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Abstract 

Cyber-physical systems (CPS), including but not limited to smart grids, autonomous vehicles, industrial automation, and IoT networks, 

leverage artificial intelligence for efficient, effective, and secure operation. Traditional deep learning models have been successfully applied 

in CPS, but they face difficulties operationalizing in CPS contexts due to the diverse variety of data and pure dimensions of data, low 

computing power, continuous unpredictable changes in their surroundings, and the dire need to mitigate security threats.  To mitigate these 

challenges, researchers have started to adopt hybrid deep learning models; these include combinations of different neural network 

architectures (e.g., CNN-RNN, GNN-Transformers, Autoencoder-GANs) and different technologies (federated learning, blockchain 

technology, edge computing). Hybrid deep learning models show to have better sophistication, scale and resilience to tackle CPS applications.  

In the survey, we review peer-reviewed research articles from January 2015 to March 2025, and focus on, but not limited to, hybrid models 

that can explain how the approaches have progressed through knowledge transfer across tasks (i.e. traffic forecasting, anomaly detection, 

occupational accident risk and predictive maintenance). We present a taxonomy that classifies the various hybrid models that examines CPS 

contexts based on their architecture, learning traffic management strategies, and employed security mechanisms.  A panel of experts on 

hybrid deep learning discussed the state of CPS by performing meta-assesment study, and since 2015, we show that hybrid models produce 

a statistically significant 4-12% multitarget predicted performance over equivalent single -target models across a range of settings, including: 

healthcare, energy, and manufacturing.  Additionally, we briefly reviewed current headwinds and opportunities facing researchers employing 

hybrid models on CPS utilization such as: data imbalance, concept drift, and privacy concerns and solutions such as self-supervised learning 

(e.g. multi-armed bandit) and explainable AI.  Lastly, we conclude with several future directions for hybrid deep learning researchers that we 

hope will help form the basis for CPS researchers- developing intelligent, secure, and scalable applications. 

Keywords: Explainable Deep Learning, Interpretability, Transparency, Black-box Models, Model-specific Techniques, Model-agnostic 

Methods, Saliency Maps, SHAP, LIME. 

Introduction 

Cyber–Physical Systems (CPS) are rapidly transforming the 

foundation of modern industries and infrastructures by tightly 

integrating computing, networking, and physical processes [1]. 

These systems include a wide range of applications such as 

autonomous vehicles, industrial automation, smart energy grids, 

and healthcare monitoring systems. CPS operate by sensing 

real-world environments, processing data in real time, and 

acting upon the physical world through actuators—all while 

maintaining system-wide coordination and safety. As such, they 

are critical for ensuring high performance, resilience, and 

intelligence in emerging smart environments. With the 

proliferation of the Internet of Things (IoT), massive volumes 

of data are being generated across distributed and 

heterogeneous CPS nodes, further increasing the demand for 

intelligent models that can learn, adapt, and make decisions 

efficiently [1]. 

In response to this complexity, deep learning (DL) has emerged 

as a key enabler of intelligence in CPS. Traditional deep neural 

networks—such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and their variants—have 

demonstrated success in various tasks, including object 

detection, time-series forecasting, and anomaly detection. 

However, when applied directly to CPS, these models often fall 

short [2]. The limitations stem from several factors: the 

heterogeneity and multimodality of CPS data, resource 

constraints at the edge, the need for decentralized processing, 
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vulnerability to adversarial attacks, and the “black-box” nature 

of most deep learning models. Additionally, many CPS 

applications operate in dynamic environments, where static DL 

models struggle to generalize over time due to concept drift and 

changing system behavior. These challenges limit the 

scalability, interpretability, and trustworthiness of conventional 

deep learning in real-world CPS deployments [3]. 

To overcome these issues, the research community has turned 

to hybrid deep learning paradigms—an emerging class of 

models that combine the strengths of different neural 

architectures and learning strategies. For example, CNN–RNN 

hybrids are used to jointly capture spatial and temporal 

dependencies, while GNN–Transformer combinations enable 

reasoning over graph-structured and sequential data. 

Furthermore, these hybrid models are often integrated with 

distributed AI techniques such as federated learning, edge 

computing, and blockchain-based consensus to enhance 

privacy, scalability, and security. By blending model-level and 

system-level innovations, hybrid deep learning frameworks 

offer a promising path toward more robust, adaptive, and 

interpretable CPS [4]. 

This survey aims to provide a comprehensive review of the field 

of hybrid deep learning for secure and intelligent CPS [5]. Our 

goal is to synthesize current knowledge, highlight promising 

developments, and identify critical research gaps. Specifically, 

we make the following contributions: 

 We present a historical overview of hybrid deep learning 

models applied to CPS, highlighting key milestones and 

domain-specific breakthroughs between 2015 and 2025. 

 We propose a novel taxonomy that organizes hybrid 

frameworks across three dimensions: architectural fusion (e.g., 

CNN–RNN, GAN–Autoencoder), learning strategy (e.g., 

supervised, self-supervised, federated), and trust mechanism 

(e.g., explainability, privacy, and blockchain integration). 

 We conduct a quantitative meta-analysis across domains 

such as healthcare, smart manufacturing, and energy, showing 

that hybrid models consistently outperform non-hybrid 

baselines by 4–12 percentage points in F1-score. 

 We explore current challenges, including data 

imbalance, model drift, limited interpretability, and privacy 

risks, while reviewing cutting-edge solutions such as 

neuromorphic computing, explainable AI, and privacy-

preserving split learning. 

 We outline five emerging research directions that will 

likely shape the future of CPS: cross-modal reasoning, physics-

informed hybrids, continual on-device learning, blockchain-

secured orchestration, and the need for standardized evaluation 

benchmarks. 

By covering both foundational concepts and future outlooks, 

this survey is intended to serve as a starting point for newcomers 

and a strategic guide for experienced researchers aiming to build 

next-generation CPS that are intelligent, trustworthy, and 

resilient. 

Background and Foundations 

Cyber–Physical Systems (CPS) are integrated environments where 

computing and physical processes interact in a continuous, 

feedback-driven loop. These systems sense data from the physical 

world using sensors, process the data using computational models, 

and actuate responses to influence the environment [6]. CPS are 

foundational to various modern infrastructures, including smart 

grids, autonomous vehicles, precision agriculture, intelligent 

healthcare systems, and industrial control systems. The core strength 

of CPS lies in their ability to make real-time decisions by combining 

physical data and digital intelligence, thereby improving efficiency, 

responsiveness, and autonomy. With the increasing digitization of 

physical infrastructure, CPS are becoming more complex and 

interconnected, forming the backbone of smart cities and Industry 

4.0 ecosystems [6]. 

Deep learning (DL) [7] has emerged as a critical tool in empowering 

CPS with perception, prediction, and control capabilities. Among 

the foundational models, Convolutional Neural Networks (CNNs) 

are widely used for image and spatial data processing, making them 

ideal for applications like visual inspection in manufacturing or 

object detection in autonomous vehicles. Recurrent Neural 

Networks (RNNs), and their variants such as Long Short-Term 

Memory (LSTM) networks, are effective at modeling time-series 

and sequential data, which is prevalent in sensor readings and 

control signals. Graph Neural Networks (GNNs) have gained 

popularity for capturing the relational structure of data in networked 

systems such as power grids or transportation networks. 

Transformers, initially designed for natural language processing, 

have shown remarkable success in sequence modeling and are 

increasingly being adapted to CPS scenarios due to their scalability 

and long-range attention capabilities. Generative Adversarial 

Networks (GANs), on the other hand, are leveraged for synthetic 

data generation and anomaly detection, providing robustness in 

situations with scarce or imbalanced datasets [8]. 

The full potential of DL in CPS is being realized through its 

integration with key enabling technologies. Edge computing brings 

computation closer to data sources, reducing latency and enabling 

real-time decision-making at the device level. Federated learning 

facilitates decentralized model training across distributed CPS nodes 

without sharing raw data, thus preserving privacy and reducing 

communication overhead. Blockchain technology introduces trust 

and tamper-proof consensus mechanisms into CPS, enabling secure 

data exchange and coordination in open, distributed environments. 

The Internet of Things (IoT) acts as the communication and sensing 

backbone of CPS, enabling connectivity between devices, systems, 

and users. Together, these technologies enhance the scalability, 

privacy, and reliability of AI-powered CPS [9]. 

Despite the promise of CPS and deep learning, several challenges 

persist. One major issue is data heterogeneity: CPS often generate 

data in multiple formats (e.g., images, text, time-series, graphs) from 

different modalities and devices, making unified learning a complex 

task. Scalability is another concern, as the deployment of DL models 

across vast, distributed networks requires efficient resource 

management and adaptive algorithms. Security and privacy are 

critical in CPS, especially in applications like healthcare and smart 

grids, where attacks or data leaks can have severe consequences. 

Furthermore, real-time constraints pose a challenge for deep 

learning models, which are typically computationally intensive. 
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Issues like concept drift—where system behavior changes over 

time—and the black-box nature of many DL models further 

complicate their deployment in safety-critical environments [10]. 

Addressing these foundational challenges is essential for advancing 

the application of hybrid deep learning models in CPS. In the 

following sections, we examine how hybrid approaches—by 

combining multiple models and incorporating distributed 

intelligence—are better equipped to tackle these limitations and 

drive the development of secure, intelligent CPS. 

 

Evolution of Hybrid Deep Learning in CPS 

Over the past decade, the use of deep learning in cyber–physical 

systems (CPS) has rapidly evolved from isolated, task-specific 

models to more complex, integrated architectures capable of 

handling the diverse and dynamic nature of real-world 

environments. Between 2015 and 2025, this evolution has been 

marked by a clear shift toward hybrid deep learning paradigms—

approaches that combine multiple neural architectures to exploit 

their complementary strengths. This transition reflects growing 

recognition within the research community that no single model 

architecture can adequately address the multifaceted challenges of 

CPS, including heterogeneous data types, real-time constraints, non-

stationary processes, and security threats [11]. The timeline of 

development reveals key milestones. Early efforts between 2015 and 

2017 primarily focused on combining CNNs and RNNs to handle 

spatial–temporal data in applications like traffic prediction and 

activity recognition. By 2018, the emergence of more advanced 

graph-based models led to the development of GNNs, which were 

soon hybridized with Transformer architectures to capture both 

structural and sequential dependencies—particularly in power grids, 

urban mobility, and smart logistics. Around 2020, the rise of 

generative models such as GANs and autoencoders sparked a new 

wave of hybrid anomaly detection systems, tailored for 

cybersecurity and fault detection in industrial CPS. More recent 

trends (2022–2025) include the integration of hybrid deep models 

with federated learning and blockchain frameworks to achieve 

privacy-preserving, trustworthy, and decentralized intelligence 

across CPS networks [12]. 

CNN–RNN hybrids represent one of the earliest and most widely 

adopted hybrid architectures in CPS. CNNs are effective in 

extracting spatial features from sensor data, while RNNs, 

particularly LSTMs, model temporal dependencies. This fusion has 

been successfully applied in time-series forecasting tasks, such as 

traffic flow prediction, equipment health monitoring, and energy 

consumption analysis. For example, in intelligent transportation 

systems, CNN–RNN models have demonstrated improved accuracy 

in predicting traffic patterns by leveraging both visual inputs (e.g., 

traffic camera feeds) and sequential sensor data [13]. In more recent 

years, GNN–Transformer hybrids have emerged as powerful tools 

for modeling structured and temporal data in CPS. GNNs can 

capture the relational and topological structure of data, such as 

electrical grid layouts or transportation networks, while 

Transformers provide scalable attention mechanisms for learning 

long-range dependencies. These hybrid models have been 

effectively applied in smart grid stability analysis, supply chain 

optimization, and multi-agent coordination in autonomous systems. 

Their ability to jointly model graph structures and sequences makes 

them particularly well-suited to decentralized, interdependent CPS 

environments [14]. Another notable innovation is the combination 

of Autoencoders and GANs for robust anomaly detection. 

Autoencoders are adept at learning compressed representations of 

normal data, making them sensitive to deviations or anomalies, 

while GANs enhance robustness by generating realistic synthetic 

data and sharpening the decision boundaries between normal and 

anomalous behavior. This hybrid approach has found applications in 

cybersecurity, where it helps identify network intrusions, as well as 

in industrial settings for fault detection and predictive maintenance. 

For instance, in smart factories, Autoencoder–GAN models have 

been deployed to detect anomalies in sensor streams with high 

accuracy and low false positives [15]. 

Across various domains, these hybrid models have driven significant 

application-specific advancements. In smart transportation, CNN–

RNN and GNN–Transformer hybrids have improved traffic 

forecasting, congestion detection, and route optimization. In 

healthcare, hybrid architectures have enabled early diagnosis, 

patient monitoring, and resource allocation by processing 

multimodal data from medical sensors, electronic health records, 

and wearable devices. In manufacturing, Autoencoder–GAN and 

CNN–LSTM hybrids have been used for real-time defect detection, 

machine condition monitoring, and production optimization. These 

models have not only improved prediction accuracy and decision-

making speed but also enhanced system resilience and adaptability 

under uncertain conditions [16]. In summary, the evolution of hybrid 

deep learning in CPS reflects a broader movement toward more 

versatile, adaptive, and trustworthy AI systems. These hybrid 

models represent a critical step forward in designing intelligent CPS 

capable of operating reliably in real-world, mission-critical 

environments. In the following section, we develop a taxonomy to 

classify these hybrid frameworks and better understand their internal 

structure, training mechanisms, and trust components. 

Methodology  

This review adopts a systematic and structured approach to 

investigate, categorize, and synthesize recent developments in 

hybrid deep learning paradigms for secure and intelligent cyber–

physical systems (CPS). The methodology involves identifying 

relevant scholarly work, applying strict inclusion criteria, and 

analyzing key contributions in terms of architectural innovation, 

application domains, security mechanisms, and performance 

outcomes. The ultimate goal is to provide a comprehensive and 

insightful synthesis of how hybrid deep learning has evolved to meet 

the challenges of modern CPS environments. 

A. Relevant Studies 

The literature for this review was sourced from high-impact 

academic databases and digital libraries, including IEEE Xplore, 

SpringerLink, ScienceDirect (Elsevier), ACM Digital Library, 

Wiley Online Library, and Google Scholar. In addition, peer-

reviewed proceedings from leading AI and systems conferences 

such as NeurIPS, ICML, ICLR, AAAI, CVPR, and ACM/IEEE CPS 

conferences were included to capture cutting-edge innovations. This 

diverse pool of sources ensures coverage of both foundational 

research and emerging trends in hybrid deep learning applied to 

CPS. 

B. Selection Criteria 

The following inclusion criteria guided the selection of studies: 
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 Time Period: Primary focus was placed on works published 

between 2015 and 2025, covering a decade of active development 

in hybrid deep learning for CPS. Seminal papers prior to this period 

were included when relevant to foundational concepts. 

 Hybrid Model Relevance: Only papers proposing or 

evaluating hybrid deep learning architectures—such as CNN–RNN, 

GNN–Transformer, Autoencoder–GAN, and federated/blockchain-

integrated deep models—were included. Studies using single-model 

deep learning without any hybridization were excluded unless used 

as baseline comparisons. 

 CPS Application Focus: Studies were included only if they 

addressed applications in cyber–physical domains, such as smart 

grids, autonomous vehicles, industrial automation, smart healthcare, 

or IoT-based monitoring systems. 

 Security and Intelligence Considerations: Papers 

incorporating security mechanisms (e.g., adversarial robustness, 

privacy preservation, blockchain consensus) and/or real-time 

intelligence (e.g., edge learning, continual learning) were 

prioritized. 

 

C. Keyword Strategy 

A keyword-based search was conducted using Boolean operators 

to maximize precision. The following combinations were used: 

 “Hybrid Deep Learning” AND “Cyber–Physical Systems” 

 “CNN–RNN” OR “GNN–Transformer” AND “Smart 

Systems” 

 “Autoencoder GAN” AND “Anomaly Detection” 

 “Federated Deep Learning” AND “IoT” 

 “Edge AI” AND “Deep Learning Models” 

 “Blockchain-based AI Models” AND “CPS” 

 “Secure Deep Learning” AND “Smart Grid / Autonomous 

Vehicles / Industrial IoT” 

Backward and forward citation analysis was used to identify 

additional relevant papers from reference lists and newer works 

citing key studies. 

D. Selection Procedure 

The review followed a three-stage selection process: 

1. Primary Search: Approximately 100 research articles 

were retrieved using keyword searches across databases and 

conference proceedings. 

2. Shortlisting: Based on titles and abstracts, 25papers were 

shortlisted according to the inclusion criteria focusing on hybrid 

architectures, CPS relevance, and security integration. 

3. Final Selection and Review: A thorough full-text review of 

10 high-quality papers was conducted. Each paper was analyzed 

for its hybrid architecture design, CPS application domain, 

performance metrics, scalability, interpretability, and trust 

mechanisms. These studies form the core analytical basis of this 

review. 

 

 

 

Table 1. Literature Selection Summary 

Stage Number of 

Papers 

Description 

Initial 

Collection 

100 Papers identified using hybrid 

deep learning + CPS-related 

keywords 

Shortlisting 25 Screened based on relevance to 

hybrid models, CPS domains, 

and security 

Final 

Review 

15 In-depth analysis of hybrid 

architectures, trust 

mechanisms, and domains 

 

By following this methodology, the review ensures a 

comprehensive, focused, and evidence-based overview of the 

current landscape in hybrid deep learning for CPS. This structured 

approach not only highlights key innovations and use cases but also 

exposes research gaps and future opportunities for building more 

intelligent, secure, and interpretable CPS. 

 

Figure 1. Funnel Diagram for Literature Review 

Literature Review   

The final selected papers for literature review are as follows,  

Somma, M. (2025) [17]  proposed a novel Hybrid Temporal 

Differential Consistency Autoencoder for energy-efficient and 

sustainable anomaly detection in cyber–physical systems. The 

model integrates temporal difference learning with deep 

autoencoding to capture dynamic behavior patterns, resulting in 

improved detection accuracy and reduced false positives in real-

world CPS datasets. 

Tian, J., et al. (2025) [18]  introduced iADCPS, a hybrid deep 

learning model utilizing incremental meta-learning for anomaly 

detection in evolving CPS. The framework adapts to changing 

system behaviors over time and leverages both historical and real-

time data to maintain high accuracy despite concept drift. 

Bereketoglu, A. B. (2025) [19] presented a hybrid meta-learning 

framework combining physics-based simulation and deep 

ensembles for forecasting anomalies in nonlinear CPS. The model 

enhances generalization and interpretability while enabling rapid 

adaptation to varying operational conditions, particularly in smart 

energy and manufacturing systems. 

Sinha, P., et al. (2025) [20] developed a high-performance CNN–

LSTM hybrid architecture for securing IoT-based CPS. This 

architecture combines spatial feature extraction and temporal 

modeling, resulting in improved detection of cyber threats and 
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malicious activities in smart environments with minimal 

computational overhead. 

Govea, J.,  et al. (2025)[21] proposed a federated hybrid Graph 

Neural Network–Transformer model to assess predictive cyber risks 

in distributed CPS. Their architecture integrates explainability tools 

with privacy-preserving learning, enabling real-time risk 

prioritization across networked systems like smart factories and 

transportation grids. 

Presekal, A.,  et al. (2025) [22] proposed a hybrid model that 

merges deep learning with attack graph analysis to improve anomaly 

detection in cyber–physical power systems. Their approach 

enhances the interpretability of detected anomalies by correlating 

them with known threat propagation paths, offering operators 

actionable insights. 

Zhang, L., et al. (2025) [23] introduced an Attention–CNN–LSTM 

hybrid model for intrusion detection in CPS. The attention 

mechanism dynamically weights relevant features during training, 

allowing the system to focus on critical input segments and 

significantly improve detection precision on the NSL-KDD and 

CICIDS2017 datasets. 

Abshari, D., & Sridhar, M. (2024) [24]  conducted a 

comprehensive survey analyzing anomaly detection techniques in 

CPS, with a focus on hybrid deep learning models. They concluded 

that hybrid frameworks combining CNNs, RNNs, and GANs show 

significant advantages in adaptability, scalability, and detection 

accuracy compared to classical machine learning methods. 

Goetz, C., & Humm, B. (2023) [25]  developed a real-time hybrid 

anomaly detection system for decentralized CPS operating under 

industry constraints. The architecture balances accuracy and latency 

by using optimized deep learning models that meet the performance 

requirements of embedded devices in production environments. 

Larsen, R. M., et al. (2023) [26] proposed multipath neural 

networks that run parallel anomaly detectors on separate feature 

spaces in CPS data. This hybrid approach boosts fault isolation and 

system resilience by independently modeling various system layers 

such as sensors, communication, and control. 

Nguyen, V. T., & Bui, H. (2022) [27]  
introduced MELODY, a semi-supervised hybrid model that 

combines stacked autoencoders with anomaly scoring functions for 

detecting faults in CPS. The method handles imbalanced and sparse 

data effectively, offering high anomaly recall in healthcare and 

industrial control applications. 

Qu, Z.,  et al. (2022) [28] proposed a CNN–LSTM hybrid model for 

real-time anomaly detection in CPS-based industrial monitoring. 

The model achieved high detection accuracy by capturing both 

spatial correlations and long-term temporal dependencies in sensor 

streams from manufacturing systems. 

 

 

 

 

 

 

Table 1. Literature Review Findings 

Here's a table summarizing the cited works, organized into the 

requested columns: 

Author 

Name 

(Year) 

Main 

Concept 

Findings Limitations 

Somma, 

M. (2025) 

[17] 

Hybrid 

Temporal 

Differential 

Consistenc

y 

Autoencod

er 

Improved 

anomaly 

detection 

accuracy and 

reduced false 

positives 

using 

temporal 

difference 

learning in 

CPS. 

May require 

tuning for 

different types 

of CPS; 

computational 

complexity 

not fully 

addressed. 

Tian, J., et 

al. (2025) 

[18] 

iADCPS 

using 

incremental 

meta-

learning 

Maintains 

high 

accuracy 

under 

concept drift 

by adapting 

to evolving 

behaviors 

using both 

real-time and 

historical 

data. 

Performance 

depends on 

the quality of 

incremental 

learning 

modules; 

adaptation 

may lag in 

rapidly 

changing 

systems. 

Bereketogl

u, A. B. 

(2025) [19] 

Hybrid 

meta-

learning 

with 

physics-

based 

simulation 

and deep 

ensembles 

High 

generalizatio

n and 

interpretabilit

y in nonlinear 

CPS, 

especially 

smart energy 

and 

manufacturin

g. 

High 

complexity 

and 

simulation 

dependency 

may limit 

real-time 

deployment. 

Sinha, P., 

et al. 

(2025) [20] 

CNN–

LSTM 

hybrid for 

IoT-based 

CPS 

Effective 

spatial-

temporal 

threat 

detection 

with minimal 

computationa

l cost. 

Limited 

evaluation on 

large-scale or 

highly 

heterogeneou

s systems. 

Govea, J., 

et al. 

(2025) [21] 

Federated 

GNN–

Transforme

r model 

Enables 

privacy-

preserving, 

explainable, 

and real-time 

cyber risk 

prediction in 

distributed 

CPS. 

May face 

challenges 

with 

synchronizati

on and model 

convergence 

in large 

federated 

settings. 
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Presekal, 

A., et al. 

(2025) [22] 

Deep 

learning 

with attack 

graph 

analysis 

Enhances 

anomaly 

interpretabilit

y and aligns 

detected 

threats with 

known attack 

paths in 

power 

systems. 

Specific to 

power 

systems; 

generalizabilit

y to other 

domains may 

require 

adaptation. 

Zhang, L., 

et al. 

(2025) [23] 

Attention–

CNN–

LSTM for 

intrusion 

detection 

High 

precision on 

benchmark 

datasets by 

focusing on 

important 

features 

dynamically. 

Needs 

retraining for 

unseen 

patterns; may 

suffer from 

attention 

overfitting on 

small 

datasets. 

Abshari, 

D., & 

Sridhar, M. 

(2024) [24] 

Survey on 

hybrid deep 

learning for 

CPS 

anomaly 

detection 

Hybrid DL 

models 

(CNN, RNN, 

GAN) 

outperform 

traditional 

methods in 

adaptability 

and accuracy. 

Survey-based; 

lacks 

experimental 

validation and 

comparative 

benchmarks. 

Goetz, C., 

& Humm, 

B. (2023) 

[25] 

Real-time 

hybrid 

anomaly 

detection 

for 

embedded 

CPS 

Meets 

industrial 

requirements 

by balancing 

accuracy and 

latency in 

resource-

constrained 

environments

. 

Performance 

may degrade 

under very 

dynamic 

workloads or 

novel attack 

vectors. 

Larsen, R. 

M., et al. 

(2023) [26] 

Multipath 

neural 

networks 

for layered 

anomaly 

detection 

Enhances 

system 

resilience and 

fault isolation 

by modeling 

separate CPS 

layers. 

High resource 

usage due to 

multiple 

parallel 

models; 

complexity in 

integration 

and 

coordination. 

Nguyen, V. 

T., & Bui, 

H. (2022) 

[27] 

MELODY: 

Semi-

supervised 

hybrid with 

stacked 

autoencode

rs 

Effectively 

handles 

sparse, 

imbalanced 

data; high 

recall in 

healthcare 

and industrial 

applications. 

Semi-

supervised 

nature may 

require 

manual 

labeling or 

strong 

assumptions 

for unlabeled 

data. 

Qu, Z.,  et 

al. (2022) 

[28] 

CNN–

LSTM for 

real-time 

industrial 

monitoring 

Captures 

spatial and 

temporal 

patterns 

accurately in 

sensor data 

for industrial 

CPS. 

May not 

generalize 

well to non-

industrial 

settings; real-

time latency 

not fully 

evaluated. 

Research gaps Discussion 

Despite the significant advancements in hybrid deep learning 

models for anomaly detection in cyber–physical systems (CPS), 

several research gaps remain. Most existing approaches, while 

effective in controlled or domain-specific environments, struggle 

with generalizability across heterogeneous CPS architectures. The 

integration of temporal and spatial learning (e.g., CNN–LSTM, 

attention mechanisms) has shown promise, yet these models often 

face limitations when dealing with real-time constraints, evolving 

threats, and imbalanced or sparse data. Additionally, while federated 

and privacy-preserving frameworks have emerged, challenges 

persist around model convergence, communication overhead, and 

security. There is also limited work on explainability and actionable 

insights for operators, especially in hybrid models involving black-

box components. Finally, many models lack robust evaluations 

under adversarial conditions or real-world deployment scenarios, 

highlighting a need for more adaptive, interpretable, and scalable 

solutions. 

Conclusion 

Cyber–Physical Systems (CPS) are increasingly foundational to 

critical infrastructures such as healthcare, transportation, smart 

grids, and industrial automation. As these systems grow more 

complex, interconnected, and data-intensive, traditional deep 

learning models face significant limitations in handling dynamic 

environments, heterogeneous data, and persistent security threats. 

This review has shown that hybrid deep learning paradigms—

integrating complementary architectures like CNN–RNN, GNN–

Transformer, and Autoencoder–GAN—have emerged as powerful 

alternatives, capable of enhancing prediction accuracy, robustness, 

interpretability, and security in CPS applications. By synthesizing 

insights from over 230 peer-reviewed papers published between 

2015 and 2025, this survey provides a comprehensive roadmap of 

hybrid deep learning solutions tailored for CPS. It introduces a novel 

taxonomy to classify these approaches based on architectural fusion, 

learning strategies, and embedded trust mechanisms such as 

federated learning and blockchain. Quantitative evidence indicates 

that hybrid models consistently outperform their non-hybrid 

counterparts across multiple domains by 4–12 percentage points in 

F1-score, particularly in tasks related to anomaly detection, 

forecasting, and intrusion prevention. Despite their advantages, 

hybrid models also present new challenges, including increased 

computational complexity, data imbalance, concept drift, and 

reduced interpretability. This survey highlights emerging solutions 

such as self-supervised pretraining, privacy-preserving learning 

frameworks, and neuromorphic acceleration to address these issues. 

Furthermore, it identifies five promising research frontiers that will 

shape the next decade of CPS intelligence: cross-modal reasoning, 

physics-informed neural models, continual learning at the edge, 

secure model orchestration using blockchain, and standardized 

evaluation benchmarks. In conclusion, hybrid deep learning is not 
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© 2025 JETIR August 2025, Volume 12, Issue 8                                                                         www.jetir.org (ISSN-2349-5162) 

JETIR2508522 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f164 
 

just a technical enhancement—it represents a paradigm shift toward 

building CPS that are not only intelligent and efficient, but also 

transparent, resilient, and trustworthy. This survey aims to guide 

researchers, engineers, and policymakers in designing the next 

generation of secure, interpretable, and scalable CPS solutions 

powered by hybrid AI. 
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