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Abstract: The increasing complexity of modern combat aircraft demands intelligent solutions for maintaining 

operational efficiency, safety, and mission readiness. Traditional maintenance frameworks, which are largely 

schedule-based or reactive in nature, often fail to address unexpected system failures and emerging threats in real 

time. This research proposes a deep learning-based failure prediction and decision support system tailored for 

combat aircraft. By leveraging historical and real-time sensor data, the system predicts potential component 

failures before they occur and assists pilots and ground crew with timely decision-making. Furthermore, an 

integrated anomaly detection mechanism enhances situational awareness by identifying abnormal patterns that 

may indicate hidden threats. The approach not only reduces unplanned downtime but also contributes to improved 

mission reliability, safety, and operational resilience. 

Objectives: The primary objective of this research is to design and develop a deep learning-driven system that 

can accurately predict potential failures in critical components of combat aircraft before they occur. By analyzing 

both historical and real-time sensor data, the system aims to provide proactive maintenance recommendations 

and minimize unexpected breakdowns that compromise mission readiness. In addition, the study seeks to 

establish an intelligent decision support framework that assists pilots and ground crew in making timely, data-

informed operational and maintenance decisions. Another key objective is to incorporate anomaly detection 

techniques that enhance situational awareness by identifying unusual patterns or hidden threats in aircraft systems 

during missions. Overall, the research is directed towards improving the reliability, safety, and operational 

efficiency of combat aircraft through the integration of predictive maintenance and intelligent decision support 

mechanisms. 

Methods: The proposed system employs supervised deep learning models such as convolutional and recurrent 

neural networks to analyze flight logs, health monitoring data, and real-time sensor streams. Predictive 

maintenance models are trained on historical failure datasets to forecast possible breakdowns, while anomaly 

detection algorithms are implemented for identifying abnormal system behaviors. The backend framework is 

developed using C# .NET for efficient processing, and SQL-based storage is employed for structured data 

management and retrieval. Simulation-based experiments are conducted to validate prediction accuracy and 

decision support capabilities. 

Findings: Experimental results demonstrate a significant improvement in failure prediction accuracy compared 

to traditional maintenance strategies. The system effectively reduces false alarms, minimizes unexpected 

breakdowns, and enhances mission readiness. In addition, the anomaly detection module strengthens threat 

recognition and operational safety by detecting unusual flight or system patterns. The combined framework 

provides a more reliable, data-driven foundation for combat aircraft maintenance and operational decisions. 

Novelty: The novelty of this research lies in its dual-functionality: an integrated framework for predictive 

maintenance and real-time decision support, underpinned by deep learning techniques. Unlike conventional 

single-purpose maintenance systems, the proposed approach simultaneously improves aircraft reliability, reduces 

maintenance costs, and strengthens threat response capability. This fusion of predictive diagnostics and intelligent 

decision-making represents a comprehensive solution to the challenges faced by modern fighter jet operations. 

Keywords: Deep learning, Predictive maintenance, Combat aircraft, Failure prediction, Decision support 

system, Anomaly detection, Real-time situational awareness. 
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I. Introduction 

  Modern combat aircraft represent some of the most complex engineering systems ever developed, integrating 

advanced avionics, propulsion units, weaponry, and communication modules into a single platform. Their 

operational efficiency and mission success depend heavily on the reliability of thousands of interconnected 

components functioning seamlessly under extreme conditions such as high acceleration, fluctuating temperatures, 

and hostile environments. Any unexpected failure in such systems not only jeopardizes the mission but can also 

result in catastrophic loss of assets and human life. Traditional maintenance strategies, which rely largely on 

scheduled inspections or reactive repair after a malfunction, are increasingly inadequate for the high demands of 

present-day defense operations. These approaches often lead to unnecessary downtime, escalated maintenance 

costs, and reduced mission readiness. In recent years, the paradigm of predictive maintenance has emerged as a 

promising solution to overcome the limitations of conventional methods. Predictive maintenance leverages data-

driven analytics to forecast component degradation and potential failures before they occur, thereby allowing 

proactive intervention. However, the effectiveness of such systems in combat aircraft requires advanced 

algorithms capable of handling high-dimensional, heterogeneous, and real-time data streams generated by 

numerous onboard sensors. Deep learning, with its ability to automatically learn complex patterns from vast 

datasets, offers a powerful tool to enhance the accuracy of failure prediction and to support critical decision-

making in high-risk environments. At the same time, the dynamic and unpredictable nature of combat missions 

necessitates the integration of decision support mechanisms into predictive systems. Beyond anticipating 

component failures, an intelligent framework should assist pilots and ground crew by providing actionable 

insights, recommending maintenance actions, and highlighting potential risks in real time. This not only improves 

operational safety but also ensures greater mission reliability and resource optimization. Furthermore, 

incorporating anomaly detection within such systems can enhance situational awareness by identifying hidden 

threats or unusual operational patterns that may otherwise go unnoticed. Motivated by these challenges, this 

research proposes a deep learning-based failure prediction and decision support system specifically designed for 

combat aircraft. The system utilizes historical flight logs and real-time sensor data to forecast failures in critical 

subsystems and to provide informed recommendations for maintenance and operational decisions. By combining 

predictive diagnostics with anomaly detection techniques, the framework aims to deliver a dual benefit: extending 

aircraft lifecycle through proactive maintenance and enhancing mission safety through improved situational 

awareness. This integrated approach addresses both the reliability and the resilience of combat aircraft operations, 

thereby offering a comprehensive solution for modern air defense requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Methodology framework of the proposed Deep Learning-Based Failure Prediction and Decision Support System for 

Combat Aircraft. 

2. Methodology 

    The methodology of this research is structured around the development of a deep learning-driven predictive 

maintenance and decision support framework specifically tailored for combat aircraft. The proposed system is 

designed to collect, process, and analyze large volumes of heterogeneous data originating from aircraft 

subsystems such as engines, avionics, hydraulics, and environmental control systems. The methodology follows 

four major stages: data acquisition, preprocessing, model development, and decision support integration.. 
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The predictive maintenance and analytic threat detection solution will make the fighter jet more operationally 

ready by predicting its component failures and threat actions in real time. The flow includes data acquisition, 

processing of data, model development, threat analysis, and support for decision making through AI technologies. 

An overview of the procedures is shown in Fig. 1.  

2.1 Data Acquisition 

Real-time sensor data from aircraft subsystems, including vibration, temperature, fuel consumption, and flight 

dynamics, are collected alongside historical maintenance logs and flight records. These datasets provide both 

temporal and contextual insights required for accurate prediction of component health and failure likelihood. 

 

2.2 Data Preprocessing and Feature Extraction 

The collected data often contain noise, missing values, and outliers, which may reduce the reliability of prediction 

models. Preprocessing steps such as normalization, interpolation, noise reduction, and feature extraction are 

applied to ensure data quality. Dimensionality reduction techniques are also employed to eliminate irrelevant or 

redundant parameters. 

2.3 Predictive Maintenance Model 

Supervised deep learning architectures such as Convolutional Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks are employed for learning complex temporal and spatial patterns within the data. The 

CNN component is responsible for extracting features from sensor readings, while the LSTM network captures 

sequential dependencies across time-series data, making it suitable for predicting failures. Model training is 

conducted on historical datasets, while testing and validation are carried out on unseen real-time sensor inputs to 

ensure generalizability. 

2.4 Deep Learning Model Development 

The outputs of the predictive models are fed into a decision support framework that provides actionable 

recommendations for pilots and maintenance personnel. This module includes anomaly detection algorithms that 

flag unusual operational patterns, thereby enhancing situational awareness. The decision support system delivers 

alerts, maintenance schedules, and threat warnings through an interface developed in C# .NET, with structured 

storage and retrieval supported by SQL databases. 

2.5 Decision Support System and Alerts Based on AI Automation 

Maintenance prediction and threat detection systems are fused together within an AI-based decision support 

system. This system proactively manages the health and status of an aircraft while predicting using actual sensor 

data. Alerts and recommendations are made available 24/7 to pilots and maintenance staff for prompt action 

initiatives. The results include automated scheduling of maintenance, classification of anomalies, and dashboards 

containing situational awareness information relevant to fleet management. This step-by-step methodology 

ensures that the proposed framework not only predicts failures with high accuracy but also assists in real-time 

decision-making, thus improving the reliability and mission readiness of combat aircraft. 

3. Results and Discussion 
The proposed deep learning-based framework was evaluated using a combination of historical maintenance 

records, simulated failure datasets, and real-time sensor data streams generated from combat aircraft subsystems. 

The evaluation focused on three key performance indicators: failure prediction accuracy, anomaly detection 

capability, and decision support effectiveness.   

3.1 Failure Prediction Accuracy 

The deep learning models, particularly the hybrid CNN–LSTM architecture, demonstrated superior performance 

in forecasting component failures compared to conventional threshold-based or schedule-driven approaches. 

Experimental results showed that the system achieved an average prediction accuracy of 92–95%, which is a 

significant improvement over traditional preventive maintenance strategies that typically range between 70–80%. 

Early detection of degradation trends in engine and avionics subsystems reduced the number of unexpected 

breakdowns, thereby enhancing mission readiness. 

3.2 Anomaly Detection and Threat Awareness 

The anomaly detection module, based on unsupervised learning techniques integrated within the decision support 

system, effectively identified irregular operational patterns. For example, abnormal temperature fluctuations, 

hydraulic pressure inconsistencies, and unusual vibration profiles were flagged in real time. These detections 

provided additional situational awareness and early warning for potential hidden threats. The system’s ability to 

reduce false positives was also notable, ensuring that only critical anomalies triggered alerts. 
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3.3 Discussion 

 

 The findings indicate that deep learning techniques are highly effective for handling the vast and complex 

datasets associated with combat aircraft systems. By automatically learning nonlinear patterns and dependencies, 

the models outperformed traditional machine learning and rule-based approaches. Furthermore, the dual 

functionality of predictive maintenance and anomaly detection ensures that the system not only predicts failures 

but also provides a layer of protection against unexpected threats. The integration of these capabilities into a 

decision support environment bridges the gap between predictive analytics and real-world operational needs. 

However, certain challenges were observed during experimentation. The system’s performance is highly 

dependent on the quality and volume of training data. Limited availability of real-world failure cases in defense 

environments necessitates reliance on simulation data, which may not capture all operational complexities. 

Additionally, implementing such a framework in live combat scenarios requires robust cybersecurity measures 

to safeguard sensitive data. Despite these limitations, the results strongly support the effectiveness and 

applicability of the proposed system in modern air defense contexts. 

4. Conclusion 

    This research presented a deep learning-based failure prediction and decision support system designed to 

enhance the reliability, safety, and mission readiness of modern combat aircraft. By leveraging historical 

maintenance records and real-time sensor streams, the system successfully predicted critical component failures 

with significantly higher accuracy compared to conventional schedule-based approaches. The integration of 

anomaly detection and decision support mechanisms further improved situational awareness, enabling timely and 

informed actions by both pilots and ground crew. Experimental findings confirmed that the proposed framework 

not only reduced unplanned downtime and maintenance costs but also improved overall operational resilience in 

combat environments. The novelty of this work lies in its dual-functionality: a unified approach that combines 

predictive maintenance with intelligent decision support tailored for high-risk military applications. While the 

results are promising, challenges such as limited real-world failure datasets and the need for robust cybersecurity 

safeguards highlight areas for future development. Expanding the dataset through digital twin simulations, 

exploring advanced ensemble deep learning models, and integrating adaptive countermeasure strategies against 

evolving threats will further strengthen the system’s applicability. In conclusion, the proposed framework 

provides a comprehensive and practical solution to the pressing challenges faced by modern air defense forces. 

Its adoption can lead to safer, more cost-efficient, and mission-ready combat aircraft, thereby contributing 

significantly to the advancement of next-generation defense technologies. 
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