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1. Introduction

In 1922 Banach [2] proved the fixed point theorem which provide us existence and uniqueness of a self-
mapping on a metric space. This theorem was then generalized by a large number of people in different metric

spaces, which can be explored in ([7], [8], [10], [11], [18] and so on).

S. Sessa [22], M. S. Khan and M. Swalech [13] in 1984, expanded the research of metric fixed point theory to
a new category by introducing a control function which they called an altering distance function.
Definition 1.1.[13] “A function { : Rt — R* is called an altering distance function if the following property

Is satisfied:

(91) ‘~|J(0) =0,

(©,) Y is monotonically non-decreasing function,
(©3) Y is a continuous function,

By W we denote the set of all altering distance functions.”
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In 2012, the concept of S- metric space was established by Sedghi et al. [21].
Definition 1.2.[21] “Let X be a non-empty set. An §-metricon X is a function §: X XX XX —

[0, o) satisfying the following axioms:
1. S(u,v,w)=0ifandonlyifu=v=w,

2. Sw,v,w) <S(w,u,a) +S(w,v,a) + S(w,w,a), forallu,v,w € X.

An S-metric space is a pair (X, S) where S is a metric on X.”

In 1999, Molodtsov [19] introduced soft sets as a mathematical tool to handle the uncertainty associated with
real world data based problems. It provides sufficient capabilities to cope with uncertainty in a data and to
represent it in a useful way. A vast amount of mathematical activity has been carried out to obtain many
remarkable results showing the applicability of soft set theory in decision making, demand analysis,
forecasting, information science, mathematics, and other disciplines (see for detailed survey ([14], [15], [16],

[20], and so on).

Definition1.3.[19]: “Apair (F, E) is called a soft set over a given universal set X, if and only if F is a mapping
from a set of parameters E (each parameter could be a word or a sentence) into the power set of X denoted by
P(X). That is, F: E = P(X). Clearly, a soft set over X is a parameterized family of subsets of the given

universe X.”
Definition 1.4.[17]: “A soft set (F, E) over X is said to be a null soft set denoted by &, if for all e € E, F (e) =
null set ¢.”

Definition 1.5.[17]: “A soft set (F,E) over X is said to be an absolute soft set denoted by X if for all

eeE, F(e) =X

Das and Samanta ([5]-[6]) introduced the notions of soft real set and soft real number, and discussed their

properties. Based on these notions, they introduced in the concept of soft metric.

Definition 1.6.[5]: “Let R be the set of real numbers and B(R) the collection of all non-empty bounded

subsets of R and E be taken as a set of parameters. Then a mapping F: E = B(R) is called a soft real set. If a
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real soft set is a singleton soft set, it will be called a soft real number and denoted by #, §, fetc 0 and T are

the soft real numbers where 0(e) = 0, 1(e) = 1, for all e € E respectively.”

Abbas et al. [1] introduced the notion of soft contraction mapping based on the theory of soft elements of soft
metric spaces. Wardowski [23] introduced a notion of soft mapping and obtained its fixed point in the setup of soft
topological spaces. They studied fixed points of soft contraction mappings and obtained among others results,

a soft Banach contraction principle.

In 2018, Aras et al. ([3]-[4]) introduced the concept of soft S-metric spaces and also discussed its important
properties which are as follows:
“Let X be an absolute soft set, E be a non-empty set of parameters and SP(X) be the collection of all soft

points of X. Let R(E)* denotes the set of all non-negative soft real numbers.”

Definition 1.7.[3] “A soft S -metric on X is a mapping S : SP(X) X SP(X) x SP(X) - R(E)* which

satisfies the following conditions:

(S1) (g, p, W) 2 0;

(52) S(fig, Dy, w,) = 0, ifand only if 4, = D, = W,;

(83) S(lig, Dp, We) < S(llg, Ug, tq) + S (Dp, Dp, Tg) + S(We, We, Ta).

For all g, Dy, W,, &, € SP(J?), then the soft set X with a soft S-metric is called soft S-metric space and

denoted by (X,S,E).”
Lemma 1.8.[3] “Let (X, S, E) is a soft S-metric space. Then we have
S(ﬁal ﬁa; 9b) = S(ﬁbr ﬁb; ﬁ'a)f”

Definition 1.9.[4] “A soft sequence {47 } in (X,S,E) converges to 9, if and only if S(a% , 4% ,9,) -

0 as n — oo and we denote this by lim 47 = 7,.”
n—-oo n

Definition 1.10.[4] “A soft sequence {22 }in (X, S, E) is called a Cauchy sequence if for & > 0, there exists

no € Nsuch that s(ag ,an ,am ) < &foreachm,n > ny.”
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Definition 1.11.[4] “A soft S-metric space (f S, E) is said to be complete if every Cauchy sequence is

convergent.”
Definition 1.12.[4] “Let (X, S,E) and (Y, ', E') be two soft S-metric spaces. The mapping f,: (X,S,E) -

(Y,s’,E") is a soft mapping, where f: X > Yand ¢ : E > E’ are two mappings.”

Definition 1.13.[4] “Let f,,: (X, S,E) - (Y, ', E") be a soft mapping from soft S-metric space (X,S,E) toa
soft S-metric space (T, 5’,E’). Then f, is soft continuous at a soft point i e SP(X) if and only if

fo ({ﬁgn}) = fo(la).”

In 2018, Elif G. et al. [9] establish the following definition of soft altering distance function in soft metric

space.

Definition 1.14.[9] “A soft function Y : R(E)* —» R(E)* is called a soft altering distance function if

satisfies the following property:

(@) Y(0) =0,

(©,) Y is monotonically non-decreasing function,

(®3) Y is a sequentially continuous function i.e., g - 14, then Y(@g ) = Y(dl,).”

Theorem 1.15.[9] “Let (X, d) be a complete metric space. Let ¢ : R(E)* - R(E)* be a soft altering distance

function and T: X — X be a soft mapping which satisfies the following inequality:
W(d(T@z ), T®;)) < ¢ Y(d@q, 9)),

for some 0 < ¢ < 1 and @i, D,e SP(X). Then T has a unique soft fixed point.”

2. Soft fixed point theorems via new types of soft contractive conditions

Theorem 2.1: Lety € ¥ and (f S, E) be a complete soft S-metric space. Let f,, be soft self mapping on

(X, S, E) which satisfies the following condition:

{5 (fo @), £, (o), fip(0))}
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‘S(ﬁavﬁaﬂf(p (ﬁa))‘s(ﬁb'ﬁb’ﬁp (ﬁb))s(ﬁa’aa'ﬁp (ﬁb))+5(ﬁa’aarﬁb)5(ﬁbrﬁbﬂfq) (ﬁa))s(ﬁb'ﬁb’f(p (ﬁb))}
[S (g, lq,0p)]? +5(ﬁa'ﬁaﬁf<p (ﬁb))g(ﬁb'ﬁb'f(p (ﬁb))

<a 1/){
+8 Y {S (2 B, £, (@) + S (0, Do fip (0)) } + ¥ WIS (B, s £ (D)) + (P, D, £ (B))}

S(8a,8a.fp(Ba))S(Pp,Dp.fp(Pp))
14+8(Ug,Ug,Dp)

+19{ }+ 6 (S (@, 1, 0)3 (2.1)

For all @i, 9, € SP(X) with &, # ¥, and for some a, B,y,7,6 > 0 witha + 28 + 3y +n+ & < I, then, f,

has a unique soft fixed point w, € SP()?) and moreover for each soft point i, we have lim fq," U, = w,.

n—00

Proof: Let 43 e SP(X) be an arbitrary point and let {27 } be a sequence defined as follows
antl = fo(ar ) = f,"" (1), for each n > 0. Then form (2.1) we have

=vis (foant) foan) fo(az,))}

1

X
[s(ap:t an-t an )*+s@it st fo(ak ))S(ak am fp@z )

<ay
[s(ag 2, a8 fo @i t))S (0%, 2%, f (a2 ))S (g2 an 2, f, (A7)
+s(agt ant az )s(ag ,az |, f,ag2))s(ag  az . f,(@% )]
s (am an o (an) + s (a2,.az,. £, (az,))}

+yyfs(ant, art, f,@n ) + s(ar 4z, f,@n1))}

5(ﬁ2;i1,ﬁg;il,f(p(ﬁgr_lil))cs(ﬁgn,ﬁgn,f(p(ﬁgn)) ~n—-1 ~An—-1 ~n
ny { 15 (T2 Bl Bl +outs(as, el o))

s(uayt, 0,2t U, )S (U, U, Wy, )S(Wa, L, Bayt, W, }

2
n—1 sn-1 n sn—-1 sn-1 s;n+il an an agn+i
S(uan—l’uan—l’uan)] +5(uan—1'u‘1n—1’uan+1)5( Uap UanUanyy

<ay {[
+pp{s(ag ast, aq,) + s(ag, ag, agr) )}

i i) ag,)s(ag, g, an

S(a_'a_‘ ) An—1 nn-1 n
+7]1.b{ n 11+57(lﬁ:1_1 T n+1 }+ SIP{S(ugn_l,ugn_l,ugn)}

an-1""an-1’
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< ay(s(as, 8, @)} + pls (e, ai, 42,) + s (@, 42, 247, )

+y pl2s (a2, 0a ag,) + s(ag,, aq,, 50! )} + nwi{s(ag, ag,, a5)), )}
+6pis(apt, art, an )}

Thus, we get

A —a—-p—y-mp{s(a, aq, a0zl )} < B +2v + Oy{s(as?, aq ", ai )}

¢{S(agn’ﬁgn‘a3:31)} = (%) lp{s(a3;}1’ag;—11‘a3n)}

Therefore,
ys(ag, az, a2} < ky{s(an?, an?,az,)} where k = 27—
<k yls(ag2, 032,04 )}
lp{‘s(ﬁgn’ ﬁZ'n’ ﬁg:jl)} = ]En l/J{S(ago, ﬁ'go’ ﬁ}h)} (22)

Since 0 <k < 1, from (2.2) we obtain lim p{s(ag ,an a7t )} = 0.

From the fact that € ¥, we have lim S(a% ,a2 , 472 ) = 0. (2.3)

n—oo
Now, we will prove that {#g } is a Cauchy sequence in (f S, E). Suppose that {1 } is not a Cauchy

sequence which means that there is a constant & > 0 and two subsequence {ﬁ;"‘ } and {ﬁ;"" } of {fiz } such

g my

that for every neNu{0}, we find that n,>m, >n, 5(11"" gk ark ) > & and

ank' ank' amk

~ANp—=1 ~ANg—1 ~ —
S (uZ" I TR M ) < &. Foreachn > 0, we have
np—1 np—1 mp

— AN ANk ~Mg AN AN ~Ng—1 ~Ng—1 ~np—1 ~mg
€p <9 (u Ja,c 1 ) <2$ (uank'uank'uank-1) +3S (uank—l'uank—l'uamk

Taking limit as n — oo, from (2.3) we obtain
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— AN AN ~AMpg
€p <9 (”ank’ua uam ) < €&y,

nk

which implies that

AN ANk ~Mye =
rll—galo $ ( ny’ uank'uamk) = o (2.4)
Similarly, we can show that
/\nk+1 AN+l ~mp+1 AN ~Mmp+1 | _ —
r}l)rg thatS( anys1” D r” amk+1) and T}Lrglo S( Y uank'uamk+1) =€ (2.5)

From the hypothesis, we deduce

W (S @t ). fo @), fp @)

1

ank ank amk ank

~Mg

/\nk /\nk A~
[s (a5 age | fagk ))s (@

AN AN ~AMpg ~AMp  ~Mg
+S(u S0 1 )S(uamk fq,(

an,’ “an,’ “am,

~m
s (24,

RS (a5 058 fp (@5 )) +

+y¢{5 (a

/\mk
amk

~Nk ,\nk ~Mi ,\
S(Hank ank f(P(uank)) <uamk amk f(P( amk))

X

[S(ﬁnk ak g™k )] +$( ak gtk fp(ll amk)> (umk a2k Sop(@ amk))

amk amk
~ Ale /\nk ~
o @t ) S (0 ag  f, (@ )

w08 (e,

U fp (g )]

gk fp@n )}

)_'_S(Amk Amk f‘P(ﬁank )}

_|_
nv 1+8(apk ank ark
ank’ ank' llmk

which implies that

AN+l ~mp+1
uan +1’ua ) =
k mp+1

(S(ank+1

ang+1’

1

ANk ANk ~AMpg
61‘0{ ( uank'uamk)}'

<ay

ANk ST =T M Mg Mg+l
[S(uak ,uak ,uak )] +5( koak a,k
g M Tmg Tk

[s (agk agk

~Ng+1 ) (Amk ~Mg
a ., S U
n Nk

ank+1 amk’

AN AN
) ( ok 1, a
k Nk mg mg

ank’ amk+1

~Mp+1 AN AT
B T )S(u",u"
mp

~m ~m ~m
S, )5<u kol k
my

m m myp+1
)S(ukukuk )

amk’ amk’ amk+1

~Mmg+1 )

amk+1 aTLk ank' amk+1

~ANp+1 ~m ~m ~Mp+1
g~ )S(ua",ua",uak )]
nk+1 mp mp mk+1
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ANk ANk AN+l ~AMp  ~Mp  ~Mpt+1
+8 Y {S (uank'uank'uank+1) +§ (uam a, " ,1 )}

k’ amk' amk+1

+y¢{5(a”k T a’”k+1)+s(a;"n’; M gt )}

) ) ) )
ank aTLk amk+1 k amk ank+1

~Nk Nk ~Nk ~mp mp mp+1
cs(u“nk’ua"k'f"’(u“"k)>5<u“mk'uamk'uakafl

Mk ATk Mk
1+S(uank,uank,uamk)

+n +oyp{s (ag ape agt )}

4 ank' amk

Letting k — oo, and from (2.3) — (2.5), we obtain that
Y(&) <y P2 &) + 6 YP(&)
Y(&) < (2y + 8) Y(&),

which is contradiction as 2y + § < 1. Hence, {@i}_} is a Cauchy sequence. By completeness of (f S, E),

{tig, } converges to some soft point w,.

Again taking i, = tiz, and D, = W, in (2.1) we get

w{s (folan,). (@) fo @)} <

- {S(ﬁan,ﬁaln,f¢(a2n))s(wcwe,fw<wc))s(ﬁgn.aaln,f¢(wc))+5(ﬁ2n.a2n.wc)5(wc,wc,f¢(azn))S(wc,wc,fw(wc))}

5@, 2, W] +5 (08, 08, o (W)S(Bebefp (W)
+Bp{S(@ar ,an ,f,@% ) + S(We, We, £, (W)}
+y pls(az, as , f,(We)) + S (We, W, £, (@2)))

S(aR, 0%, fo@%))S(We.We.fp (W)

m { 148 (W Ty e) } + o pi{s(az, ., W)}

<ay {S(ﬁzwagn.ﬁszil)ﬂwc,wc.ﬁp(wa)s(ﬁﬁn.azn,ﬁp<wc))+5(ﬁ&wa’&nwc)S(wowe.ﬁgrii1)S(WC.wc,f¢(wc>)}

[s@2 an W) +8(aR Ak fo(We)S(WeWe fip(We))
+By{s(ag,,az ,aztt ) + S(We, We, f, (W)}
+y p{s(an o, f,(We) + S (W, we, A%+ )}

s(ag, a%, amtt )S(We,We,fp(We))

1+s(ag, ag, .we)

s J+ s yls(az, az,m.)) .
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Therefore,

lim  {(agL, 4L, fo(90)} = limw § (£, (a8, ), £ (82,), fo (W)

< B {5 (@ e, £, 0} + v ¥ {5 (P, e, £, ()}
which implies that

Y {S (@ W, fo (0))} < (B + 1) {S (e, e, £, () )}

since § +y < 1, then 1 {S (@, W, £, (@)} = 0 = 5 (@, @, £, (@) ) = 0.
Thus, f,,(W,) = W.. Therefore, W, is a fixed soft point of f,,.
Now we are going to establish the soft fixed point is unique.

For that let us suppose that w, and £, be two soft fixed point of fo With W, # ty.
Taking 1i, = W, and 9, = £; in (2.1) we get
lp {S(WC' WC; itd)}

= {5 (fo @), fo (W), fy () )}

‘S(Wc:wc'fw (Wc))“s( fdrfd'f(p (Ed))‘s(wc'wc’ﬁp (fd))+5(Wc'wc'fd)5(fd'fd'fcp (Wc))‘s(fdrfd:ftp (Ed))}
[5 (VT’C,VAVc'fd)]Z +S(VT’CvWCvf(p( fd))“s(fd'fdvﬁp (fd))

<ca 1/){
+ﬁ lp{S(WC’ Wc' f(p (Wc)) + S( fd’ fd: f(p(fd))}
+y ¢{5(WC, we, f(p (fd)) + S(fdl ta, f(p (Wc))}

SWe e, foW))S(Eatafp(ta)) A
i 1/){ 14+S(WeMeia) } + 8 P{S (W, We, t4)}

S(We,We,Wo)S(Eq,tata)SWe,We,ta) +8 We,We,ta)S (Ea,ta,We)S (fd,fd.fd)}
[S(Wc;wc,fd)]z +5(Wc;wc;fd)5(fd'fd,fd)

< ay
+B lp{s( VT}C' WC! WC) + 'S( fd' i«:d; fd)} + )4 lp{‘s( WC! WC' i\:d) + 'S(EdJ fd' WC)}

5( WC:WCrWC)S( fd.fd.fd)
1+8(We,We,tq)

+19{ }+ 8 pls @, e, )]
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we obtain

YAS(We, W, T} < 2y + OPLS (W, We, )},

as 2y + & < 1, we get a contradiction. Thus, we obtain

Y{S(W,, W, t49)} = 0= S(w,, W, tg) = 0 which further implies that w, = ;.
Therefore, the fixed soft point we get is unique.

This completes the proof.

Remark: In Theorem 2.1ifa ==y =n=0and 0 < § < 1with () = £, we get the result of Banach

2]

Corollary 2.2: Let (X, S, E) be a complete soft S-metric space and let £, be soft self mapping on (X, S,E)

which satisfies the following condition:

N (ACHEACHIACS)

a {S(ﬁa,aa,fq, (ﬁa))S(ﬁb,f:b.fq,<ﬁb>)s(ﬁa.ﬁa.f<p(fn;))+5(aa.ﬁa.ﬁb)s(ﬁbﬁb.f¢(ﬁa))S(ﬁb,ﬁb.fq,%))}
- [5(ﬁa‘ﬁarﬁb)] 2 +5(ﬁarﬁa'f<p (ﬁb))‘s(ﬁb'ﬁb rf(p (ﬁb))

+6 {5 (8 o, £, (@) + S (00, 0, £, @)} + ¥ {5 (8 U o (B1)) + S (9, D1, £ (2a))}

+ {s(ﬁaﬂa,ﬁp(ﬁa))S(ﬁb,ﬁb.mfzb))
n 1+8(Ug,Ug,0p)

+ (5 @, 809} (26)

For all 4, Dpe SP(X) with @i, # Dy, and for some &, 8,¥,1,8 > 0 with a + 28 + 3y +n + & < L then, f,

has a unique soft fixed point W, € SP(X) and moreover for each soft point i, we have lim fo flg = We.

n—oo
Proof: It is enough, if we consider Y (t) = t in Theorem 2.1.

Corollary 2.3: Let (ﬁ S, E) be a complete soft S-metric space and let f;, be soft self mapping on (f S,E)

which satisfies the following condition:

fos(f¢<aa>,f¢(aa>,f¢(fzb)) £(t)dt

S(2atafo@a))s(Pp2p.f o (0))S(Ralaf o (Bp))+S(ata?p)S(0p.p fo@a) )S(Ppop.f o (Pp))

<af (s(tatary)+5(@aalo )57 o n)) E(t)dt
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+8 f(;s(aa.ﬁa,fq,(aa))+s(ﬁbﬁb.f<p<ﬁb)) £(O)dt +y fos(ﬁa,aa.fw(ﬁb))+s(ﬁb,ﬁb,f<p<aa)) ()t +

S(Bala.fp@a))S(@pp.fo@p))

+T] fo 1+S(ﬁa,ﬁaﬁb) f(t)dt + 6f(;s(ﬁazaa:ﬁb) E(t)dt- (2.7)

For all @i, D,e SP(X) with i, # D, and for some a, 8,7,7,8 > 0 with « + 28 + 3y + 1 + & < 1, where
&:R*Y - Rt is a Lesbesgue-integrable mapping which is summable on compact subset of R*, non-negative
and such that for each € > 0, foe §(t)dt > 0 then, f, has a unique soft fixed point w, € SP(X) and moreover

for each soft point @i,, lim f," @, = W,.
n—->00
Proof: If we take ¥ (t) = fot &(t)dt, in Theorem 2.1, we get desired result.
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