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Abstract :  With the growing shift toward electric mobility, the need has increasingly become critical for reliable and smart 

Battery Management Systems (BMS). This work details development of an AI driven hybrid Predictive Battery Management 

System for electric vehicles delivering advanced diagnostics plus safety controls using embedded technologies. The proposed 

system integrates a suite of sensors along with an embedded platform to continuously monitor battery voltage, current, 

temperature, state of charge, state of health, and physical condition. Data transmits to a dashboard using the cloud simultaneously 

plus processes on the device locally to respond promptly for remote visualization. Historical battery data is used in order to train 

machine learning models including Autoencoders, Random Forest classifiers, as well as Long Short-Term Memory (LSTM) 

networks. These models are fine tuned to identify abnormal behavior and predict the deterioration. This allows for predictive 

maintenance. Layered AI is considered as it is a fusion of time series analysis and classification methods, which can lead to 

enhanced fault prediction. Furthermore, incorporating certain edge computing capabilities means that the solution can take its 

own independent safety measures in urgent situations instead of relying on cloud infrastructure. This work presents prototype that 

work with the Raspberry Pi hardware and custom sensors. It proves the enhanced operational safety, minimize sudden accidents 

and prolong battery life. 

 

IndexTerms - machine learning, edge intelligence, fault detection, predictive maintenance, electric vehicle safety, battery health 

management, and real-time diagnostics 

I. INTRODUCTION 

As fuel prices go up and concerns about the environment grow, electric vehicles (EVs) are gaining popularity. This shift has 

resulted in increased research into other energy sources. Electric vehicles (EVs) are more environmentally friendly and use less 

energy. But there are still big problems, like a short driving range and worries about battery safety, especially when it comes to 

overcharging and deep discharging. Smart battery monitoring systems are necessary to solve these problems. Traditional battery 

management systems (BMS) usually send alerts to users at the dashboard level. However, more recent studies show that integrating 

cloud and IoT technology could improve remote monitoring and alerting systems. 

This study aims to develop a smart battery management system that leverages embedded systems and artificial intelligence to 

overcome the limitations of traditional BMS. The proposed approach integrates real-time battery parameter tracking with machine 

learning algorithms to identify early signs of failure or degradation. AI models, including random forest and recurrent neural 

networks, have shown effectiveness in predicting battery aging, estimating state of health (SOH), and preventing fire hazards. 

When a critical issue is detected, instant notifications can be delivered to both the user and the manufacturer via IoT-enabled 

platforms, enabling proactive safety responses. 

II. RELATED WORK 

For building a strong base for this paper, an extensive review of recent national and international research on Battery 

Management Systems (BMS) for electric vehicles (EVs) was conducted. The aim was to analyze advancements in AI-based battery 

monitoring and identify existing research gaps. 

Li et al. [1] has studied, developed an advanced Deep Learning and CAN2 based cloud-connected BMS. 0b real-time data 

transmission and precise SOC estimation by multilayer perceptron models. Haripriya [2] develop algorithm for battery aging 

prediction via deep learning, augment better driving range estimation and better battery lifetime. Kumar [3] studied BMS 

optimization based on digital twin with functional neural network method. 

Ardeshiri et al. [4] reviewed ML applications in BMS for state estimation and RUL prediction, with the significance of the 

contribution of smart algorithms towards enhancing diagnostic accuracy. Zheng [5] stressed thermal monitoring to combat thermal 

runaway-related issues.   
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So, Khawaja et al. [6] tried out, like, six different machine learning models to figure out SOC and SOH—random forest kinda 

stole the show in terms of accuracy. Meanwhile, Konkimalla [7] jumped into the world of AI-driven predictive maintenance, 

messing around with Weibull regression to predict failures Then there’s Hsu [8], who pointed out that EV charging really needs 

some proper PHM. 

Wahab et al. [9] built an IoT-enabled BMS for real-time diagnostics and remote monitoring. This system helps with predictive 

maintenance. Doan [10] used deep reinforcement learning to manage retired EV batteries in energy storage systems. 

Sultan et al. [11] merged active cell balancing with AI-driven RUL prediction, achieving high accuracy using k-NN and random 

forest models. Lipu [12] analysed 78 papers on AI in BMS, classifying applications under groups including SOC estimation, fault 

diagnostics, and energy optimization using deep learning methods. 

Kosuru et al. [13] improved a deep learning-based error detection method using an IB-DRN model to detect sensor errors and 

cyber security threats. Muhendis [14] discovers nervous systems, hereditary algorithms, and encourages the study of AI-based 

BMS, recognising the advantages of performance inwards alongside the challenges. 

Geetha Lakshmi et al. [15] developed an innovative AI-driven diagnostic system for electric vehicle batteries. This system 

leverages machine learning to accurately forecast battery issues and assess their state of health using real-time sensor data. This 

advancement not only enhances precision but also facilitates effective predictive maintenance. 

III. METHODOLOGY 

AI-Powered Fault Management, Preprocessing, and Real-Time Data Collection: Multiple sensors are integrated into the 

proposed Smart AI-Driven Battery Management System (BMS) to continuously monitor important battery parameters like voltage, 

current, temperature, fire risk, and structural integrity. As the edge processor, a Raspberry Pi handles anomaly detection, 

normalization, and noise filtering. Normal, Alert, and Critical are the three categories into which the system divides battery 

conditions. 

IoT-Enabled Cloud Integration: MQTT/HTTP protocols are used to send pre-processed data to a cloud platform for long-term 

storage and real-time monitoring. By examining past patterns, this makes remote diagnostics possible and makes predictive 

maintenance easier as shown in Figure 1. 

Hybrid AI Model Architecture: A hybrid AI framework integrates the following:  

 Real-time anomaly detection using machine learning models (Autoencoders, Random Forest). 

 Recurrent neural networks based on LSTM for forecasting faults and modelling patterns of battery degradation. 

 K-fold cross-validation is used during model training to maximize generalization and performance. 

On-Device Inference and Decision Making: To carry out edge inference, the trained models are installed on the Raspberry Pi. 

While critical failures require prompt safety responses, detected faults set off automated alerts via SMS, email, or app notifications. 

For service-side action, every event is recorded in the cloud. 

Predictive and Proactive Battery Management: The system increases battery safety, extends service life, decreases downtime, and 

boosts the operational reliability of electric vehicles by combining real-time fault detection with long-term predictive analytics as 

shown in Figure 2. 

 
            Figure 1. Hardware Block Diagram                                                             Figure 2. Software Block Diagram 

 

 

IV. IMPLEMENTATION 

 The system is implemented into two main components are hardware and software. Each one of the components plays a crucial 

role in ensuring the overall functionality and performance of this project. The hardware part focuses on the physical components 

and their configuration, on the other side the software section details the logic, algorithms, and interfaces used to control and 

operate the system. 

 

4.1  System Implementation 

The final Schematic circuit diagram of the project was developed in PROTEUS Software circuit design and the diagram was 

finalized for PCB layout. The circuit diagram illustrated consist of the main controller is a Raspberry Pi, which acts as an edge 

computing unit and IoT gateway. The system uses an INA 219 current sensor and voltage sensing circuit to measure battery flow 

and voltage, which are fed into an ADS1115 ADC for high-resolution readings. It also uses a DS18B20 temperature sensor, fire 

sensor, and Force Sensitive Resistor to detect physical deformation or swelling. The system includes a buzzer for local feedback 
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and an LCD display for real-time status data. All components are powered by 3.3V, 5V from the Raspberry Pi for low power 

consumption is as shown in Figure 3. 

 

 

                     Figure 3. Schematic of the proposed system                                         Figure 4. PCB Layout 

 

The PCB layout of the Raspberry Pi GPIO header, ACS712 current sensor, ADS1115 ADC, voltage sensing terminals, fire 

sensor, force sensor, temperature sensor header, buzzer, and LCD connections is designed for easy connectivity and minimal 

interference. To minimize noise and signal loss, the PCB elements are laid out carefully, and the large ground plane helps ensure 

electrical stability by reducing electromagnetic interference. The arrangement efficiently manages power and signals, while the 

silkscreen labels make it easier to assemble and identify the components. You can see the layout in Figure 4.         

 

4.2 Implemented Model 

Its implementation has two halves. One is the mechanical system for applying the load and other is data acquisition system. 

Here the hardware set up works as the data acquisition system So the data are acquired manually from the data acquisition system 

by applying different load types and by inducing the different type anomalies to get the various types of data around 10, 000 data 

has been acquired manually to train the model for the better accuracy.  

mechanical system consists of wheel and along with the display which consists of the how much speed the wheel is turning in terms 

of RPM and there is a switch provided by the mechanical system to turn on and off, and there is one more plug which can be used 

to connect to the battery box as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 5. Mechanical System                                           Figure 6. The battery Box 

 

Here the battery is designed as per the load, So the lithium ion battery of capacity 2700 Mah with output power 3.7 Volt and the 

dimension is 18650, And the battery in terms connected to the main circuit where the Raspberry Pi model acts as a main controller 

with the other sensors being added to it. Here we are mainly using the to supply one for the Raspberry Pi and another will be to turn 

on the LCD screen because these two operate at different voltages as shown in Figure 6.  

V. RESULTS AND DISCUSSIONS  

This chapter presents a comprehensive analysis of the Smart Battery Monitoring System, covering dataset insights, anomaly 

detection, model performance, and test validations. The evaluation integrates exploratory data analysis (EDA), supervised 

learning results, and validation through induced fault scenarios. Figures generated from the dataset and test cases provide visual 

support to the discussion. 
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5.1 Dataset and Correlation Matrix 

The dataset consists of 42,000 time-series samples with 12 features, including key sensor readings such as battery voltage, 

current, power, temperature, and FSR voltage (a proxy for mechanical bulging). The dataset spans ~23.3 hours at a 2-second 

median sampling interval. States are categorized as NORMAL (80%), ALERT (15%), and CRITICAL (5%). Anomalies such as 

battery_low, bulging_high_fsr, current_high, fire_detected, and temperature_high occur only in ALERT or CRITICAL states as 

shown in Figure 7. 

 

 
                             Figure 7. Class Distribution                                                      Figure 8. Correlation matrix of all parameter 

 

Histograms from Figure 8, revealed bimodal distributions in battery_voltage_V and temperature_C, indicating distinct operating 

regimes. Correlation analysis showed a strong linear relationship between current_A and power_W (P=VI). Other features 

exhibited weak linear correlations, highlighting the suitability of non-linear models such as Random Forests. Boxplots confirmed 

intuitive associations: elevated temperature_C for temperature_high anomalies, and high fsr_voltage_V for bulging_high_fsr 

anomalies. 

 

5.2 Model A: Battery State Classification and Model B: Anomaly Type Classification 

A Random Forest Classifier was trained to categorize states into NORMAL, ALERT, and CRITICAL. The model achieved 

perfect accuracy (1.00) with flawless classification across all test samples. The most important features were temperature_C, 

battery_voltage_V, and power_W as shown in Figure 8. 

 

 

 
 

   Figure 9: Battery State Classification                                     Figure 10. Anomaly Classification 

 

 

The anomaly type classifier was trained on subsets where anomalies were present. It distinguished battery_low, bulging_high_fsr, 

current_high, fire_detected, and temperature_high with perfect performance (accuracy = 1.00). Feature importance analysis 

confirmed flame_detected, fsr_voltage_V, and battery_voltage_V as the primary indicators for their respective anomalies is as 

shown in Figure 9. 

 

 

 

5.3 Model Validation under Severe Faults 

A simulated severe fault scenario was tested (low voltage, high current, high temperature, and flame presence). The model 

correctly predicted CRITICAL state and fire detected anomaly with 100% confidence. This validates the model’s deployment 

readiness as shown in Figure 10. 
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                Table 1. Comparison of class with metrices  

 

                            Figure 11. Model Validation 

 

In addition to continuous dataset evaluation, controlled test cases were executed to validate anomaly detection. Since real-time 

catastrophic faults are rare, anomalies were deliberately induced: disconnecting the battery (battery_low), pressing the battery to 

trigger FSR (bulging_high_fsr), applying overload (current_high), exposing to flame (fire_detected), and raising temperature 

(temperature_high). Classification Report (Table 1). 

VI. CONCLUSION AND FUTURE SCOPE 

The developed system for electric vehicle battery management combines embedded technology with real-time monitoring and 

predictive analysis using a hybrid model of machine learning and deep learning. It uses integrated wireless sensor networks, cloud 

connectivity, and intelligent decision-making capabilities. The system offers continuous monitoring of temperature, voltage, and 

current, predictive maintenance, and instant mobile notifications for users and manufacturers. The system detects abnormal 

conditions like overheating, fire, and battery bulging with high accuracy, and forecasts battery degradation trends. Cloud 

integration allows remote access to data and enhances long-term performance and safety risk analysis. This comprehensive 

integration improves battery safety, reliability, and lifespan, contributing to sustainable and intelligent mobility solutions. 

The proposed smart battery monitoring system can be integrated into a System-on-Chip (SoC) design, reducing complexity and 

improving efficiency. The algorithm can be mapped to a VLSI-based implementation using System Verilog, enhancing real-time 

data acquisition, parameter monitoring, and decision-making functions for electric vehicles. 
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