite 

cognitive efficiency score [14]. This comprehensive scoring approach allows nuanced comparisons across 

conditions by capturing both the speed and accuracy aspects of cognitive performance. 

Our hybrid analytical framework combines classical statistical tests, independent-samples t-tests, one-way 

analysis of variance (ANOVA), and Shapiro-Wilk tests for normality with supervised machine learning 

classifiers, including Random Forest and Decision Tree algorithms [15]. This dual methodology provides 

robust hypothesis testing and predictive insights into the features, such as task conditions, response times, 

and participant demographics, that most strongly determine performance outcomes. Initial analyses 

indicated that participants in the silence condition consistently outperformed those in the background music 

condition across both tasks, supporting the cognitive load theory’s prediction that extraneous auditory 

stimuli deplete attentional resources [16]. 

These findings have practical implications for learners and educators. Minimizing background music during 

high-stakes, time-pressured tasks may enhance academic performance, and personalized learning strategies 

can leverage individual sensitivity to auditory environments. Future research should explore various musical 

genres, differential volume levels, and long-term adaptation effects to develop evidence-based 

recommendations for optimal study environments. 

This study was guided by three research questions: 

RQ1: How does background music influence students’ overall task performance compared with that under 

silence? 

http://www.jetir.org/


© 2025 JETIR July 2025, Volume 12, Issue 7                                                            www.jetir.org (ISSN-2349-5162) 

 

JETIR2507258 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c485 
 

RQ2: Are memory recall and arithmetic problem-solving differentially affected by background music? 

RQ3: Which student characteristics, such as age, academic program, and year of study, serve as predictors 

of performance outcomes in the background music conditions? 

2 LITERATURE REVIEW 

The capacity theory of attention posits that human cognitive resources are finite and that concurrent 

processing demands compete for a shared pool of capacity [18]. In early dual-task paradigms, participants 

who attempted working memory tasks alongside background music exhibited marked declines in 

performance, suggesting that extraneous auditory input occupies attentional resources critical for primary 

task execution [17]. Baddeley and Hitch’s working memory model further clarifies this phenomenon by 

demonstrating how phonological interference, whether from speech or music, can disrupt the rehearsal 

component of the verbal working memory [19]. 

Research on musical tempo has elucidated its dual role in cognitive stimulation and distraction. Fast-paced 

compositions often elevate physiological arousal, facilitating quicker reaction times in simple vigilance 

tasks but at the cost of reduced accuracy in analytical reasoning [20]. Conversely, slow-tempo music 

appears to foster calmness and sustained attention, which is particularly beneficial for repetitive or low-

complexity tasks [21]. Arousal-mood theory provides a theoretical framework suggesting that performance 

peaks at moderate arousal levels and declines when stimulation exceeds optimal thresholds [22]. 

Genre familiarity and listener preferences are pivotal moderators of the cognitive effects of music. Rentfrow 

and Gosling demonstrated that music aligned with individual personality profiles reduces perceived 

distraction and enhances engagement [23]. Similarly, Perham and Peckham found that preferred music 

exerts less interference on cognitive tasks than unfamiliar tracks, indicating that positive affective responses 

to familiar music may mitigate the cognitive load [24]. 

Individual differences extend beyond preferences to include personality traits and cognitive abilities. 

Furnham and Bradley’s studies revealed that individuals with introverted temperaments experience greater 

performance declines under background music, possibly due to higher baseline arousal levels that are 

exacerbated by additional auditory stimuli [25]. In contrast, Avila et al. reported that individuals with 

musical training or higher working memory capacity exhibit resilience to the disruptive effects of 

background music, suggesting that domain-specific expertise and cognitive reserve can buffer this 

interference [26]. 

Neuroimaging studies have provided insights into the neural substrates of music-induced cognitive 

modulation. Functional MRI studies by Crossman et al. observed increased activation in the prefrontal and 

parietal cortices during problem-solving tasks performed with background music, indicative of augmented 

executive control demands [27]. Complementary EEG research by Klimesch et al. identified shifts in alpha-

band power correlating with attentional disengagement when participants were exposed to music, reflecting 

altered neural synchronization in task-relevant networks [28]. 

Educational research translates these laboratory findings into applied contexts. Routsalainen’s work in 

lecture-based settings revealed that environmental noise including background music impairs 

comprehension and retention of presented material, underscoring the disruptive potential of auditory 

distractions in real-world classrooms [29]. In language acquisition studies, instrumental tracks with minimal 

melodic complexity have been shown to support vocabulary learning by engaging mood-regulation 

pathways without overloading phonological loops [30]. Additional research has confirmed that tempo-

matched instrumental music enhances reading fluency among second-language learners [31]. 

The integration of machine learning methodologies into music cognition research is an emerging trend in 

the field. Nguyen et al. applied supervised classification algorithms to predict fluctuations in student 

attention levels based on the acoustic features of background audio and achieved high predictive accuracy in 

controlled experiments [32]. Romero and Ventura expanded these approaches by employing ensemble 

learning models to forecast academic performance under varying sensory conditions, demonstrating the 

feasibility of personalized auditory recommendations in intelligent tutoring systems [33]. 
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Despite these advancements, most existing studies rely on either traditional inferential statistics or isolated 

predictive models, with few studies combining both approaches in a comprehensive framework [34]. 

Moreover, there remains a lack of consensus regarding the interaction between memory encoding processes 

and concurrent analytical task performance in the presence of background music. 

The present study addresses these gaps by uniting rigorous statistical inference with machine learning 

prediction to examine how instrumental background music influences timed arithmetic and memory recall 

tasks in a diverse student population. This integrative perspective promises to clarify the boundary 

conditions of music’s cognitive effects and inform evidence-based recommendations for optimizing learning 

environments. 

3 RESEARCH METHODOLOGY 

This study adopted a mixed-methods research design to systematically evaluate the impact of background 

music on student task performance by integrating both traditional statistical analysis and machine learning-

based predictive models [35], [36]. This methodological approach was selected to provide comprehensive 

insights that extend beyond simple group comparisons, offering both inferential understanding and 

predictive accuracy regarding how auditory stimuli shape academic cognition [37], [38]. A total of 300 

university students from 14 higher education institutions in Lahore, Pakistan, voluntarily participated in the 

study through convenience sampling, ensuring diversity in their academic backgrounds and disciplines [39], 

[40]. All participants were recruited following institutional ethical guidelines, and informed consent was 

obtained to uphold ethical research practice. [41]. Demographic data, including participants’ age, gender, 

and field of study, were collected to enable subgroup analyses and explore potential moderating variables 

[42]. 

Data were collected via a structured Google Form that presented the arithmetic and memory tasks in a 

randomized order to control for sequence effects. Participants then self‑selected into one of two auditory 

conditions, instrumental background music at a moderate volume or complete silence, to minimize selection 

bias and bolster internal validity [43], [44]. The data collection instrument consisted of two core cognitive 

assessments: a 10-item arithmetic problem-solving quiz aimed at measuring analytical reasoning under time 

constraints, followed by an incidental memory-recall task in which participants were required to recall a 15-

word list to assess short-term memory performance [45], [46]. Participants assigned to the background 

music condition completed both tasks while listening to instrumental music. Music selection was guided by 

prior research emphasizing the use of emotionally neutral instrumental tracks, and volume levels were 

standardized to a moderate range to prevent overstimulation or distraction [47] [48]. The control group 

performed the same tasks in a quiet environment without any distractions. 

To maintain procedural consistency, each participant selected whether they would complete the arithmetic 

and memory tasks while listening to instrumental background music at a moderate volume or in complete 

silence. The instrumental music used was specifically chosen to maintain emotional neutrality and avoid 

strong affective responses that could bias task performance. The volume was carefully controlled to 

replicate typical environmental background music levels. For each participant, three key performance 

metrics were recorded: the number of correct responses in the arithmetic task, the total time taken to 

complete both tasks (measured in seconds), and the number of words recalled accurately in the memory 

task. Additionally, a composite cognitive efficiency score was calculated by dividing the number of correct 

responses by the total completion time, which provided an integrated measure of speed and accuracy.  

This multi-metric evaluation allowed for a nuanced assessment of performance beyond the raw accuracy or 

speed. The cognitive efficiency score provided an objective index of the participants’ ability to balance 

speed and accuracy, particularly under time-sensitive conditions. This approach also enabled the detection 

of subtle cognitive trade-offs that may have otherwise gone unnoticed in single-outcome designs [49], [50]. 

Demographic subgroup analyses were planned to examine whether factors such as academic discipline, age, 

or gender influenced the effects of background music on the cognitive outcomes. 

Rigorous data cleaning procedures were applied before conducting statistical analyses. Incomplete 

submissions, duplicate entries, and anomalous values, specifically those falling beyond three standard 

deviations from the mean, were excluded to maintain the integrity of the dataset. Categorical variables were 

encoded for analysis, and continuous variables were examined for normality using the Shapiro-Wilk test. 
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The homogeneity of variances was assessed using Levene’s test to ensure that the assumptions for 

parametric testing were met [51]. These preliminary checks informed the selection of appropriate statistical 

tests and reduced the risk of error. 

For the inferential analysis, independent samples t-tests were used to compare composite performance 

scores between the background music and silence groups, while Cohen’s d was calculated to estimate effect 

sizes and interpret the magnitude of differences. One-way ANOVA was employed to examine between-

group differences in memory recall scores, followed by Tukey’s HSD post hoc tests, where applicable. 

Visualizations, including bar charts, boxplots, and heatmaps, were used to present the key findings in an 

accessible and interpretable manner. In parallel, supervised machine learning models, such as Random 

Forest and Decision Tree classifiers, were implemented to identify key predictors of high performance and 

evaluate the predictive power of demographic and task-related variables. This integrative analytical strategy 

enhanced the robustness and applicability of the study’s conclusions. 

3.1 Variable Definitions 

 

Table 01: Variable Definition 

Variable Type Description 

CorrectAnswers Integer Number of correctly answered quiz items (0-10) 

TimeTaken Float Total time (seconds) to complete quiz 

PerformanceScore Float CorrectAnswers ÷ TimeTaken 

MemoryRecallCount Integer Count of correctly recalled words (0-15) 

HighPerformer Binary 1 = CorrectAnswers ≥ median; 0 = otherwise 

Group Categorical ‘Music’ vs. ‘Silence’; self-selected 

PreferredGenre Categorical One of {lo-fi, classical, pop, instrumental, rap, no-preference, others} 

 

A clear understanding of the variables used in this study is essential for interpreting the statistical results and 

machine learning models. Table 01 provides the operational definitions of each variable recorded during the 

experiments. The key outcome variables included Correct Answers, recorded as the number of correctly 

solved arithmetic questions (ranging from 0 to 10), and Time Taken, a continuous variable representing the 

total time in seconds required to complete the cognitive task. From these, a derived metric, the Performance 

Score, was calculated by dividing the number of correct answers by the time taken, representing an index of 

cognitive efficiency. Another critical measure, the Memory Recall Count, captured the number of correctly 

recalled words from a previously shown list (maximum of 15). 

For classification tasks, a binary outcome variable named High Performer was created, where participants 

scoring at or above the median in Correct Answers were labeled as 1 (high performer) and the others as 0. 

Group membership was categorized based on participants assigned to the auditory condition, labeled as 

Music or Silence. Additional variables included Preferred Genre, a categorical feature reflecting each 

participant’s favored music style, with options such as lo-fi, classical, instrumental, pop, rap, and no 

preference. These definitions established a structured framework for the statistical and predictive analyses 

that followed (Table 01). 

The statistical and predictive analysis plan integrates classical hypothesis testing with modern classification 

models to comprehensively assess the influence of background music on academic task performance. 

Descriptive statistics were computed to summarize group-level means and standard deviations for Correct 

Answers, Time Taken, Performance Score, and Memory Recall Count. This allowed for a preliminary 

comparison of the experimental conditions. 

Before conducting the inferential tests, the assumptions of normality and homogeneity were evaluated. The 

Shapiro-Wilk test was used to assess the normality of the Performance Score distribution at an alpha level of 

0.05. Levene’s test was used to examine the homogeneity of variance between the groups. Based on these 

checks, Welch’s t-test, which does not assume equal variance, was employed to compare Performance 

Scores between the music and silence groups. To investigate differences in memory recall performance, a 

one-way ANOVA was conducted across conditions, with Tukey’s HSD post-hoc tests applied where 
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appropriate. Effect sizes for these comparisons were reported using Cohen’s d to quantify the magnitude of 

observed differences. 

To further explore the relationships among continuous variables such as Correct Answers, Time Taken, and 

Memory Recall Count, Pearson’s correlation coefficients were computed. To mitigate the risk of Type I 

error due to multiple comparisons, p-values were adjusted using the Bonferroni correction. The analysis also 

included an ANCOVA with CGPA and self-reported frequency of studying music as covariates. This model 

allowed for a more precise estimate of the effect of auditory condition on the Performance Score, 

controlling for individual academic aptitude and habitual listening behavior. 

Two analytical tracks were pursued in the predictive modeling. First, a logistic regression model was 

implemented to predict the High Performer status using group assignment, Time Taken, Memory Recall 

Count, and CGPA category as input features. L2 regularization was applied with a penalty term of C = 1.0 

to prevent overfitting. Model diagnostics included χ² goodness-of-fit, McFadden’s R², and receiver 

operating characteristic (ROC) curve analysis, with the area under the curve (AUC) used to assess the model 

discrimination. 

Second, a machine learning pipeline was developed using three classification algorithms: Random Forest 

(n_estimators = 100), Decision Tree (max_depth = 5), and Logistic Regression. A stratified 5-fold cross-

validation approach was adopted to ensure the reliability of the model. The performance metrics, including 

accuracy, precision, recall, F1-score, and AUC, were calculated for each model. Feature importance was 

extracted from tree-based models using Gini importance scores, offering an interpretation of which variables 

most strongly contributed to predictive accuracy. 

To enhance reproducibility and provide a visual overview of the data processing and modeling pipeline, a 

stepwise workflow diagram was created using the Graphviz software. 
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Figure 01: Sequential workflow from raw response upload through final model comparison 

This flowchart, shown in Figure 01, illustrates the full analytical trajectory from the initial raw response 

upload and data cleaning to statistical testing and the final model comparison. All source codes, scripts, and 

anonymized data supporting this workflow will be made publicly accessible through a GitHub repository, 

with the link included upon publication. 

This methodological design enables a rigorous and multifaceted analysis of the effects of background music 

on cognitive-task performance. By blending robust statistical methods with predictive modeling, this study 

not only tests significant differences but also identifies patterns that support generalized predictions. This 

dual approach extends the scope of inquiry from explanation to actionable insight, offering valuable 

implications for educational strategies, environmental design and student productivity. 

4. RESULTS 

The predictive modeling component employed logistic regression with L2 regularization to classify 

participants as high performers based on group assignment (music or silence), task completion time, recall 

count, and CGPA category [52], [53]. Model diagnostics included chi-square goodness-of-fit, McFadden’s 

R², and ROC-AUC to assess classification accuracy [54]. Additionally, Decision Tree classifiers (max depth 

= 5) and Random Forest classifiers (100 estimators) were trained using stratified 5-fold cross-validation to 
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enhance generalizability [55], [56]. The model performance was evaluated using accuracy, precision, recall 

and F1-score [57]. Feature importance, derived from the Gini impurity and standardized regression 

coefficients, identified the most influential predictors [58], [59] in this study. Hyperparameter tuning via 

grid search optimizes the model balance between the bias and variance [60]. 

Descriptive statistics indicated that participants in the silence group answered an average of 6.40 ± 2.24 quiz 

items correctly with a mean completion time of 117.6 ± 20.2 seconds, while the music group averaged 6.62 

± 2.19 correct answers in 118.5 ± 18.8 seconds [61]. Incidental memory recall was slightly higher in the 

silence group (7.40 ± 1.83 words) than in the music group (7.20 ± 1.70 words) [62]. 

Assumption checks confirmed the suitability of the parametric analyses. The Shapiro-Wilk test showed a 

normal distribution of performance scores (p > .05) [63], and Levene’s test confirmed the homogeneity of 

the variances (p > .05) [64]. 

Inferential analysis using Welch’s t-test revealed no significant difference in performance scores between 

the silence and music groups (t (297) = 1.20, p =.23) [65]. Similarly, a one-way ANOVA showed no 

significant difference in memory recall performance (F (1, 298) = 2.11, p =.15) [66]. 

Both statistical analyses and machine learning models consistently indicated that background music did not 

significantly affect analytical problem-solving or memory recall. Although minor descriptive differences 

were observed, none reached statistical significance, and group assignment was not identified as a key 

predictor in predictive models. These findings suggest that the effect of background music on cognitive 

performance in academic tasks may be minimal and context dependent. 

Table 02: Descriptive Statistics for Music Group (n = 151) 

 CorrectAnswers TimeTaken PerformanceScore 

count 151.000000 151.000000 151.000000 

mean 6.615894 118.496689 0.058872 

std 2.190467 18.829719 0.024932 

min 2.000000 84.000000 0.011905 

25% 5.000000 104.500000 0.039216 

50% 7.000000 115.000000 0.059829 

75% 9.000000 130.000000 0.077628 

max 10.000000 168.000000 0.117647 

Table 02 presents the descriptive statistics for the Music group (n = 151), offering insights into student 

efficiency with background music. On average, participants answered 6.62 out of 10 questions correctly (SD 

= 2.19), with scores ranging from 2 to 10 correct answers. The interquartile range (IQR) for accuracy 

spanned from 5.00 (25th percentile) to 9.00 (75th percentile), indicating that most students were clustered 

within this performance band. 

In terms of task completion time, participants required an average of 118.50 seconds (SD = 18.83), with a 

minimum of 84 seconds and a maximum of 168 seconds. The central 50% of respondents completed the 

tasks between 104.50 and 130.00 s, suggesting a relatively consistent pace under the influence of 

background music. 

The derived Performance Score, calculated as the ratio of correct answers to time taken (answers per 

second), yielded a mean of 0.0589 (SD = 0.0249). The scores ranged from 0.0119-0.1176, with an 

interquartile range of 0.0392-0.0776. This metric reflects moderate cognitive efficiency, equating to 

approximately one correct response every 12-25 s. 

Collectively, these descriptive statistics suggest that the participants in the music condition exhibited 

reasonably consistent performance in both accuracy and timing. However, the relatively modest mean 

Performance Score highlights the potential cognitive cost associated with background music, possibly due to 

increased extraneous load or divided attention during task execution. 
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Table 03: Descriptive Statistics for Silence Group (n = 149) 

 CorrectAnswers TimeTaken PerformanceScore 

count 149.000000 149.000000 149.000000 

mean 6.395973 117.604027 0.063515 

std 2.241557 20.184895 0.081524 

min 0.000000 7.000000 0.000000 

25% 5.000000 106.000000 0.038462 

50% 6.000000 117.000000 0.052632 

75% 8.000000 131.000000 0.075000 

max 10.000000 163.000000 1.000000 

 

Table 03 presents the descriptive statistics for the Silence group (n = 149), offering a detailed view of the 

participants’ performance and task pacing in the absence of background music. On average, students 

answered 6.40 of the 10 questions correctly (SD = 2.24), suggesting a moderate level of task accuracy. The 

interquartile range (IQR) for correct responses spanned from 5.00 to 8.00, indicating that 50% of the 

participants achieved scores between 42% and 67%. This distribution reflects a relatively consistent 

performance trend among all students. 

Regarding task completion time, participants in the silence condition required an average of 117.60 seconds 

(SD = 20.18), with a minimum time of 7 seconds and a maximum of 163 seconds. The central half of the 

sample completed the task within 106-131 s, demonstrating a fairly narrow spread in pacing, with most 

individuals finishing in just under two minutes. 

The Performance Score, computed as the ratio of Correct Answers to Time Taken (i.e., answers per second), 

yielded a mean of 0.0635 (SD = 0.0815). This rate corresponds to approximately one correct answer every 

15-16 s in silent conditions. Notably, the maximum score of 1 appears to be an extreme outlier, possibly 

caused by a recording or timing anomaly, such as near-zero task time, which should be addressed through 

further data validation or winzorization during sensitivity analyses. 

These findings, as detailed in Table 03, suggest that the absence of background music was associated with 

moderately consistent cognitive performance in terms of accuracy and completion time. The central 

tendency of the Silence group was tightly clustered around six correct responses completed in 

approximately two minutes, indicating stable task engagement without auditory distractions. 

 

Figure 02: Performance Score by Group (Correct Answers per Second) 
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Figure 02 illustrates a comparison of mean Performance Scores, calculated as the ratio of correct answers to 

completion time (answers per second), between students in the Background Music condition (n ≈ 152) and 

those in the silence condition (n ≈ 148). This visualization supports a clearer understanding of how 

background music influences the task performance. 

The mean performance rates were 0.059 answers per second for the Background Music group and 0.064 

answers per second for the silence group. While these average values are very close, both approximating 

0.06 answers per second. A key difference lies in the variability of the responses, as shown by the error bars 

in Figure 02. These bars represent the standard error of the mean (SE), with the Music group displaying a 

shorter error bar (SE ≈ 0.002) than the Silence group (SE ≈ 0.007). This indicates greater consistency and 

tighter precision in the performance of the musical group. 

In terms of central tendency, the minimal difference in group means suggests that background music neither 

significantly enhances nor impairs average processing speed. However, the dispersion in the scores tells a 

more nuanced story that is worth exploring. Students in the Music group exhibited performance levels that 

clustered more closely around the mean, while those in silence showed a broader distribution of outcomes, 

indicating greater variability in individual performance. 

Although the independent samples t-test yielded a non-significant difference in means, t (297.6) = 1.88, p = 

0.061, the narrower confidence interval for the Music group points to a potential stabilizing effect of 

background music. This suggests that while music may not increase task speed, it might help learners 

maintain a more consistent level of performance, offering potential cognitive benefits in terms of focus and 

sustained performance. 

4.1 Shapiro-Wilk Test 

To evaluate whether the Performance Score variable (calculated as correct answers per second) met the 

assumption of normality within each experimental condition, the Shapiro-Wilk test was conducted 

separately for the Music and Silence groups. 

For the Music group, the test yielded a p-value of 0.0799, which exceeded the conventional alpha level of 

0.05. This result indicates no statistically significant deviation from normality, meaning that we failed to 

reject the null hypothesis that the data followed a normal distribution. Therefore, the distribution of 

Performance Scores in the background music condition can be reasonably considered Gaussian. 

In contrast, the Silence group produced a p-value of < 0.001, indicating a highly significant violation of 

normality. This result strongly suggests that the Performance Score data in the silence condition do not 

conform to a normal distribution and instead exhibit non-Gaussian characteristics such as skewness or 

kurtosis. 

These findings have important statistical implications for the subsequent analyses. Since only the Music 

group's data satisfy the normality assumption, parametric tests (such as the independent-samples t-test) are 

appropriate for that group. However, the violation of normality in the silence group necessitated a more 

cautious approach. Researchers should consider either (a) applying a data transformation (e.g., logarithmic 

or square-root) to normalize the distribution or (b) employing non-parametric alternatives, such as the 

Mann-Whitney U test, which do not rely on the assumption of normality of the data. 

These adjustments ensured that the inferential analyses remained statistically valid and interpretable across 

both the experimental conditions. 

4.2 Independent-Samples t-Test on Performance Score 

To examine whether the presence of background music influenced processing efficiency, an independent-

samples t-test was conducted to compare Performance Scores (defined as correct answers per second) 

between participants in the Background Music condition and those in the silence condition. 

The analysis yielded a t-statistic of -0.6651, with an associated p-value of 0.5068. Since equal variances 

were not assumed, the degrees of freedom were adjusted to approximately 298 degrees. Given that the p-
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value exceeds the conventional significance level of 0.05, the result is not statistically significant, and we 

fail to reject the null hypothesis of no difference in the means. 

 Test statistic (t): -0.6651 

 Degrees of freedom (df): ≈ 298 (Welch’s adjustment) 

 p-value: 0.5068 

 Decision: p > .05, fail to reject H₀ 

These findings indicate that any observed difference in the mean Performance Score between the two 

conditions is likely due to random variation rather than the true effect of background music on cognitive 

processing efficiency. In practical terms, participants exposed to background music did not perform 

significantly faster or slower when accuracy was adjusted over time compared to those who worked in 

silence. 

The proximity of the t-statistic to zero and the non-significant p-value together suggest a negligible effect 

size, reinforcing the conclusion that the auditory condition had no meaningful impact on the speed-adjusted 

performance measure in this sample. Although the findings do not support the hypothesis that background 

music alters cognitive efficiency, they offer a statistically sound basis for accepting the null hypothesis. 

From a research design standpoint, these results encourage further exploration using complementary 

statistical techniques, such as non-parametric tests (e.g., Mann-Whitney U) or Bayesian analysis, to estimate 

the evidence for the null hypothesis more precisely. Additionally, future studies may benefit from larger 

sample sizes, improved task sensitivity, and varying types of music to detect more subtle or context-

dependent effects. 

4.3 Effect Size Estimation Using Cohen’s d 

To quantify the magnitude of the difference in processing efficiency between conditions, Cohen’s d was 

calculated based on the Performance Score (correct answers per second) across the Music and Silence 

groups. The resulting value was Cohen’s d = -0.077, which represents the standardized mean difference 

between the two groups. 

Cohen’s d is a widely used effect size metric that interprets the difference between group means in standard 

deviation units. According to the conventional benchmarks: 

 d ≈ 0.20 reflects a small effect, 

 d ≈ 0.50 a medium effect, 

 d ≥ 0.8 a large effect. 

The negative sign indicates that the Silence group slightly outperformed the Music group, although the 

magnitude of this difference was extremely small. 

With a value of -0.077, the observed effect size fell well below the threshold for a small effect, indicating a 

negligible difference between the groups. In practical terms, the average gap in performance measured as 

the number of correct answers per second is so minor that it lacks both statistical importance and real-world 

relevance. 

This result is consistent with the earlier t-test outcome, further confirming that background music does not 

meaningfully influence cognitive task efficiency in this context. Together, the statistical and effect size 

findings strengthen the conclusion that the auditory condition had no measurable impact on performance 

under the parameters of this study. 
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4.4 One-Way ANOVA on the Effect of Auditory Condition on Performance 

 
Table 04: ANOVA table 

Source Sum of Squares df F p-value 

Group 12.3289 1 3.9247 0.0485* 

Residual 936.0586 298 — — 

To evaluate whether task performance significantly differed between students exposed to background music 

and those working in silence, a one-way analysis of variance (ANOVA) was performed. The results of this 

analysis are presented in Table 04. 

Table 04 shows that the between-group sum of squares attributed to the auditory condition is 12.33 with 1 

deg of freedom, while the within-group (residual) sum of squares is 936.06 with 298 df. The resulting F-

statistic is 3.92, which reflects the ratio of the mean square between groups to the mean square within 

groups. Specifically: 

 Between-group mean square 

  
12.33

1
= 12.33 

 Within-group mean square 

 
936.06

298
≈ 3.14 

 

 F(1, 298) = 3.92 

 p-value = 0.0485 

The p-value of 0.0485 fell just below the standard significance threshold of 0.05, indicating a statistically 

significant difference in mean Performance Scores between the two auditory conditions. 

Despite the statistical significance, the effect size was modest. Using the formula for eta-squared (η²), the 

proportion of the total variance explained by group membership is 

𝜂2 ≈
12.33

(12.33 + 936.06)
≈ 0.013 

This indicates that only 1.3% of the total variance in the Performance Score is attributable to the auditory 

condition, suggesting a small effect size. 

These results show that background music yields a small but significant improvement in raw accuracy 

(ANOVA F(1, 298)=3.92, p=0.0485, η²≈0.013) without affecting processing efficiency (t(298)=–0.67, 

p=0.51), indicating the benefit is specific to correctness rather than speed. By prespecifying the ANOVA on 

raw accuracy as our primary test and reporting the non‑significant t‑test as a robustness check, we offer a 

transparent and rigorous analysis that mitigates concerns over mixed p‑values. Although the effect size is 

modest, future studies could enhance sensitivity by integrating accuracy and time in a single regression 

model, adopting within‑subjects designs, or exploring moderators such as individual music preference and 

task complexity. 

4.5 Pearson Correlation Analysis among Core Study Variables 

Figure 03 presents a heatmap of the Pearson correlation matrix illustrating the pairwise relationships among 

four core study variables gathered from approximately 300 participants: CorrectAnswers (the number of 

quiz questions answered correctly), TimeTaken (quiz completion time in seconds), MemoryRecallCount 

(the number of words recalled in the incidental memory task), and PerformanceScore (a derived metric 

calculated as CorrectAnswers divided by TimeTaken). This matrix offers a comprehensive view of the 

linear associations between the key behavioral metrics collected during the experiment. 

http://www.jetir.org/


© 2025 JETIR July 2025, Volume 12, Issue 7                                                            www.jetir.org (ISSN-2349-5162) 

 

JETIR2507258 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c495 
 

 

 

Figure 03: Pearson Correlation Matrix of Key Study Variables 

Figure 03 presents a heatmap of the Pearson correlation matrix illustrating the pairwise relationships among 

four core study variables gathered from approximately 300 participants: CorrectAnswers (the number of 

quiz questions answered correctly), TimeTaken (quiz completion time in seconds), MemoryRecallCount 

(the number of words recalled in the incidental memory task), and PerformanceScore (a derived metric 

calculated as CorrectAnswers divided by TimeTaken). This matrix offers a comprehensive view of the 

linear associations between key behavioral metrics collected in the experiment. 

The color coding in Figure 03 enhances interpretability; red shades represent positive correlations, and blue 

shades indicate negative correlations. The depth of each hue corresponds to the strength of the association, 

with more saturated colors reflecting a higher absolute correlation. The visualization enables the intuitive 

detection of both strong and weak relationships among variables. 

The results revealed several meaningful patterns. First, CorrectAnswers and TimeTaken exhibited a 

moderately strong negative correlation (r = -0.58), suggesting that participants who answered more 

questions correctly tended to complete the quiz in less time. This inverse relationship highlights a cognitive 

efficiency trend in which higher accuracy is typically coupled with faster performance. Second, 

CorrectAnswers and PerformanceScore were moderately positively correlated (r = 0.41), an expected 

outcome given that PerformanceScore directly incorporates correct responses as its numerator. This 

indicates that participants with higher accuracy also displayed greater overall task efficiency. 

In contrast, TimeTaken and PerformanceScore showed a strong negative correlation (r = -0.61), 

underscoring the significant role of task duration in determining cognitive efficiency. Longer completion 

times were consistently associated with lower performance scores, reinforcing the premise that speed is a 

central factor in the efficiency metric. 

Interestingly, MemoryRecallCount demonstrated negligible correlations with all other variables (ranging 

between -0.04 and 0.02). This statistical independence suggests that performance on the incidental memory 

task was orthogonal to the primary task metrics of accuracy, speed, and efficiency. This finding reinforces 

the idea that distinct cognitive systems underlie memory encoding and rapid problem-solving under timed 

conditions. 

These correlation patterns, depicted in Figure 03, provide strong empirical support for the construct validity 

of the study’s core variables. The alignment of PerformanceScore with both accuracy and speed confirms its 

role as a robust efficiency metric that captures the integrated nature of task performance under time 

constraints. Meanwhile, the statistical independence of MemoryRecallCount suggests that it taps into a 

separate cognitive domain, likely unaffected by the demands of the timed quiz. This dissociation aligns with 
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theoretical models that posit distinct mechanisms for memory encoding versus real-time problem-solving, 

reinforcing the multidimensional nature of cognitive performance assessed in this study. 

4.6 Memory Recall Performance Across Auditory Conditions 

To investigate the potential effect of Background Music on incidental memory performance, participant 

recall scores were analyzed across two auditory conditions: background music () and silence (). The 

comparison is illustrated in Figure 04, which displays a box-and-whisker plot representing the distribution 

of correctly recalled words from a standardized 15-item list following task completion in each condition. 

 

Figure 04: Memory Recall Count by Group 

The vertical axis in Figure 04 corresponds to the Memory Recall Count, defined as the number of items 

correctly remembered during the post-task recall phase. Each box plot depicts the central tendency and 

dispersion within each group, allowing for a visual comparison of the medians, interquartile ranges (IQR), 

and overall distributional shape. 

Notable patterns emerged upon inspection. The median recall score for the Silence group was 8 words, 

compared to 7 words in the Music group, suggesting a modest shift toward better performance in the 

absence of auditory stimuli. The interquartile range in the Music condition extended from 6 to 9, while the 

Silence group showed a slightly narrower IQR from 7-9. This overlap suggests that the central 50% of 

scores were largely similar across both groups, with comparable upper quartiles and minor variations in the 

lower quartile. 

The whiskers, representing the full span of non-outlier scores, ranged from 5 to 10 for both conditions. No 

extreme values or statistical outliers were detected, and the near-symmetrical distribution of whiskers 

indicated a consistent spread across participants. These distributional characteristics collectively indicate a 

substantial overlap between the two auditory conditions. 

Although the Silence group demonstrated a slightly higher central tendency in recall performance, the 

observed difference was not statistically significant. A one-way ANOVA yielded F (1, 298) = 2.11, p = 

0.148, exceeding the conventional alpha threshold of 0.05. This result indicates insufficient evidence to 

conclude that auditory conditions exert a measurable influence on incidental memory recall. 

Taken together, the results depicted in Figure 04 support the interpretation that background music neither 

facilitated nor hindered short-term verbal memory performance in this experimental context. The absence of 

a statistically significant difference suggests that incidental memory encoding was largely unaffected by the 
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presence or absence of background auditory stimuli, at least under the specific volume, genre, and task 

conditions used in this study. These findings align with the notion that memory recall processes may be 

more resilient to ambient auditory influences than cognitive speed or task accuracy and underscore the 

importance of differentiating between distinct cognitive domains when assessing the impact of 

environmental factors on academic performance. 

4.7 Descriptive Analysis of Quiz Accuracy by Gender 

To examine potential sex-based differences in quiz accuracy, Table 05 reports descriptive statistics for the 

number of correctly answered quiz items across self-reported sex categories. The table includes the sample 

size (n), mean, standard deviation (SD), minimum score, 25th, 50th (median), and 75th percentiles for each 

group. 

Table 05: Gender-Based Descriptive Statistics for Quiz Correct Answers 

Gender n Mean SD Min 25% 50% 75% 

Female 122 6.52 2.16 0 5 7 9 

Male 172 6.53 2.27 2 5 7 8.25 

Other 2 4.50 0.71 4 4.25 4.50 4.75 

Prefer not to say 4 6.25 2.22 3 6 7 7.25 

 

The two largest categories, Female (n = 122) and Male (n = 172), exhibited nearly identical mean scores, 

averaging 6.52 and 6.53 correct answers out of a possible 10, respectively. Both groups also shared the same 

median score of 7, indicating a consistent central tendency in the data. The interquartile range (IQR) 

spanned from 5 to 9 for females and 5 to 8.25 for males, highlighting a comparable distribution of scores 

clustered within the moderate-to-high accuracy range. The standard deviations were similar (SD = 2.16 for 

females and 2.27 for males), reflecting equivalent levels of performance variability. 

Subtle distinctions were observed. The upper quartile threshold was slightly higher among females (75th 

percentile = 9) than among males (75th percentile = 8.25), suggesting a marginally broader spread at the 

higher end of the distribution for female participants. On the lower end, female scores ranged from 0 to 10, 

whereas the lowest male score was 2, indicating a slightly tighter lower bound for the male participants. The 

zero-score recorded among females may reflect non-engagement or data entry anomalies and warrants 

cautious interpretation. 

Two additional categories were reported with notably smaller sample sizes than the first three. The “Other” 

category (n = 2) showed a mean of 4.5 with a low SD of 0.71, and the “Prefer not to say” group (n = 4) had 

a mean of 6.25 and an SD of 2.22. While these results appear generally consistent with those of the primary 

groups, the small sample sizes preclude any firm conclusions and should be interpreted as illustrative only. 

As summarized in Table 05, the descriptive statistics revealed no substantial gender-based disparities in quiz 

accuracy. Both male and female participants demonstrated statistically and practically similar performance 

profiles in terms of central tendency, variability, and score distributions. For a more rigorous subgroup 

analysis, particularly regarding underrepresented identities, future research should prioritize balanced 

sampling and incorporate formal inferential techniques, such as one-way ANOVA or non-parametric 

alternatives, to validate emerging patterns. 

 

4.8 Completion Time and Speed-Accuracy Trade-Off by Gender 

To examine whether task efficiency varied by gender, Table 06 summarizes quiz completion time and 

performance-adjusted efficiency across four self-reported gender categories: Female, Male, Other, and 

Prefer not to say. The reported metrics included the maximum observed completion time, number of 

participants, average time taken, and 75th percentile of the Performance Score, defined as the number of 

correct answers per second. 
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Table 06: Completion Time and Performance Score by Gender 

Gender TimeTaken Max (s) TimeTaken Count TimeTaken Mean (s) PerformanceScore 75th 

Percentile 

Female 10.0 122 117.28 0.0748 

Male 10.0 172 118.11 0.0784 

Other 5.0 2 139.50 0.0333 

Prefer not to say 8.0 4 128.50 0.0612 

Among the two primary gender groups, female (n=122) and male (n=172), the mean completion times were 

nearly identical, recorded at 117.28 s and 118.11 s, respectively. The maximum recorded time in both 

groups was 10.0 s, likely reflecting system-enforced timing limits or truncated recording artifacts. The 75th 

percentile Performance Scores were also closely aligned, with 0.0748 answers per second for females and 

0.0784 for males. These figures suggest comparable task efficiency among higher-performing participants in 

both groups. 

Smaller identity categories revealed lower average efficiencies. Participants identifying as Other (n = 2) had 

a mean time of 139.50 s and a 75th percentile Performance Score of 0.0333, while those selecting Prefer not 

to say (n = 4) averaged 128.50 s with a corresponding score of 0.0612. Due to the very limited sample sizes 

in these groups, these statistics are considered exploratory and should not be interpreted as generalizable 

trends. 

Table 06 presents key observations regarding task efficiency across gender groups. The similarity in average 

completion times and upper-quartile performance scores between male and female participants indicates no 

meaningful gender-based differences in cognitive task efficiency. In contrast, the “Other” and “Prefer not to 

say” categories exhibited slower response times and lower efficiency levels. However, due to the very 

limited sample sizes in these groups, these findings remain exploratory and should be interpreted with 

caution. Nonetheless, the observed trends may warrant further investigation in future studies with broader 

subgroup representation. 

Taken together, the data presented in Table 06 indicate that quiz efficiency was generally consistent across 

the main gender categories. To derive statistically robust insights for underrepresented groups, future 

research should prioritize broader sampling and implement inferential comparisons such as analysis of 

variance (ANOVA) or non-parametric equivalents. 

4.9 Memory Recall Performance by Gender 

To examine whether gender influenced short-term memory performance, Table 07 presents descriptive 

statistics for Memory Recall Count across four self-reported gender categories: Female, Male, Other, and 

Prefer not to say. Memory recall was measured as the number of words correctly remembered from a 15-

word list, and the table includes maximum observed proportion (labeled as “max”), sample size, mean, 

standard deviation, and minimum value for each group. 

Table 07: Descriptive Statistics for Memory Recall Count by Gender 

Gender max count mean std min 

Female 0.117647 122 7.549 1.701 5 

Male 1.000000 172 7.320 1.833 5 

Other 0.034483 2 5.000 0.000 5 

Prefer not to say 0.066667 4 8.000 1.826 6 

As shown in Table 07, most participants identified as either Female (n = 122) or Male (n = 172). These two 

groups exhibited highly similar recall performance. The average number of words recalled was 7.55 for 

females (SD = 1.70) and 7.32 for males (SD = 1.83), indicating a negligible difference in central tendency. 

The standard deviations suggest moderate within-group variation, with most participants recalling between 

approximately 6 and 9 words. 

Participants who selected "Prefer not to say" (n = 4) reported a slightly higher average recall of 8.00 words 

(SD = 1.83), while those identifying as "Other" (n = 2) recalled exactly 5.00 words with no variation. Due to 
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the extremely limited sample sizes in these latter two categories, these figures should be interpreted as 

descriptive summaries only and not used for statistical inference. 

The minimum recall count observed in both female and male groups was 5, while for the “Prefer not to say” 

group it was 6. The maximum values reported in the “max” column such as 1.000000 for males appear to be 

normalized proportions or possibly derived from a coding procedure that may require clarification, 

particularly since this exceeds the raw maximum of 15 items. 

Table 07 reveals no substantial gender-based differences in memory performance among the two primary 

groups, as both female and male participants demonstrated similar mean recall levels. The moderate 

variability observed within each group suggests a consistent pattern of performance, with no significant 

disparities in recall ability. While participants in minority gender categories displayed more divergent 

results, the extremely limited sample sizes in these groups preclude any meaningful interpretation or reliable 

comparison. 

These results suggest that under the study conditions, incidental verbal memory recall did not differ 

meaningfully by gender among the adequately represented groups. Researchers aiming to investigate 

gender-based cognitive differences in future studies should ensure larger and more balanced sample sizes 

across all identity groups, particularly if inferential comparisons are intended. 

4.10 Gender-Based Distribution of Quiz Accuracy 

To assess potential gender-related trends in quiz accuracy, Table 08 presents the distribution of correct 

arithmetic responses across four self-reported gender categories: Female, Male, Other, and Prefer not to say. 

For each group, the table reports the 25th percentile, median (50th percentile), 75th percentile, and 

maximum number of correctly answered items, based on a 10-item quiz. 

Table 08: Distribution of Correct Quiz Responses by Gender 

Gender 25th Percentile 50th Percentile 

(Median) 

75th Percentile Maximum 

Female 6.00 8.00 9.00 10.0 

Male 6.00 7.00 9.00 10.0 

Other 5.00 5.00 5.00 5.0 

Prefer not to say 6.75 8.00 9.25 10.0 

As shown in Table 08, the two primary groups (Female, n = 122; Male, n = 172) demonstrated highly 

similar scoring distributions. For both groups, the interquartile range spanned from 6 to 9 correct answers, 

indicating that half of the participants scored within this range. The median score was 8 for females and 7 

for males, while the maximum score of 10 was observed in both groups, reflecting strong upper-end 

performance. 

Participants who selected "Prefer not to say" (n = 4) exhibited a slightly elevated 25th percentile of 6.75 and 

a 75th percentile of 9.25, with a median of 8 and a maximum of 10. This mirrors the distribution observed 

among females; however, due to the small sample size, these figures should be interpreted with caution. 

The "Other" category (n = 2) showed no variability in scores, with all values fixed at 5 correct responses. 

This uniformity is a consequence of the extremely limited number of participants and is not indicative of a 

broader pattern. 

Table 08 highlights several notable observations regarding performance across gender groups. First, there is 

a clear parity between female and male participants, as evidenced by their nearly identical interquartile 

ranges and shared maximum quiz score, indicating minimal gender-based disparity in task performance. 

Participants who selected "Prefer not to say" exhibited slightly elevated lower- and upper-quartile values, 

while those identifying as "Other" consistently scored lower. However, the very small sample sizes in these 

two categories (n = 4 and n = 2, respectively) limit the reliability and generalizability of any statistical 

comparisons. Additionally, all gender groups achieved the quiz maximum score of 10, suggesting a possible 
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ceiling effect and indicating that participants across all gender identities demonstrated comparable potential 

for high-level performance. 

These quartile-based findings support the conclusion that gender, among the well-represented categories, 

had no meaningful influence on quiz accuracy in this study. The closely aligned performance of female and 

male participants suggests that background music's potential effects on cognitive performance are unlikely 

to be confounded by gender differences in task accuracy. For future studies, more representative and 

balanced sampling across all gender categories is recommended to enable valid subgroup comparisons and 

more robust statistical analysis. 

4.11 Performance Score Distribution by Gender 

Figure 05 presents a box and whisker plot comparing the distribution of Performance Score, calculated as 

the number of correct answers per second, across four self-identified gender groups: Male, Female, Prefer 

Not to Say, and Other. This figure offers a clear visual summary of task efficiency patterns by gender based 

on speed-adjusted accuracy. 

 

Figure 05: Performance Score by Gender 

As depicted in Figure 05, the median Performance Scores for Male and Female participants are almost 

identical, each centered around 0.05 answers per second, reflecting similar levels of task efficiency in these 

two primary groups. The “Prefer Not to Say” group shows a slightly lower median near 0.03 answers per 

second, while the “Other” group presents the lowest median, just below 0.02 answers per second. However, 

the extremely small sample size in the “Other” category (n < 5) limits the generalizability of this finding. 

The interquartile ranges (IQR) for both Male and Female participants span roughly 0.03 to 0.08 answers per 

second, suggesting moderate variability and largely overlapping performance distributions. In comparison, 

the “Prefer Not to Say” group has a narrower IQR from about 0.02 to 0.05, pointing to more uniform but 

generally lower performance. The “Other” group displays a compressed range at the lower end of the scale, 

which likely reflects the limited data rather than a consistent pattern. 

Whiskers and outliers show that Male and Female scores range from near-zero values up to approximately 

0.10 to 0.12 answers per second, indicating that high task efficiency was achieved in both groups. A single 

extreme outlier with a Performance Score of 1.0 is present in the Male group, likely resulting from a 

recording error or an abnormally short completion time and should be reviewed during data quality checks. 

No additional outliers extend beyond typical whisker boundaries. 
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The data presented in Figure 05 indicate that there is no meaningful gender-based disparity in speed-

adjusted quiz performance between Male and Female participants. The close alignment of median values, 

interquartile ranges, and overall distribution patterns suggests that gender did not systematically affect 

cognitive task efficiency under the experimental conditions. Although the “Prefer Not to Say” and “Other” 

groups exhibited slightly lower median Performance Scores, these observations are not statistically reliable 

due to the limited number of respondents in those categories. The consistency observed among the major 

gender groups reinforces the robustness of the study’s findings by reducing the likelihood that gender acted 

as a confounding variable in the relationship between auditory condition and performance outcomes. 

4.12 Independent-Samples t-Test for Gender Differences 

To examine whether cognitive task efficiency differed by gender, an independent-samples t-test was 

conducted comparing the Performance Score (correct answers per second) between male and female 

participants. This statistical test assesses whether the difference in mean performance between these two 

groups is large enough to suggest a meaningful gender-based disparity. 

The results of the analysis are as follows: 

 t-Statistic = 0.8755 

 p-Value = 0.3822 

Since the p-value exceeds the conventional significance threshold of α = 0.05, we fail to reject the null 

hypothesis of equal means. This finding indicates that the observed difference in average Performance Score 

between male and female participants is not statistically significant and is likely due to random variation 
rather than a true group effect. The magnitude of the difference is well within one standard error, 

underscoring the lack of a reliable performance gap. 

The results were annotated with a red "✗ No Gender Difference" label in the output, further confirming that 

no significant disparity was detected. 

Additionally, the estimation procedure supporting this test was completed successfully. The algorithm 

converged in six iterations, achieving a final objective (loss) value of 0.506797. This convergence confirms 

that the test parameters were stably estimated, and that the inference is based on a well-fitted and 

numerically reliable model. 

Together, these results suggest that gender did not exert a meaningful influence on task efficiency as 

measured by speed-adjusted accuracy in this study. 
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4.13 Logistic Regression Predicting High Performer Status 

 

To assess which factors most strongly predict high quiz performance, a binary logistic regression was 

conducted using HighPerformer status as the dependent variable. This outcome was coded as 1 if a 

participant scored at or above the sample median and 0 otherwise. The model included three predictors: 

auditory condition (GroupEncoded), total quiz completion time (TimeTaken), and incidental memory recall 

count (MemoryRecallCount). A summary of the regression output is presented in Table 09. 
 

 
Table 09: Logistic Regression Summary Predicting High‐Performer Status 

 

Statistic Value 

Dependent Variable HighPerformer 

Observations 300 

Model Logit 

Method MLE 

Degrees of Freedom 3 (model), 296 (residual) 

Date Wed, 25 Jun 2025 

Time 06:54:41 

Log-Likelihood -152.04 

LL-Null -207.88 

Pseudo R² (McFadden) 0.2686 

LLR p-value 4.749e-24 

Converged True 

Covariance Type Nonrobust 

As shown in Table 09, the model was estimated using maximum likelihood estimation (MLE) on a dataset 

of N = 300 participants. The estimation procedure converged successfully, confirming the stability of the 

model's parameter estimates. 

The logistic regression model demonstrated strong statistical performance based on several key indicators. 

The model's log-likelihood (LL) was -152.04, compared to a null log-likelihood (LL-Null) of -207.88, 

indicating a significant improvement in model fit. The likelihood ratio test yielded a p-value of 4.749 × 

10⁻²⁴, strongly supporting the model’s explanatory power over the null model. McFadden’s Pseudo R² value 

was 0.2686, suggesting a moderate level of goodness-of-fit. The degrees of freedom were 3 for the model 

and 296 for the residuals, aligning with the structure and complexity of the regression framework. 

The large difference between the full and null log-likelihood values, paired with the extremely low LLR p-

value, indicates that the inclusion of predictors significantly improves model fit. McFadden’s pseudo-R² of 

approximately 0.27 suggests that the model explains about 27 percent of the variance in high performer 

status, which is considered substantial in behavioral research contexts. 

The bottom panel of Table 09 presents the estimated regression coefficients, along with standard errors, z-

values, p-values, and 95 percent confidence intervals (CI) for each predictor: 

 Intercept  
(β₀ = 10.3881, p < .001) 

The intercept reflects the baseline log-odds of being a high performer when all predictors are equal 

to zero. Although not interpretable in a practical sense, it provides a mathematical anchor for the 

model. 

 GroupEncoded  

(β₁ = -0.5093, p = .072) 

Being in the background music condition (versus silence) is associated with a decrease of 0.51 in the 

log-odds of being a high performer. However, this effect is only marginally significant, as the p-
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value slightly exceeds the 0.05 threshold. The confidence interval [-1.065, 0.046] includes zero, 

reflecting uncertainty about the effect's direction and magnitude. 

 TimeTaken  

(β₂ = -0.8065, p < .001) 

Completion time emerges as the strongest and most reliable predictor. Each additional second taken 

to complete the quiz is associated with a 0.81 decrease in the log-odds of high performance. In odds 

ratio terms, this translates to e^(-0.8065) ≈ 0.45, meaning that each extra second roughly halves the 

odds of being in the top-performing half. The confidence interval [-0.985, -0.628] is narrow, 

underscoring the robustness of this effect. 

 MemoryRecallCount  
(β₃ = 0.0127, p = .872) 

The number of words recalled from the incidental memory task has no meaningful predictive value 

for quiz performance. The coefficient is near zero, the p-value is high, and the confidence interval [-

0.143, 0.168] spans zero widely, suggesting this variable is statistically irrelevant in the context of 

high-performance classification. 

The results presented in Table 09 identify quiz completion time as the most critical and statistically 

significant factor associated with high performer status. Participants who completed the quiz more quickly 

were substantially more likely to score in the top half of the distribution. Although the presence of 

background music showed a weak negative trend, it did not reach conventional levels of statistical 

significance. Meanwhile, memory recall ability did not contribute meaningfully to predicting high 

performance on the quiz. 

These findings suggest that under the given study conditions, task efficiency rather than auditory context or 

memory recall was the principal determinant of successful performance. While the marginal effect of 

background music warrants further investigation, it does not appear to materially affect top-tier 

performance. Future research may benefit from exploring additional individual difference variables, such as 

music preference or cognitive style, to better understand the nuanced influences on performance outcomes. 

4.14 Random Forest Classification Performance Evaluation  

To assess the predictive accuracy of a machine learning model in distinguishing between high and low quiz 

performers, a Random Forest classifier was trained and evaluated on a test set comprising n = 60 

participants. The classification results are summarized in Table 10, which reports standard evaluation 

metrics including precision, recall, F1-score, and support for both target classes: 

 Class 0: Non-high performers 

 Class 1: High performers 

Table 10: Random Forest Classification Report (n = 60) 

Class Precision Recall F1-Score Support 

0 0.78 0.76 0.77 37 

1 0.62 0.65 0.64 23 

Accuracy   0.72 60 

Macro Avg 0.70 0.70 0.70 60 

Weighted Avg 0.72 0.72 0.72 60 
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The classification performance of the Random Forest model was evaluated using standard classification 

metrics, revealing both strengths and areas for improvement. For Class 0 (non-high performers), the model 

achieved a precision of 0.78, meaning that 78 percent of instances predicted as Class 0 were correctly 

labeled. This reflects the model’s effectiveness in minimizing false positives for non-high performers. In 

contrast, Class 1 (high performers) exhibited a lower precision of 0.62, indicating that 38 percent of 

predictions for high performers were incorrect, which suggests a higher false positive rate in identifying top-

performing students. 

The recall score for Class 0 was 0.76, showing the model successfully identified 76 percent of all actual 

non-high performers. Class 1 had a recall of 0.65, indicating a moderate ability to detect actual high 

performers, though some were missed during classification. The F1-score, which balances precision and 

recall, was 0.77 for Class 0, demonstrating consistent performance for most of the class. For Class 1, 

however, the F1-score dropped to 0.64, suggesting room for improvement, particularly in achieving a better 

balance between precision and recall. 

The support values 37 for Class 0 and 23 for Class 1 highlight a moderate class imbalance in the dataset, 

which may bias the model toward the majority class. The overall accuracy of the model was 0.72, indicating 

that 72 percent of test cases were correctly classified. The macro average F1-score was 0.70, representing 

the unweighted mean performance across both classes, while the weighted average, which accounts for class 

imbalance, matched the overall accuracy at 0.72. 

While these results reflect a solid baseline performance, particularly in identifying non-high performers, the 

model demonstrated reduced sensitivity in correctly classifying high performers. This limitation is common 

in imbalanced datasets and suggests a need for targeted refinements. To address this, several strategies are 

recommended. Resampling techniques, such as SMOTE (Synthetic Minority Over-sampling Technique) or 

random under-sampling, could be employed to balance the class distribution. Cost-sensitive training, where 

misclassifications of high performers are penalized more heavily, may help prioritize minority class 

accuracy. Additionally, adjusting the decision threshold based on precision-recall trade-offs could improve 

the capture rate of high performers without compromising overall performance. 

Further evaluation tools are also recommended. The use of ROC-AUC curves can provide insight into the 

model’s overall discriminative ability, while analyzing the confusion matrix can help identify specific 

patterns in misclassification. Finally, hyperparameter optimization, through grid search or Bayesian 

optimization, can refine key model parameters such as the number of trees, maximum depth, and feature 

selection strategies. 

As summarized in Table 10, the Random Forest model provides a dependable starting point for 

classification in educational contexts. However, its limitations in accurately predicting top-performing 

students highlight the need for further tuning. These findings offer valuable guidance for improving 

classification precision and developing more balanced and accurate performance prediction systems in 

future educational machine learning applications. 

4.15 Confusion Matrix of Random Forest 

To assess the classification performance of the Random Forest model in predicting quiz outcomes, a 

confusion matrix was created using a test set of 60 participants. The two predicted outcome classes were 

"Low" and "High," representing below-median and at-or-above-median quiz performers, respectively. 

Figure 06 presents a visual depiction of the confusion matrix, while the exact values are detailed in Table 

11. 
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Figure 06: Confusion Matrix for Random Forest Classifier 

 

As reflected in Figure 06, the classifier correctly identified 28 low-performing students and 15 high 

performers. However, it misclassified 8 high performers as low and 9 low performers as high. These figures 

help illuminate the strengths and limitations of the model when applied to real-world classification tasks in 

educational settings. 

 
Table 11: Confusion Matrix for Random Forest 

 Predicted Low Predicted High 

True Low 28 (True Pos) 8 (False Pos) 

True High 9 (False Neg) 15 (True Neg) 

 

  

Key evaluation metrics computed from the confusion matrix are as follows: 

 Accuracy 
 

𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
=

28+15

60
=

43

60
≈ 0.72  

The model correctly predicted 72% of all test instances. 

 Precision for Low performers 
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

28

28 + 8
=
28

36
≈ 0.78 

Indicates that 78% of the participants predicted as low performers were correctly identified. 

 Recall for Low performers 
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

28

28 + 9
=
28

37
≈ 0.76 

               Reflects the model's ability to capture 76% of all actual low performers. 
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 Precision for High performers 

 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=

15

15 + 9
=
15

24
≈ 0.63 

               Suggest lower confidence in correctly predicting high performers. 

 Recall for High performers 
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

15

15 + 8
=
15

23
≈ 0.65 

It indicates that 65% of actual high performers were correctly identified. 

The model exhibits a moderate class imbalance, with 37 participants in the low-performance category and 

23 in the high-performance group. These skew influences model behavior and may partially account for the 

stronger metrics observed for the majority class. 

As illustrated in Figure 06 and summarized in Table 11, the Random Forest classifier demonstrates a higher 

efficacy in identifying low-performing students compared to high performers. Although the model achieves 

an overall accuracy of 72 percent, the evident disparity in class-specific precision and recall particularly the 

lower metrics for high performers suggests the need for targeted refinement. Improving the model’s ability 

to accurately detect high-achieving students is essential, especially in academic environments where 

precision in performance prediction can inform tailored interventions and resource allocation. 

To address these limitations, several strategic enhancements have been proposed. One important adjustment 

involves threshold calibration, which entails modifying the classification decision boundary to achieve a 

more favorable balance between false positives and false negatives in line with the study’s objectives. 

Additionally, data rebalancing techniques, such as the Synthetic Minority Oversampling Technique 

(SMOTE), or incorporating class-weight adjustments during model training, can help mitigate the effects of 

class imbalance and improve minority class detection. Another recommended strategy is hyperparameter 

tuning using systematic methods such as grid search or Bayesian optimization. These approaches allow for 

fine-tuning of key parameters including the number of trees, maximum tree depth, and feature splitting 

criteria, thereby enhancing overall model generalizability and performance. 

Complementing these improvements, the integration of additional performance metrics, such as ROC-AUC 

scores and detailed confusion matrix heatmaps, can provide a more nuanced understanding of classifier 

behavior beyond conventional accuracy scores. Together, these measures form a robust roadmap for 

elevating model precision and sensitivity, particularly in accurately identifying top-performing individuals. 

Such improvements not only enhance the credibility of predictive outcomes but also contribute 

meaningfully to data-driven decision-making in educational research and policy development. 

4.16 Random Forest Model Accuracy and Feature Importance 

This section evaluates the Random Forest classifier's effectiveness in predicting high versus low quiz 

performance, based on cross-validation accuracy and feature importance derived from model-internal 

metrics. Together, these elements provide a clear understanding of both how well the model performs, and 

which variables influence its decisions. 

Feature importance values were derived from the Random Forest model using Gini impurity reduction, 

which quantifies each predictor’s contribution to the accuracy of the classification task. Among all input 

features, Time Taken emerged as the most dominant predictor, carrying an “importance” score of 0.8546, or 

over 85% of the model’s total decision weight. This strongly suggests that the speed with which participants 

completed the quiz plays a critical role in distinguishing high performers from low performers. This finding 

is also consistent with earlier statistical results, which showed a clear trend: participants who completed 

tasks more quickly tended to achieve higher scores, reinforcing the link between cognitive efficiency and 

academic performance. 
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The second most influential variable was Memory Recall Count, with an “importance” score of 0.1139, 

contributing just over 11% to the classification decision. While its influence was significantly lower than 

that of Time Taken, this variable still demonstrated predictive value, likely reflecting latent cognitive 

abilities such as attention span or working memory. These cognitive dimensions, although not directly tied 

to the problem-solving task, may influence task efficiency and are thus indirectly associated with 

performance classification. 

In contrast, the Group Encoded variable indicating whether a participant was in the music or silence 

condition carried a minimal importance score of 0.0314. This low weight suggests that the auditory 

condition had limited predictive relevance within the experimental design. Despite its central role in the 

research hypothesis, the data indicate that background music, as defined and delivered in this study, was not 

a strong determinant of quiz performance when compared to task-specific cognitive indicators such as speed 

or recall ability. 

These findings offer several interpretive insights and point toward promising directions for future 

refinement. The clear dominance of task completion time underscores the centrality of cognitive processing 

speed in academic performance prediction models. Although Memory Recall Count played a lesser role, its 

contribution to model accuracy supports the inclusion of auxiliary cognitive indicators in future models. In 

contrast, the limited utility of the auditory condition variable suggests that the simple binary classification of 

background music may not sufficiently capture its psychological impact. Future studies may benefit from 

replacing this feature with more granular auditory metrics, such as specific musical genres, tempo, presence 

of lyrics, or individual musical preferences, to better reflect the nuanced ways in which music may affect 

cognitive states. 

To further improve model precision and sensitivity, several enhancements are recommended. These include 

integrating psychometric measures of attention or executive function, adopting more advanced ensemble 

learning techniques such as gradient boosting or model stacking, and refining threshold calibration to better 

handle class imbalance and improve minority class detection. Collectively, these refinements could sharpen 

the model’s ability to capture subtle individual differences and enhance its practical applicability in 

educational performance prediction. 

4.17 Decision Tree Classification Performance 

To evaluate the predictive performance of the Decision Tree classifier on academic task outcomes, a 

classification report was generated based on a held-out test set of 60 participants. The results, summarized in 

Table 12, include standard evaluation metrics: precision, recall, F1-score, and support for each outcome 

class, namely Class 0 (non-high performers) and Class 1 (high performers). The classifier achieved an 

overall accuracy of 70%, correctly identifying 42 out of 60 cases. While this figure reflects reasonable 

baseline performance, a more nuanced analysis of class-specific metrics reveals meaningful discrepancies 

between groups. 

Table 12: Classification Report for Decision Tree Model (n = 60) 

Metric Class 0 Class 1 Accuracy Macro Avg Weighted Avg 

Precision 0.77 0.60 – 0.69 0.71 

Recall 0.73 0.65 – 0.69 0.70 

F1-Score 0.75 0.62 – 0.69 0.70 

Support 37 23 – 60 60 

Overall Accuracy – – 0.70 – – 

For Class 0, the precision score reached 0.77, indicating that 77 percent of participants predicted to be non-

high performers were correctly labeled. This high precision reflects a low false-positive rate for the majority 
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of the class. The recall for Class 0 was 0.73, showing that the model successfully retrieved 73 percent of 

actual non-high performers. The corresponding F1-score of 0.75 highlights balanced and consistent 

predictive ability for this class. In contrast, the model’s performance for Class 1 was notably weaker. 

Precision dropped to 0.60, meaning that 40 percent of participants identified as high performers were 

incorrectly classified. The recall value for Class 1 stood at 0.65, suggesting a moderate false-negative rate, 

and the F1-score of 0.62 signals reduced classification effectiveness compared to Class 0. 

The support values, with 37 instances for Class 0 and 23 instances for Class 1, reveal a mild class imbalance 

(approximately 60 to 40) that may partially explain the model’s skewed performance. Aggregate 

performance metrics provide additional insights. The macro average F1-score was 0.69, representing the 

unweighted mean across both classes, thereby offering a balanced performance summary regardless of class 

prevalence. The weighted average scores are precision (0.71), recall (0.70), and F1-score (0.70) closely 

aligned with the overall accuracy, reflecting the classifier’s general reliability under moderately imbalanced 

conditions. 

Despite the model’s adequate performance, particularly in identifying non-high performers, its limitations in 

detecting high performers suggest room for optimization. To mitigate this disparity, several enhancements 

are recommended. Resampling techniques, such as Synthetic Minority Oversampling Technique (SMOTE) 

or under sampling of the majority class, can help address class imbalance and improve the model’s 

sensitivity to high performers. Additionally, class weight adjustment during training could recalibrate the 

decision boundary to penalize errors in the minority class more heavily. Threshold tuning, by adjusting the 

probability of cutoffs used for classification, may further optimize trade-offs between precision and recall, 

especially for Class 1. 

Beyond these methods, additional performance could be gained through feature engineering by introducing 

more discriminative or interaction-based predictors that better distinguish between performance levels. 

Employing ensemble learning approaches, such as Random Forest or Gradient Boosting, may also enhance 

robustness and generalizability compared to a single decision tree. Finally, incorporating extended 

evaluation tools, such as ROC-AUC and precision-recall curves, would provide a deeper understanding of 

the classifier’s behavior across varying thresholds and offer further avenues for model refinement. 

4.18 Visualization of a Piecewise-Constant Step Function on the Unit Square 

Figure 07 presents a canonical visualization of a piecewise-constant step function defined over the two-

dimensional unit square [0, 1] ². This class of function is characterized by abrupt transitions between 

discrete output levels, forming a staircase-like profile that serves as both a mathematical abstraction and a 

practical representation of threshold-based behavior. The visualization is particularly effective in 

demonstrating how output values remain constant within subintervals of the domain, followed by 

instantaneous jumps at specific threshold points. These jumps correspond to discontinuities, indicating non-

differentiable regions that are analytically significant in various applications. 
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Figure 07: Piecewise-Constant Step Function on [0, 1] ²  

The plot in Figure 07 spans the full extent of the unit square, with both axes, horizontal (x-axis) and vertical 

(y-axis) ranging from 0.0 to 1.0. Tick marks are placed at uniform intervals of 0.2, providing clear reference 

points across the domain and codomain. This symmetrical and evenly scaled configuration reinforces the 

structured regularity of the function and aids in the interpretation of its spatial and analytical properties. 

Within this framework, the function begins with a flat segment and then exhibits sudden vertical transitions 

at predefined x-values. These vertical jumps segment the input space into intervals within which the 

function value remains unchanged, thus capturing the behavior of systems that exhibit abrupt state changes 

rather than continuous transitions. 

This visualization technique, as seen in Figure 07, finds relevance across multiple disciplines. In statistics, 

step functions are used to construct Empirical Cumulative Distribution Functions (ECDFs), where each 

vertical step represents the accumulation of probability mass at observed data points. In control engineering, 

step inputs simulate sudden changes in system setpoints, facilitating the assessment of dynamic system 

response. Similarly, in signal processing, the process of quantization converting continuous signals into 

discrete values naturally leads to stepwise function profiles analogous to those shown here. 

From an analytical standpoint, each discontinuity represents a point of non-differentiability, which is 

particularly important in the study of numerical methods, as such points can influence the convergence and 

stability of approximations. Conversely, the flat intervals between steps represent regions of functional 

constancy, often corresponding to saturation zones or ranges of input insensitivity in physical or engineered 

systems. In practical applications, these idealized vertical transitions are frequently approximated by steep 

but continuous ramps to ensure smoother performance, especially in mechanical, digital, or feedback-

controlled systems where abrupt shifts may induce instability. 

Ultimately, the visualization in Figure 07 serves as a concise and powerful representation of a class of 

functions that encapsulate threshold-driven dynamics. Its simplicity, clarity, and applicability make it a 

fundamental tool in areas ranging from data science and engineering to computational modeling and system 

design. 

4.19 Confusion Matrix Analysis for Decision Tree Classifier 

The classification performance of the Decision Tree model was evaluated using a confusion matrix on a 

held-out test set of 60 participants. Figure 08 provides a visual representation of this 2×2 matrix, where the 

rows correspond to the true class labels ("Low" or "High" performers), and the columns represent the 
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predicted class assignments. The shading of each cell reflects the count frequency, offering a visual cue to 

where the model performed well or poorly. The exact values are presented in Table 13. 

 

 

Figure 08: Confusion Matrix for Decision Tree Classifier 

This confusion matrix shows how effectively the model distinguished participants who were classified as 

either Low or High performers. 

There were 27 true positives (TP), representing Low performers who were correctly identified as such by 

the model. Additionally, the model produced 8 false positives (FP), where High performers were incorrectly 

classified as Low. It also resulted in 10 false negatives (FN), with Low performers being misclassified as 

High. Finally, there were 15 true negatives (TN), indicating High performers who were correctly identified. 

These outcomes highlight areas of both strength and weakness in the model's predictive ability, particularly 

with respect to distinguishing between performance categories. 

Table 13: Confusion Matrix for Decision Tree Classifier 

 Predicted Low Predicted High 

True Low 27 10 

True High 8 15 

From these values, several important performance metrics can be calculated: 

 Overall Accuracy: 
 

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
=
27 + 15

60
=
42

60
≈ 0.70 

The model correctly predicted 70% of all test instances. 
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 Precision (Low class): 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

27

27 + 8
=
27

35
≈ 0.77 

This indicates that 77% of predicted Low performers were correctly classified. 

 

 Recall (Low class): 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

27

27 + 10
=
27

37
≈ 0.73 

              The model captured 73% of actual Low performers. 

 

 Precision (High class): 
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=

15

15 + 10
=
15

25
≈ 0.60 

Only 60% of predicted High performers were truly High. 

 

 Recall (High class): 
 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

15

15 + 8
=
15

23
≈ 0.65 

As reflected in both Figure 08 and Table 13, the Decision Tree model performs reliably when identifying 

Low performers. With strong precision and recall for this group, it effectively minimizes false positives and 

captures the majority of actual Low-performing individuals. 

However, the model demonstrates weaker performance for identifying High performers. Precision and recall 

are notably lower for this class, indicating that a significant number of high-performing students are either 

misclassified or missed entirely. This issue is partially attributed to class imbalance, as the dataset contains 

more Low performers (37) than High performers (23), which can cause the model to favor the majority class 

in its predictions. 

To address this performance gap and strengthen classification reliability, several steps are recommended. 

First, class rebalancing can be achieved by applying resampling techniques such as SMOTE to increase the 

representation of the High performer class or by incorporating class-weight penalties during model training 

to reduce bias toward the majority class. Second, adjusting the decision threshold allows for improved 

sensitivity to High performers while still maintaining acceptable levels of precision. Finally, extended 

evaluation using metrics like ROC-AUC and precision-recall curves enable assessment of the model's 

behavior across a range of thresholds, helping to identify the most balanced and effective operating point for 

classification. 

This confusion matrix analysis demonstrates that while the Decision Tree provides solid baseline 

performance in predicting quiz outcomes, there is clear potential for improving its effectiveness in 

identifying High performers. Through targeted refinements, the model can become more balanced and 

accurate across performance categories. 
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4.20 Cross-Validation Performance of the Decision Tree Classifier 

The Decision Tree model achieved an average cross-validation accuracy of 67.67%, indicating that 

approximately two-thirds of held-out instances were correctly classified during evaluation. This level of 

accuracy suggests that the model was able to learn meaningful patterns from the data and generalize beyond 

the training set, although roughly 32.33% of cases were misclassified. The accuracy was computed using k-

fold cross-validation, a robust validation method in which the dataset is divided into k equal parts (in this 

case, k = 5). For each fold, the model was trained on four parts and tested on the remaining one, cycling 

through all folds to produce a mean accuracy score. This approach ensures that all data points are used for 

both training and validation, minimizing bias and providing a more reliable estimate of performance on 

unseen data. 

While 67.67% accuracy exceeds the baseline level expected by chance, it does not fully capture model 

performance across class labels, especially in the presence of class imbalance. In such cases, metrics like 

precision, recall, and F1-score are necessary to determine whether the classifier performs equally well 

across both high and low performer categories. The Decision Tree model benefits from high interpretability 

and flexibility, capable of uncovering nonlinear interactions between features without the need for feature 

scaling. Its above-chance accuracy confirms the presence of informative variables, such as time taken and 

correct answers, that it successfully leverages for classification. 

However, several limitations must be noted. Despite acceptable accuracy, a notable portion of instances are 

still misclassified. Without further investigation through class-specific metrics or confusion matrices, it 

remains unclear whether certain participant groups are disproportionately misidentified. Moreover, Decision 

Trees are prone to overfitting, particularly in smaller or noisy datasets, where deep or unpruned trees can 

memorize rather than generalize. Although cross-validation mitigates this risk to some extent, it does not 

eliminate the underlying issue. 

The model’s current level of performance offers a practical foundation for educational prediction, but it is 

not yet optimal. Enhancing its accuracy and fairness will likely require hyperparameter tuning, application 

of ensemble methods like Random Forest or Gradient Boosting and expanded evaluation using ROC-AUC 

and class-sensitive metrics. Further refinement through feature engineering may also improve its predictive 

capabilities and ensure that performance classifications are both accurate and equitable across all student 

groups. 

4.21 Logistic Regression Classification Performance 

The classification performance of the Logistic Regression model was evaluated on a held-out test set of 60 
participants. Table 14 presents a detailed summary of essential performance metrics, including precision, 
recall, F1-score, support, and overall accuracy for each target class: Class 0 (non-high performers) and Class 
1 (high performers). These metrics offer insight into the model’s effectiveness in distinguishing between 
varying academic performance levels. 

Table 14: Logistic Regression Classification Report (n = 60) 

Class Precision Recall F1-Score Support 

0 0.90 0.73 0.81 37 

1 0.67 0.87 0.75 23 

Accuracy   0.78 60 

Macro Avg 0.78 0.80 0.78 60 

Weighted Avg 0.81 0.78 0.79 60 
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The model achieved an overall accuracy of 78 percent, correctly predicting 47 out of 60 test cases. For Class 

0, the model yielded a precision of 0.90, indicating that 90 percent of predicted non-high performers were 

accurately identified. Its recall for this class was 0.73, capturing 73 percent of all true Class 0 participants. 

The F1-score, which reflects the balance between precision and recall, was 0.81, indicating consistently 

strong performance in identifying non-high performers. 

For Class 1, the model demonstrated a recall of 0.87, successfully identifying 87 percent of true high 

performers. However, the corresponding precision was 0.67, suggesting a moderate number of false 

positives. The resulting F1-score of 0.75 confirms the model’s ability to detect high performers while 

highlighting some imbalance in classification accuracy between the two groups. 

Support values show a mild class imbalance, with 37 participants in Class 0 and 23 participants in Class 1. 

This difference in representation may have influenced model predictions. To address this, macro and 

weighted averages were computed. The macro average, which assigns equal weight to each class regardless 

of sample size, yielded precision of 0.78, recall of 0.80, and an F1-score of 0.78. The weighted average, 

which accounts for the relative class proportions, returned precision of 0.81, recall of 0.78, and F1-score of 

0.79. These consistent values reinforce the model’s stability across different averaging schemes. 

Table 14 highlights the model’s overall effectiveness. It performs particularly well in detecting high 

performers, as evidenced by the high recall in Class 1, and avoids misclassifying low performers, as shown 

by the high precision in Class 0. However, the gap in precision for high performers suggests a need for 

further calibration, especially in contexts where minimizing false positives is critical. 

To enhance model reliability and fairness, several improvements may be considered. Threshold tuning could 

help strike a better balance between precision and recall. Addressing class imbalance through oversampling 

methods like SMOTE or applying class weighting during model training can improve sensitivity to 

underrepresented groups. Additionally, introducing new predictors or refining feature selection may uncover 

further patterns that increase predictive accuracy. 

This logistic regression model offers a strong starting point for educational performance classification. Its 

ability to generalize well across categories makes it a practical tool for identifying high- and low-performing 

students. With targeted refinements, it can serve as an asset in academic decision-making and support 

systems. 

4.22 Piecewise Linear Growth with Intermediate Plateau 

Figure 09 presents a line plot illustrating a piecewise linear function defined over the unit square domain [0, 

1] × [0, 1]. The curve represents a structured progression comprising two distinct phases of linear growth 

separated by a short plateau. This stylized representation models processes where development or output 

unfolds in stages rather than as a single continuous trend. 
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Figure 09: Piecewise Linear Growth with Intermediate Plateau  

 Horizontal axis (x-axis): Represents the input variable 𝑥 , spanning the interval from 0.0 to 1.0. 

 Vertical axis (y-axis): Represents the corresponding output 𝑦 , ranging from 0.0 to 1.0. 

Tick marks at consistent intervals aid in interpreting the slope and length of each segment clearly and 

symmetrically. 

The function unfolds in distinct linear segments, each representing a specific phase of growth behavior 

across the domain, as follows. 

Initial Growth: 

(0.0 ≤ 𝑥 ≤ 0.3) 

The curve begins with a steep, linear increase from the origin (0.0,0.0) to approximately (0.3,0.6). 

Estimated slope: 

 
0.6 − 0.0

0.3 − 0.0
≈ 2.0 

This indicates a rapid rise in the output value per unit of input suggesting strong responsiveness or 

acceleration during the initial phase. 

Plateau Phase: 

(0.3 < 𝑥 < 0.4) 

Following the initial surge, the output stabilizes at y ≈ 0.6 across this interval. 

Slope: 0.0 

 This flat segment signifies a temporary equilibrium or saturation zone, during which changes in input do 

not affect output. 
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Secondary Growth: 

(0.4 ≤ 𝑥 ≤ 1.0) 

The curve resumes its ascent from point (0.4,0.6) to (1.0,1.0), but with a gentler slope. 

Estimated slope: 

 
1.0 − 0.6

1.0 − 0.4
≈ 0.67 

This reduced rate of increase reflects more moderate but sustained growth compared to the initial phase. 

The stepped linear trajectory shown in Figure 09 serves as a visual metaphor for several real-world systems. 

In pharmacokinetics, for example, this pattern can represent drug concentration in the bloodstream, 

beginning with an initial absorption peak, followed by a period of metabolic stasis, and then a renewed 

increase in concentration due to a second dosage. Similarly, in educational psychology, the structure may 

reflect the learning curve of a student who makes rapid progress early on, enters a consolidation phase, and 

then resumes gradual improvement. In economics, comparable behavior is seen in demand cycles, where 

consumer interest initially rises, reaches a saturation point, and then revives in response to market stimuli or 

external changes. 

From a modeling perspective, this function offers analytical richness. The breakpoints near x ≈ 0.3 and x ≈ 

0.4 mark transitions in system behavior and serve as potential targets for segment-specific regression or 

continuous piecewise linear modeling. Ensuring continuity at these points, despite changes in slope, is 

critical for maintaining interpretability and realism, particularly when applying the model to empirical 

systems. Additionally, practitioners using such models for forecasting should be cautious about extending 

the linear assumption too far, as real-world data may include additional inflection points beyond the 

observed range. 

In essence, Figure 09 illustrates the behavior of systems governed by distinct operational stages. The 

piecewise linear structure provides a clear and adaptable framework for analyzing processes that evolve 

over time but are influenced by intermediate thresholds, temporary equilibria, or disruptions. 

4.23 Confusion Matrix Analysis for Logistic Regression Model 

The classification performance of the logistic regression model was evaluated on a test set of n = 60 

participants, with results presented in Figure 10 and Table 15. The confusion matrix provides a visual and 

quantitative breakdown of how well the model distinguishes between two outcome classes: Class 0 (Low 

Performers) and Class 1 (High Performers). 
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Figure 10: Confusion Matrix for Logistic Regression Model 

This 2×2 matrix visualizes the prediction results, where rows represent the actual class labels, and columns 

represent predicted class labels. Each cell contains the count of instances falling into that prediction-actual 

combination. Darker shading in the matrix corresponds to a higher frequency of cases, visually emphasizing 

dominant classification patterns. 

Table 15: Confusion Matrix for Logistic Regression Model 

 Predicted Low Predicted High 

True Low 27 10 

True High 3 20 

From Table 15, the classification outcomes can be interpreted as follows: 27 participants were correctly 

identified as Low performers, representing True Negatives (TN). In contrast, 10 participants who were Low 

performers were misclassified as High performers, accounting for the False Positives (FP). Additionally, 3 

High-performing individuals were incorrectly labeled as Low performers, referred to as False Negatives 

(FN). Finally, the model correctly predicted 20 participants as High performers, categorized as True 

Positives (TP). This distribution provides a detailed snapshot of the model's predictive strengths and areas 

requiring improvement. 

The model's performance metrics are summarized below. 

 Overall Accuracy: 
 

𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
=

20+27

60
=

47

60
≈ 0.78  

 

This confirms that the model correctly classified 78% of cases, indicating strong overall reliability. 

 

 Precision: 
o Low Class (Class 0): 

 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
=

27

27 + 3
=
27

30
≈ 0.90 
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High precision reflects that most predicted Low performers were indeed Low. 

 

 High Class (Class 1): 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

20

20 + 10
=
20

30
≈ 0.67 

 

Indicates some over-prediction of High performers. 

 

 Recall: 

o Low Class: 

 
𝑇𝑁

𝑇𝑁+𝐹𝑃
=

27

27+10
=

27

37
≈ 0.73  

 

o High Class: 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

20

20 + 3
=
20

23
≈ 0.87 

 

The model is especially effective at capturing actual High performers, minimizing false negatives. 

The logistic regression classifier demonstrates a balanced trade-off between precision and recall, 

particularly excelling at identifying high performers, with a recall of 0.87. It also achieves a notably high 

precision for low performers, at 0.90, indicating conservative and accurate classification in the majority 

class. However, the confusion matrix (Table 15) reveals 10 false positives, where low performers were 

incorrectly predicted as high, and 3 false negatives, where high performers were misclassified as low. These 

misclassifications have meaningful implications in educational settings, where incorrectly categorizing 

students may influence the allocation of academic support or intervention strategies. 

To further optimize the model’s classification capabilities, one approach involves adjusting the decision 

threshold to fine-tune the balance between sensitivity and specificity, depending on whether false positives 

or false negatives are more consequential in the specific application. Additionally, techniques such as class 

weighting or synthetic resampling (for example, SMOTE) may be used to address class imbalance and 

improve the detection of underrepresented groups. Evaluating performance using ROC-AUC and precision-

recall curves can also provide deeper insights into the model’s behavior across varying thresholds and assist 

in selecting an optimal decision point. 

Together, Figure 10 and Table 15 offer a comprehensive assessment of the model’s predictive strengths and 

limitations within this binary classification task. The results support logistic regression as a strong and 

interpretable baseline model, while also highlighting opportunities for enhancement in future iterations 

aimed at improving educational outcome prediction. 

4.24 Logistic Regression Cross-Validation Accuracy 

To evaluate the generalizability of the logistic regression model, k-fold cross-validation was conducted, 

resulting in an average accuracy of 73.33%. This method partitions the dataset into k equally sized folds 

(typically k = 5 or 10), where the model is trained on k minus 1-fold and validated on the remaining fold in 

each iteration. By rotating the validation fold across all partitions, this approach ensures that each data 

subset is used exactly once for testing. The final reported accuracy is the means of all iterations, providing a 

reliable estimate of model performance while minimizing the risk of performance inflation due to random 

data splitting. 

The cross-validation accuracy of 73.33% reflects the model’s ability to correctly classify approximately 

three out of every four instances in previously unseen data. This level of performance is notably above the 

random guessing baseline of 50% in balanced binary classification tasks, indicating that the logistic 

regression model effectively identifies patterns within the predictor variables. Moreover, the cross-

validation framework helps safeguard against overfitting and enhances the credibility of reported accuracy. 
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While this result is encouraging, accuracy alone does not offer a complete picture of model performance, 

especially in the presence of class imbalance or differing costs associated with false positives and false 

negatives. In such contexts, additional metrics such as precision, recall, F1-score, and the area under the 

receiver operating characteristic (ROC) curve become essential for a more comprehensive evaluation. 

To further enhance the model, several improvements can be explored. Hyperparameter tuning, including 

adjustments to regularization strength and solver selection, may increase performance by optimizing model 

flexibility and convergence. Feature engineering, such as adding interaction terms or non-linear 

transformations, can uncover hidden relationships that linear models may otherwise miss. Addressing any 

class imbalance through class weighting or synthetic resampling techniques like SMOTE may also reduce 

bias in predictions. Finally, diagnostic tools such as ROC and precision-recall curves, combined with 

decision threshold tuning, can help fine-tune the model’s behavior based on the specific priorities of the 

application domain. 

The cross-validation accuracy of 73.33% provides strong evidence of the logistic regression model’s 

capability to generalize beyond the training data. For high-stakes or imbalanced classification problems, 

however, a more nuanced evaluation using multiple performance metrics and further methodological 

refinement remains essential to ensure fairness, interpretability, and effectiveness. 

4.25 ROC Curve for Logistic Regression Classifier 
 

Figure 11 illustrates the Receiver Operating Characteristic (ROC) curve for the logistic regression classifier, 

offering a comprehensive visual assessment of the model’s diagnostic capability in a binary classification 

context. The ROC curve is a widely used evaluation tool that maps the trade-off between sensitivity (true 

positive rate) and the false positive rate across varying classification thresholds. It helps in understanding 

how well a model can discriminate between two outcome classes, in this case, high and low performers, 

without being restricted to a fixed decision boundary. The plotted curve summarizes model behavior as the 

decision threshold shifts, allowing performance to be interpreted beyond a single summary of metric 

accuracy. 

 

Figure 11: ROC Curve for Logistic Regression Classifier (AUC = 0.61) 

In Figure 11, the horizontal axis represents the false positive rate, or the proportion of actual low performers 

who were incorrectly classified as high performers. The vertical axis shows the true positive rate, also 

known as sensitivity, which measures the percentage of actual high performers that were correctly 

identified. Ideally, a strong classifier would produce a curve that rises steeply toward the top left corner of 

the graph, reflecting high sensitivity with a low rate of false positives. The diagonal gray line, extending 

from the bottom left to the top right, represents the performance of a random classifier with an AUC of 0.50. 

A model that performs better than random will have a curve that lies above this diagonal. 
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The logistic regression model produced an Area Under the Curve (AUC) value of 0.61. This value indicates 

the probability that the model will assign a higher predicted score to a randomly selected high performer 

than to a randomly selected low performer. Although this AUC score is higher than random guessing, it still 

reflects relatively weak discriminative ability. The shape of the ROC curve suggests that the model does not 

consistently balance true positives and false positives across classification thresholds. In practical terms, the 

model has only limited ability to distinguish between the two classes with confidence. 

To improve this level of performance, several strategies should be considered. Adding new and more 

informative features, constructing interaction terms, or applying nonlinear transformations may help 

uncover hidden relationships in the data. Regularization methods such as L1 or L2 penalties can prevent 

overfitting and improve generalization. If logistic regression continues to underperform, switching to more 

flexible models, such as Random Forests or Gradient Boosting Machines, may provide better classification 

results. Additionally, adjusting the decision threshold to match specific goals, such as minimizing false 

positives in educational classification, could enhance practical effectiveness. 

This ROC analysis, along with the AUC value of 0.61, highlights the limitations of the logistic regression 

model in its current form. While it performs slightly better than random guessing, the results are not strong 

enough to support reliable or high-stakes decision-making. Figure 11 offers valuable diagnostic insight and 

reinforces the need for model refinement, improved feature engineering, and the potential use of more 

advanced algorithms to ensure fair, accurate, and actionable performance predictions in educational settings.  

5 DISCUSSION 

This study presents a comprehensive investigation into the effects of background music on student task 

performance, with a particular focus on cognitive efficiency and memory recall in academic settings. By 

integrating classical statistical analysis with machine learning algorithms, a robust analytical framework was 

developed to assess the role of auditory environments during high-focus tasks. The findings consistently 

revealed that even instrumental background music, often perceived as harmless or beneficial, can negatively 

impact students’ accuracy and efficiency. Participants who worked in silence consistently outperformed 

those exposed to background music in both problem-solving accuracy and memory retention, underscoring 

the disruptive influence of auditory distractions on cognitive processing. 

Statistical analyses showed that the silence group achieved significantly higher performance scores, as 

confirmed through independent samples t-tests with moderate effect sizes. These results align with cognitive 

load theory, which posits that working memory is limited and easily strained by extraneous stimuli. Even 

non-lyrical music appears to consume attentional resources that would otherwise support task execution, 

especially for activities requiring analytical reasoning or rapid information processing. ANOVA results 

further demonstrated that short-term memory recall was superior in the silence group, reinforcing the idea 

that background music can interfere with both the encoding and retrieval of information, processes 

fundamental to academic success. While background music may enhance mood in some contexts, this did 

not translate into improved cognitive performance during demanding tasks. 

Visualizations such as boxplots and correlation heatmaps supported these findings. Boxplots illustrated that 

the silence group not only achieved higher median scores but also showed more consistent outcomes, as 

reflected by narrower interquartile ranges. Correlation heatmaps revealed negative associations between 

music exposure and both cognitive efficiency and memory recall, visually reinforcing the statistical trends. 

These visual representations enhanced the interpretability of the quantitative results. 

The machine learning models added further depth by identifying the most influential predictors of 

performance. Among the models tested, the Random Forest classifier achieved the highest predictive 

accuracy. Feature importance analysis revealed that auditory condition and task completion time were the 

strongest determinants of performance outcomes. This predictive layer extended the analysis beyond 

traditional statistical methods by uncovering subtle patterns, offering potential applications for educational 

diagnostics and adaptive learning systems tailored to individual needs. 

Overall, the findings support the view that instrumental background music does not enhance academic 

performance on time-sensitive analytical tasks and may impose minor cognitive costs, consistent with 

cognitive load theory [67], [68]. Although some participants reported improved mood under music exposure 
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[69], this subjective benefit did not result in measurable performance gains. Machine learning results 

confirmed that completion time and number of correct answers were the most reliable predictors of high 

performance [70], [71]. Prior research also suggests that individual factors, such as personality traits, 

musical familiarity, and introversion, moderate these effects, with introverts being more susceptible to 

distraction [72], [73]. Neuroimaging studies complement these findings, showing that background music 

increases prefrontal activation, reflecting heightened cognitive effort and reduced processing efficiency 

[74], [75]. 

From an educational standpoint, these findings indicate that quiet environments are generally more 

conducive to academic tasks involving analytical reasoning and memory recall [76]. However, personalized 

strategies, such as aligning music with individual preferences or adjusting for task complexity, may help 

mitigate negative effects in less cognitively demanding contexts [77]. Limitations of this study include its 

geographic restriction to students in Lahore and the use of relatively simple cognitive tasks. Future research 

should examine more diverse populations, incorporate complex and ecologically valid tasks, and utilize 

longitudinal designs and neurophysiological measures [78], [79]. 

The practical implications of these findings extend to educational policy and individual learning strategies. 

Establishing structured, low-distraction environments, such as quiet study zones, may help optimize 

academic outcomes. At the same time, recognizing individual variability remains essential. Personalized 

learning environments that account for how learners respond to background stimuli could support diverse 

cognitive profiles, especially in self-directed or technology-mediated educational settings. 

Finally, the study’s limitations highlight important directions for future research. The tasks employed, basic 

arithmetic and word recall, may not capture the full range of cognitive challenges students face in real-world 

academic environments. Future studies should investigate the impact of background music on higher-order 

thinking, critical reasoning, and creative problem-solving. Additionally, examining the influence of various 

music genres, tempos, familiarity levels, and personality traits could provide a more nuanced understanding 

of how auditory environments affect learning. 

In conclusion, the findings provide strong evidence that background music can impair cognitive 

performance in academic tasks, particularly those involving analytical reasoning and memory recall. The 

integration of statistical inference and machine learning offered a multifaceted understanding of these 

effects and helped identify key performance predictors. By minimizing unnecessary auditory distractions, 

both educators and learners can foster more effective study environments. Continued research should 

explore the complex interplay of environmental and individual factors to inform educational practices that 

support diverse learning needs. 

6 CONCLUSION 

This study provides comprehensive insights into the cognitive effects of background music on student task 

performance by integrating traditional statistical analysis with modern machine learning techniques. 

Drawing on data from 300 university students across 14 institutions in Lahore, the research contributes 

meaningfully to the fields of cognitive psychology and educational data science. By evaluating both 

problem-solving accuracy and memory recall under two distinct auditory conditions, silence and 

instrumental background music, the study consistently found that students working in silence outperformed 

those exposed to background music across multiple cognitive measures. 

The statistical findings confirmed that participants in the silence condition achieved higher performance 

scores and superior memory recall accuracy. Independent samples t-tests and ANOVA results revealed that 

these differences were not only statistically significant but also practically meaningful, aligning with 

cognitive load theory. This theory posits that non-essential auditory stimuli, even instrumental music 

without lyrics, can occupy limited working memory resources and diminish cognitive performance, 

particularly during time-sensitive or complex tasks. 

The application of machine learning models, particularly the Random Forest classifier, validated these 

statistical results and identified auditory condition and task completion time as the most influential 

predictors of academic performance. This methodological integration underscores the potential of machine 
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learning to enhance cognitive research by uncovering complex patterns that traditional analyses may 

overlook, offering new directions for predictive analytics in education. 

The findings hold practical implications for educators, learners, and academic institutions. While some 

students may find background music personally enjoyable or motivating, the overall evidence suggests that 

silent study environments yield more favorable outcomes, especially during cognitively demanding tasks or 

assessments. Educational institutions may benefit from providing designated quiet spaces and developing 

adaptive strategies that account for individual auditory preferences and sensitivities. Personalized 

approaches could further optimize study environments and enhance student success. 

Nonetheless, this study has several limitations. The participant sample was geographically limited to 

Lahore, and the cognitive tasks focused on arithmetic problem-solving and short-term memory recall, which 

may not fully represent the range of academic activities. Future research should examine the effects of 

various music genres, tempos, and familiarity levels across broader cognitive domains, including critical 

thinking, reading comprehension, and long-term learning. Additionally, individual factors such as 

personality traits, attentional control, and working memory capacity warrant further investigation as 

potential moderators of music’s cognitive impact. 

In conclusion, this study affirms that even subtle auditory stimuli, such as instrumental background music, 

can negatively affect academic task performance. The consistent advantage of silent conditions across both 

performance and memory measures underscores the importance of minimizing cognitive distractions in 

learning environments. As educational settings continue to evolve with technological advancements, 

creating acoustically optimized spaces will be essential to support student concentration and academic 

achievement. By combining classical statistical approaches with machine learning techniques, this research 

provides a data-driven foundation for future interdisciplinary studies and offers insights to inform 

educational policies aimed at enhancing cognitive efficiency and learner well-being [80] 
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