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Abstract :  The Mellin Transform is a powerful tool in mathematics. The Mellin Transform is closely related to other integral 

transforms, such as the Laplace and Fourier transforms. The Mellin Transform is characterized by several key properties that make 

it invaluable in many fields. Mellin transforms are a powerful mathematical tool used in a variety of engineering and applied 

sciences fields. They are particularly useful in solving complex differential equations, analysing asymptotic behaviours and in the 

field of signal processing. 

We introduce a generalized Mellin transformation and an extended fractional Mellin transform in a general form that encompasses 

the generalized Mellin transformations found in the literature. In this article we have discussed some results which may be used to 

solve wave equations, Schrodinger’s equations , differential equations and etc. 

 

IndexTerms - Mellin transform, Fractional Mellin transform, Extended Fractional Mellin transform. 

I. INTRODUCTION 

 

1.1 INTEGRAL TRANSFORMS:  Frequently in mathematical physics we encounter pairs of functions related by an expression 

of the form  

𝑔(𝛼)  =  ∫ 𝑓(𝑡)𝐾(𝑡, 𝛼)𝑑𝑡

𝑏

𝑎

 

The function 𝑔(𝛼)  is called the (integral) transform of f (t) by the kernel K(α,t). The operation may also be described as mapping 

a function f (t) in t-space into another function, g(α), in α-space.  

Schematic diagram of Integral transform: 

 
1.2 Mellin transform: 

The fractional Mellin Transform generalises Mellin Transform to fractional order . It is defined as 

𝑀𝛼[𝑓(𝑥)](s)  =  ∫ 𝑓(𝑥)𝑥𝑠−1𝑑𝑥

∞

0

 

1.3 Applications of Mellin transform: 

The Mellin transform, particularly noted for its scale invariance, has found widespread applications across various scientific and 

engineering disciplines. It is especially useful in algorithm analysis, where its ability to handle scaling properties proves 

advantageous. Beyond this, the Mellin transform is applied in radar systems, stress analysis of wedges, digital audio effects, and 

signal processing. It also plays a significant role in fractional calculus, special functions, statistical mechanics, cryptography, 

combinatorics, and the solution of differential equations. 
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Due to its mathematical versatility, the Mellin transform is a valuable tool in addressing problems in mathematics, physics, and 

engineering [3]. In the context of 5G network advancements, which promise ultra-reliable, low-latency, and high-capacity 

communication, novel multimedia applications are emerging. One such application is video steganography, where the Mellin 

transform has been employed to enhance resistance against deep learning-based steganalysis, thereby improving the security of 

embedded sensitive information in multimedia content for next-generation networks [4]. 

I. Mathematical  Prerequisite 

1.1 The testing function space 𝐸(𝑅𝑛) 

             An infinitely differentiable complex valued function ∅ on Rn belongs to E(Rn) if for each compact set ⊂ 𝑆𝑎 , where 

𝑆𝑎 = {𝑢: 𝑢 ∈ Rn, |𝑢| ≤ 𝑐, 𝑐 > 0}, 

𝛾𝐸𝑙
(∅) = sup

𝑢∈𝐽
|𝐷𝑢

𝑙 ∅(𝑢)| < ∞  . 

Thus, E(Rn) will denote the space of all ∅ ∈  E(Rn) with support contained in 𝑆𝑎. Moreover, we say that f is a fractional Mellin 

transformable, if it is member of E∗, the dual space of E. 

1.2 Definition of generalized fractional Fourier transform (FRFT) 

The distributional fractional Fourier transform of  𝑓(𝑥)  ∈ 𝐸∗(𝑅𝑛) , 0 < 𝛼 ≤
𝜋

2
  is defined by, 

𝐹𝑅𝐹𝑇{𝑓(𝑥)} = 𝐹𝛼(𝑝) = 〈𝑓(𝑥), 𝐾𝛼(𝑥, 𝑝)〉, 

where 𝐾𝛼(𝑥, 𝑝) = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
𝑒

𝑖

2𝑠𝑖𝑛𝛼
[(𝑥2+𝑝2)𝑐𝑜𝑠𝛼−2(𝑥𝑝)]   

 

where right hand side is meaningful i.e. , 𝐾𝛼(𝑥, 𝑝) ∈ 𝐸 and 𝑓 ∈ 𝐸∗. 

 

1.2 Definition of generalized fractional Fourier transform (FRFT) 

The distributional fractional Fourier transform of  𝑓(𝑥)  ∈ 𝐸∗(𝑅𝑛) , 0 < 𝛼 ≤
𝜋

2
  is defined by, 

𝐹𝑅𝐹𝑇{𝑓(𝑥)} = 𝐹𝛼(𝑝) = 〈𝑓(𝑥), 𝐾𝛼(𝑥, 𝑝)〉, 

where 𝐾𝛼(𝑥, 𝑝) = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
𝑒

𝑖

2𝑠𝑖𝑛𝛼
[(𝑥2+𝑝2)𝑐𝑜𝑠𝛼−2(𝑥𝑝)]   

 

where right hand side is meaningful i.e. , 𝐾𝛼(𝑥, 𝑝) ∈ 𝐸 and 𝑓 ∈ 𝐸∗. 

 

1.3 Definition of generalized fractional Mellin transform (FRMT) 

 The distributional fractional Mellin transform of  𝑓(𝑢)  ∈ 𝐸∗(𝑅𝑛) , 0 < 𝜃 ≤
𝜋

2
  is defined by, 

𝐹𝑅𝑀𝑇{𝑓(𝑢)} = 𝐹𝜃(𝑟) = 〈𝑓(𝑢), 𝐾𝜃(𝑢, 𝑟)〉,                      

where 𝐾𝜃(𝑢, 𝑟) =  𝑢
2𝜋𝑖𝑟

𝑠𝑖𝑛𝜃
−1𝑒

𝜋𝑖

𝑡𝑎𝑛𝜃
(𝑟2+𝑙𝑜𝑔2𝑢)  ,                         

where right hand side is meaningful i.e. , 𝐾𝜃(𝑢, 𝑟) ∈ 𝐸 and 𝑓 ∈ 𝐸∗. 

 

1.4 An extended fractional Mellin transform 

An extended fractional Mellin transform of order 𝛼 [3] is defined as 

𝑀𝛼(𝑟) = 𝐸𝐹𝑅𝑀𝑇[𝑓(𝑢)] = √
1 − 𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ 𝑓(𝑢)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0

 

             = √
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑓(𝑢)𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑑𝑢

∞

0

,        where 𝐾𝜃(𝑢, 𝑟) = 𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1  

𝑀𝛼(𝑟) = 𝐹𝑅𝑀𝑇[𝑓(𝑢)] = 𝐴 ∫ 𝑓(𝑢)𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑑𝑢
∞

0
                          where 𝐴 = √

1−𝑖𝑐𝑜𝑡𝜃

2𝜋
  

In our previous work, we have explored the properties of an extended fractional Mellin transform, including linearity, scaling, 

modulation, differentiation, and Parseval’s identity. Additionally, we have derived an inversion formula for the extended 

fractional Mellin transform. 

 

III. On the Results of the Extended Fractional Mellin Transform 

Result: 3.1 If 𝐸𝐹𝑅𝑀𝑇[𝑓(𝑢)] = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑓(𝑢)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 then  

Prove that 𝐸𝐹𝑅𝑀𝑇[1](𝑟) = 𝑖 𝑠𝑖𝑛 𝜃 √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
 and 𝐸𝐹𝑅𝑀𝑇[1](𝑟) = 0, 𝜃 = 0,

𝜋

2
. 

Proof: 

Consider,  

LHS= 𝐸𝐹𝑅𝑀𝑇[1](𝑟) 
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      = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (1)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 

     = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (1)𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑑𝑢

∞

0
 

Putting log 𝑢 = 𝑚   

                ∴ 𝑢 = 𝑒𝑚 

                ∴ 𝑑𝑢 = 𝑒𝑚𝑑𝑚 

               If 𝑢 = 0 ⇒ 𝑚 = ∞ 

 If 𝑢 = ∞ ⇒ 𝑚 = 0 

𝐸𝐹𝑅𝑀𝑇[1](𝑟)   = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ (𝑒𝑚)−𝑖𝑟𝑐𝑜𝑠𝑒𝑐 𝜃−1𝑒𝑚𝑑𝑚

∞

0
 

                             = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ (𝑒)−𝑖𝑚𝑟𝑐𝑜𝑠𝑒𝑐 𝜃−1𝑒−𝑚𝑒𝑚𝑑𝑚

∞

0
 

= −√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ (𝑒)−𝑖𝑚𝑟𝑐𝑜𝑠𝑒𝑐 𝜃−1𝑑𝑚

∞

0

 

= −√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
[
𝑒−𝑖𝑟 𝑐𝑜𝑠𝑒𝑐𝜃 𝑚

−𝑖𝑟𝑐𝑜𝑠𝑒𝑐 𝜃
]

0

∞

 

= −√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋

1

−𝑖𝑟𝑐𝑜𝑠𝑒𝑐 𝜃
[𝑒−∞ − 𝑒0] 

= √
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
  

𝑠𝑖𝑛 𝜃

𝑖𝑟
[0 − 1] 

= 𝑖𝑠𝑖𝑛 𝜃√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
   

𝑤ℎ𝑒𝑛      𝜃 = 0  ⇒  𝐸𝐹𝑅𝑀𝑇[1](𝑟) = 0,   

 𝜃 =
𝜋

2
  ⇒  𝐸𝐹𝑅𝑀𝑇[1](𝑟) = 0 

𝐻𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒𝑑. 
 

Result: 3.2 If 𝐸𝐹𝑅𝑀𝑇[𝑓(𝑢)] = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑓(𝑢)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 then  

Prove that 𝐸𝐹𝑅𝑀𝑇[𝑢𝑖𝑎](𝑟) = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
 

𝑖

(𝑟 𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
 

Proof: 

Consider,  

LHS= 𝐸𝐹𝑅𝑀𝑇[𝑢𝑖𝑎](𝑟) 

      = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑢𝑖𝑎)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 

     = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑢𝑖𝑎)𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑑𝑢

∞

0
 

     = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ 𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑖𝑎−1𝑑𝑢

∞

0
 

Putting log 𝑢 = 𝑚   

                ∴ 𝑢 = 𝑒𝑚 

                ∴ 𝑑𝑢 = 𝑒𝑚𝑑𝑚 

               If 𝑢 = 0 ⇒ 𝑚 = ∞ 

 If 𝑢 = ∞ ⇒ 𝑚 = 0 

𝐸𝐹𝑅𝑀𝑇[𝑢𝑖𝑎](𝑟) = √
1 − 𝑖𝑐𝑜𝑡𝛼

2𝜋
∫(𝑒𝑚)−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑖𝑎−1𝑒𝑚𝑑𝑚

0

∞

 

                            = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒)−𝑖𝑟𝑚𝑐𝑜𝑠𝑒𝑐𝜃+𝑖𝑎𝑚𝑒−𝑚𝑒𝑚𝑑𝑚

∞

0
 

  = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒)(−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑖𝑎)𝑚  𝑑𝑚

∞

0
 

                             = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒)𝑖(−𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑎)𝑚  𝑑𝑚

∞

0
 

                            = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

(𝑒)−𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)𝑚  

𝑖(−𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑎)
]

0

∞

 

                           = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
 [

(𝑒)−∞−(𝑒)0  

−𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
] 

                         = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
 [

0−1  

𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
] 
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                        = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
 

𝑖 

(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
 

Hence proved 

 

Result: 3.3 If 𝐸𝐹𝑅𝑀𝑇[𝑓(𝑢)] = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑓(𝑢)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 then  

Prove that 𝐸𝐹𝑅𝑀𝑇[𝑒𝑖(𝑎𝑙𝑜𝑔𝑢)](𝑟) = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
 

𝑖

(𝑟 𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
 

Proof: 

Consider,  

LHS= 𝐸𝐹𝑅𝑀𝑇[𝑒𝑖(𝑎𝑙𝑜𝑔𝑢)](𝑟) 

      = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒𝑖(𝑎𝑙𝑜𝑔𝑢))𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 

     = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒𝑖(𝑎𝑙𝑜𝑔𝑢))𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑑𝑢

∞

0
 

Putting log 𝑢 = 𝑚   

                ∴ 𝑢 = 𝑒𝑚 

                ∴ 𝑑𝑢 = 𝑒𝑚𝑑𝑚 

               If 𝑢 = 0 ⇒ 𝑚 = ∞ 

 If 𝑢 = ∞ ⇒ 𝑚 = 0 

𝐸𝐹𝑅𝑀𝑇[𝑒𝑖(𝑎𝑙𝑜𝑔𝑢)](𝑟) = √
1 − 𝑖𝑐𝑜𝑡𝛼

2𝜋
∫(𝑒𝑖(𝑎𝑚))(𝑒𝑚)−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑒𝑚𝑑𝑚

0

∞

 

                 = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒𝑖(𝑎𝑚))(𝑒𝑚)−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑒𝑚𝑑𝑚

∞

0
 

                            = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒𝑖(𝑎𝑚))(𝑒)−𝑖𝑟𝑚𝑐𝑜𝑠𝑒𝑐𝜃𝑒−𝑚𝑒𝑚𝑑𝑚

∞

0
 

                            = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
∫ (𝑒)𝑖(−𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑎)𝑚𝑑𝑚

∞

0
              

                            = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

(𝑒)𝑖(−𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑎)𝑚

𝑖(−𝑟𝑐𝑜𝑠𝑒𝑐𝜃+𝑎)
]

0

∞

𝑑𝑚 

                           = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

(𝑒)−𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)𝑚

−𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
]

0

∞

 

                           = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

(𝑒)−∞−𝑒0

𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
] 

                           = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

0−1

𝑖(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
] 

                          = −√
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

𝑖

𝑖2(𝑟𝑐𝑜𝑠𝑒𝑐𝜃−𝑎)
] 

                          = √
1−𝑖𝑐𝑜𝑡𝛼

2𝜋
[

𝑖

(𝑎−𝑟𝑐𝑜𝑠𝑒𝑐𝜃)
]     Hence proved 

 

Result: 3.4 If 𝐸𝐹𝑅𝑀𝑇[𝑓(𝑢)] = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑓(𝑢)𝐾𝜃(𝑢, 𝑟)𝑑𝑢

∞

0
 then  

Prove that 𝐸𝐹𝑅𝑀𝑇[𝑒𝑖𝑎(𝑙𝑜𝑔𝑢)2
](𝑟) = √

1−𝑖𝑐𝑜𝑡𝜃

2𝑎
 𝑒

𝑖

4
[𝜋+

𝑟2𝑐𝑜𝑠𝑒𝑐2𝜃

𝑎
]
 

Proof: 

Consider,  

LHS= 𝐸𝐹𝑅𝑀𝑇[𝑒𝑖𝑎(𝑙𝑜𝑔𝑢)2
](𝑟) 

      = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ (𝑒𝑖𝑎(𝑙𝑜𝑔𝑢)2

)𝐾𝜃(𝑢, 𝑟)𝑑𝑢
∞

0
 

     = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ (𝑒𝑖𝑎(𝑙𝑜𝑔𝑢)2

)𝑢−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑑𝑢
∞

0
 

Putting log 𝑢 = 𝑚   

                ∴ 𝑢 = 𝑒𝑚 

                ∴ 𝑑𝑢 = 𝑒𝑚𝑑𝑚 

               If 𝑢 = 0 ⇒ 𝑚 = ∞ 

 If 𝑢 = ∞ ⇒ 𝑚 = 0   

𝐸𝐹𝑅𝑀𝑇[𝑒𝑖𝑎(𝑙𝑜𝑔𝑢)2
](𝑟) = √

1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑒𝑖𝑎𝑚2

(𝑒𝑚)−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃−1𝑒𝑚𝑑𝑚

∞

0

 

                                       = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑒𝑖𝑎𝑚2

(𝑒𝑚)−𝑖𝑟𝑐𝑜𝑠𝑒𝑐𝜃𝑒−𝑚𝑒𝑚𝑑𝑚
∞

0
 

                                       = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑒𝑖[𝑎𝑚2−𝑟𝑐𝑜𝑠𝑒𝑐𝜃𝑚]𝑑𝑚

∞

0
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                                       = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
∫ 𝑒𝑖[𝑎𝑚2+𝑏𝑚]𝑑𝑚

∞

0
     where, 𝑏 = −𝑟𝑐𝑜𝑠𝑒𝑐𝜃 

                                       = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋

𝑒
𝑖𝜋

4⁄
√𝜋

√𝑎
 𝑒

𝑖𝑏2
4𝑎⁄                     

                                       = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋

𝑒
𝑖𝜋

4⁄
√𝜋

√𝑎
 𝑒

𝑖𝑏2
4𝑎⁄              

                                        = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋

𝑒
𝑖𝜋

4⁄
√𝜋

√𝑎
 𝑒

𝑖𝑟2𝑐𝑜𝑠𝑒𝑐2𝜃
4𝑎⁄                        

                                         = √
1−𝑖𝑐𝑜𝑡𝜃

2𝜋
√

𝜋

𝑎
𝑒

𝑖[
𝜋

4
+

𝑟2𝑐𝑜𝑠𝑒𝑐2𝜃

4𝑎
]
               

                                        = √
1−𝑖𝑐𝑜𝑡𝜃

2𝑎
𝑒

𝑖

4
[𝜋+

𝑟2𝑐𝑜𝑠𝑒𝑐2𝜃

𝑎
]
     Hence Proved 

 

IV. RESULTS AND DISCUSSION 

  

In this article we have discussed some important results of an Extended Frational Mellin Transform which may used to solve 

wave equations, Schrodinger’s equations , differential equations and etc. 

 

S.N. Function Result 

1 𝐸𝐹𝑅𝑀𝑇[1](𝑟) 
𝑖 𝑠𝑖𝑛 𝜃 √

1−𝑖𝑐𝑜𝑡𝜃

2𝜋
 and 𝐸𝐹𝑅𝑀𝑇[1](𝑟) = 0, 𝜃 = 0,

𝜋

2
. 

2 𝐸𝐹𝑅𝑀𝑇[𝑢𝑖𝑎](𝑟) 

√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
 

𝑖

(𝑟 𝑐𝑜𝑠𝑒𝑐𝜃 − 𝑎)
 

3 𝐸𝐹𝑅𝑀𝑇[𝑒𝑖(𝑎𝑙𝑜𝑔𝑢)](𝑟) 

√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝜋
 

𝑖

(𝑟 𝑐𝑜𝑠𝑒𝑐𝜃 − 𝑎)
 

4 𝐸𝐹𝑅𝑀𝑇[𝑒𝑖𝑎(𝑙𝑜𝑔𝑢)2
](𝑟) 

√
1 − 𝑖𝑐𝑜𝑡𝜃

2𝑎
 𝑒

𝑖

4
[𝜋+

𝑟2𝑐𝑜𝑠𝑒𝑐2𝜃

𝑎
]
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