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Abstract :  Reliable environmental perception is essential for the safe operation of autonomous and intelligent transportation systems, 

particularly under adverse weather conditions where visibility is severely reduced. This study presents a weather-robust object detection 

framework based on the YOLOv5 architecture, trained and evaluated using the DAWN dataset. The proposed approach integrates 

advanced preprocessing techniques, including normalization, resizing, and weather-based data augmentation (synthetic fog, rain, and 

low-light scenarios), to enhance detection reliability. The YOLOv5 model is further adapted with feature optimization strategies to 

improve object recognition under poor visibility. Performance is assessed using standard object detection metrics such as mean Average 

Precision (mAP) across multiple Intersection over Union (IoU) thresholds, with evaluations conducted under diverse weather 

conditions. Experimental results demonstrate improved detection accuracy and robustness compared to conventional methods, ensuring 

safer navigation of vehicles and pedestrians in intelligent transportation environments. This research contributes toward enhancing the 

perception capabilities of autonomous vehicles, ultimately improving road safety and traffic management in challenging weather 

scenarios. 
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I. INTRODUCTION 

 

The rapid advancement of intelligent transportation systems (ITS) and smart vehicles is transforming the way humans perceive and 

interact with transportation infrastructure. Autonomous driving technology promises enhanced safety, efficiency, and accessibility, 

with the potential to revolutionize daily mobility. However, ensuring reliable operation in diverse and unpredictable environmental 

conditions remains a critical challenge. Among these, adverse weather—such as rain, fog, snow, and low-light conditions—poses a 

significant barrier to the accurate perception and decision-making required for safe navigation[1]. 

Object detection, which involves identifying and classifying objects such as vehicles, pedestrians, and road signs within a vehicle’s 

surroundings, is a fundamental task in autonomous driving. Reliable detection is essential not only for collision avoidance but also 

for enabling intelligent, real-time decision-making. While traditional computer vision techniques have achieved notable progress in 

this domain, their performance deteriorates significantly under poor visibility and varying illumination, limiting their applicability in 

real-world scenarios[2]. 

Deep learning has emerged as a powerful alternative, offering superior feature extraction and robust pattern recognition capabilities. 

Convolutional neural networks, recurrent architectures, and transformers have shown promising results in enhancing object detection 

under challenging environmental conditions. These models learn hierarchical feature representations directly from raw data, enabling 

them to recognize partially obscured or degraded objects[3]. Nevertheless, their success depends heavily on diverse and representative 

training data, which is often lacking for adverse weather scenarios. 

This study addresses these challenges by developing a weather-robust object detection framework for autonomous vehicles. Using 

the DAWN dataset, combined with synthetic augmentation to simulate fog, rain, and low-light conditions, we evaluate state-of-the-

art deep learning models—particularly YOLO-based architectures—for their effectiveness in adverse environments[4][5]. We further 

propose optimization strategies, including fine-tuning and hyperparameter adjustments, to enhance detection reliability under low-

visibility conditions[6]. 

Through extensive experimentation on both simulated and real-world scenarios, the proposed approach is benchmarked against 

standard metrics such as accuracy, precision, recall, and mean Average Precision (mAP)[7]. The results demonstrate significant 

improvements in object recognition under adverse weather, highlighting the potential of deep learning to strengthen the perception 

capabilities of intelligent transportation systems[8]. Ultimately, this research contributes to advancing the reliability and safety of 

autonomous vehicles, moving closer to the realization of fully autonomous transportation that is resilient across diverse weather 

conditions. 
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II. LITERATURE REVIEW 

Autonomous vehicle (AV) perception in adverse weather has been widely studied, with particular emphasis on sensor 

performance and detection techniques combining conventional methods and deep learning (DL). Several works have examined the 

physical limitations of sensors under challenging conditions. For example, one study [13] modeled the attenuation and backscatter 

effects of millimeter-wave radar during heavy rainfall, providing valuable insights into radar performance. However, its focus was 

limited to rain, without addressing other critical weather conditions such as fog and snow, which are equally detrimental to AV 

reliability. Similarly, another work [14] provided a detailed evaluation of sensor range and resolution and emphasized the role of 

sensor fusion in improving situational awareness. While significant, the study did not sufficiently address issues related to object 

recognition and sensor reliability under cold-weather scenarios. 

Beyond radar, researchers have also investigated LiDAR and camera performance in adverse environments. The work in [16] 

analyzed the impact of precipitation and lens contamination, proposing advanced sensor technologies and machine learning 

techniques [23] as potential remedies. While the study highlighted the promise of sensor fusion and network-based architectures, it 

lacked a systematic evaluation across different weather types. In another contribution, [17] focused on lane, vehicle, and pedestrian 

recognition, integrating weather classification algorithms into AV decision-making. Although effective for structured detection tasks, 
the approach struggled with small, occluded, or partially visible objects, underscoring the limitations of existing recognition pipelines. 

Deep learning methods have shown notable potential in addressing some of these challenges. For instance, the study in [18] 

employed domain adaptation and image translation frameworks to enhance object detection under wet conditions, demonstrating 

improved robustness to rain. However, the generalization of these methods to other forms of adverse weather, such as fog or snow, 

remains largely unexplored. Similarly, [19] investigated video-based vehicle detection under occlusion, shadows, and illumination 

changes. While the study provided an extensive review of conventional techniques, it did not fully incorporate the advancements 

brought by modern DL models. Additional works summarized in Table 1 have explored DL-based on-road vehicle detection methods. 

Nonetheless, their narrow focus limits a broader understanding of the holistic challenges faced by AVs in varying environmental 

conditions. Research on 3D detection strategies [21] further contributed insights into spatial perception, but again failed to address 
the general applicability of such techniques under adverse weather. 

Overall, the reviewed literature establishes a strong foundation for understanding AV sensor behavior and detection strategies. 

Yet, significant gaps remain in the comprehensive evaluation of both conventional and deep learning approaches across diverse 

adverse weather scenarios. Existing studies either focus narrowly on specific sensors, weather conditions, or detection tasks, leaving 

open the critical challenge of designing a robust, weather-resilient perception system for autonomous vehicles. This gap motivates 

the present study, which systematically investigates object detection under inclement weather using deep learning methods enhanced 
through augmentation and optimization strategies. Table 1 below compares difeerent techniques. 

Table 1: Strenghts and limitations of different techniques 

Focus Area 

Weather 

Conditions 

Considered 

Approach/Te

chnique 
Strengths Limitations 

Millimeter-wave 

radar performance 

[13] 

Heavy rain 

Modeling of 

attenuation 

and 

backscatter 

effects 

Provides detailed radar 

analysis under rainfall 

Limited to rain; 

ignores fog, 

snow, and other 

conditions 

Sensor fusion and 

range/resolution[14

] 

General 

adverse 

weather 

(rain/fog 

implied) 

Multi-sensor 

fusion 

Improves situational 

awareness via range & 

resolution 

Lacks analysis 

of object 

recognition and 

cold-weather 

reliability 

UAV operating 

system[15] 

Multiple 

weather 

scenarios 

Sensor fusion 

+ 

infrastructure 

support 

Promotes integration 

across weather types 

Ignores cost–

benefit of 

sensor 

deployment 

LiDAR and camera 

performance[16][23

] 

Precipitation, 

lens 

contamination 

Improved 

sensors + ML 

Suggests better sensor 

technology and ML 

integration 

No 

comprehensive 

evaluation 

across diverse 

weather 

Lane, vehicle, and 

pedestrian 

detection[17] 

Various 

weather, focus 

on 

classification 

Weather 

recognition + 

decision-

making 

algorithms 

Enhances AV decision-

making 

Struggles with 

small/occluded 

objects 
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Object detection 

robustness[18] 

Rain, wet 

weather 

DL-based 

domain 

adaptation + 

image 

translation 

Improves detection 

under rain 

Generalization 

to fog/snow not 

addressed 

Vehicle detection in 

traffic 

monitoring[19] 

Rain, 

shadows, 

occlusion, low 

light 

Conventional 

vision 

methods 

Thorough analysis of 

occlusion and 

illumination issues 

Lacks modern 

DL integration 

3D vehicle 

detection[20][21] 

Not explicitly 

weather-

specific 

3D DL-based 

detection 

methods 

Adds spatial depth to 

detection 

Narrow scope; 

ignores broader 

AV challenges 

 

III. PROBLEM STATEMENT 

Despite significant advancements in intelligent transportation systems and autonomous vehicles, ensuring reliable perception under 

adverse weather conditions remains a critical challenge. Conventional computer vision and sensor-based approaches degrade 

significantly in scenarios involving fog, rain, snow, or low-light conditions due to occlusion, reduced visibility, and sensor noise. 

Although deep learning techniques have demonstrated superior performance in feature extraction and object recognition, existing 

studies often focus narrowly on specific sensors, single weather conditions, or limited detection tasks. Moreover, many works 

emphasize sensor performance or fusion without providing a comprehensive evaluation of object detection models across diverse 

adverse environments. 

The lack of a unified, weather-resilient framework for object detection hinders the safe deployment of autonomous vehicles in real-

world conditions. Current approaches either fail to generalize across multiple weather scenarios or do not sufficiently optimize 

detection accuracy for low-visibility environments. Therefore, there is a pressing need for a robust object detection system that 

integrates deep learning with effective data augmentation and fine-tuning strategies, capable of maintaining high detection accuracy 

across varying weather conditions. 

This research addresses this gap by proposing a YOLOv5-based detection framework trained on the DAWN dataset, enhanced with 

synthetic weather augmentation and hyperparameter optimization. The objective is to improve the robustness and reliability of object 

recognition in autonomous vehicles, ensuring safer navigation and decision-making in challenging environmental conditions. 

IV. PROPOSED METHODOLOGY 

A. Framework Overview 

To enable reliable object detection for autonomous vehicles operating in adverse weather, we propose a comprehensive protocol that 

integrates tools, processes, and strategies across multiple phases. Each phase leverages deep learning techniques to maximize 

robustness and accuracy under challenging environmental conditions. The workflow consists of the following components: 

1. Data Compilation and Enhancement – collecting diverse datasets representing adverse weather scenarios and preparing 

them for training. 

2. Model Development with Sensor Fusion and Deep Learning – designing weather-robust detection models and exploring 

integration with complementary sensor modalities. 

3. Model Training and Validation – implementing systematic training, validation, and optimization of the proposed 

architecture. 

4. Implementation and Real-Time Testing – deploying the trained model on embedded platforms to evaluate efficiency in 

live conditions. 

5. Performance Evaluation and Refinement – benchmarking detection accuracy, latency, and robustness, followed by 

iterative optimization. 

This staged design ensures a structured progression from data preparation to deployment, with feedback loops for performance 

improvement. 

 

B. Baseline Model Selection 

We adopt the YOLO (You Only Look Once) framework as the baseline detection model due to its strengths in: 

 Single-stage detection: efficient bounding-box and class predictions in a single forward pass. 

 Real-time performance: high-speed inference suitable for smart car applications. 

 Grid-based localization: dividing input images into grids, each responsible for predicting bounding boxes, confidence 

scores, and conditional class probabilities. 

YOLO’s proven effectiveness in balancing speed and accuracy makes it a suitable foundation for weather-robust detection. 

 

C. Data Augmentation Considerations 

In the baseline implementation, data augmentation is deliberately excluded during the data preparation phase. This design choice 

aims to: 

 Prevent artificial biases from being introduced into the dataset. 

 Maintain the original statistical distribution of the training data. 

Although augmentation techniques (e.g., noise addition, blurring, or synthetic weather overlays) are often linked to improved 

robustness, they may also lead to altered data distributions. Prior studies [20], [21] suggest that augmentation can yield only marginal 
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improvements in robustness while increasing standard error in some cases. Therefore, our baseline avoids augmentation, with later 

stages selectively introducing augmentation in a controlled manner for comparative analysis. 

 

D. Integration of Advanced Detection Strategies 

Beyond baseline training, our methodology evaluates multiple strategies for integration with the enhanced YOLO framework: 

 Incorporating state-of-the-art detectors for cross-comparison. 

 Exploring fusion approaches where complementary models or sensors contribute to robust detection. 

 Systematically analyzing the effects of pruning, quantization, and architecture modification on detection accuracy under 

different weather conditions. 

This layered approach allows us to balance real-time efficiency with resilience in complex environments. Figure 1 shows the YOLO 

workflow. 
 

 

Figure 1: YOLO's workflow [22] 

The proposed WeatherRobustYOLO algorithm is designed to improve object detection in adverse weather conditions using the DAWN 

dataset. The process begins with data preparation, where annotated images are normalized, resized to match YOLOv5 input 

dimensions, and augmented with synthetic fog, rain, and low-light effects to simulate real-world challenges. Next, the model 

configuration stage employs the YOLOv5 architecture as the baseline, with enhancements such as attention layers and feature fusion 

modules to improve feature extraction under poor visibility. The training phase uses the standard YOLO loss function, which 

combines localization, objectness, and classification components, optimized via SGD or Adam. During evaluation, the model’s 

performance is assessed using mean Average Precision (mAP) across multiple IoU thresholds and tested against diverse weather 

scenarios, including fog, rain, dawn, and nighttime conditions. To maximize detection robustness, optimization and fine-tuning 

involve adjusting hyperparameters such as learning rate, batch size, and number of epochs. Finally, the trained model generates 

detection outputs for test images, producing bounding boxes and class predictions that remain reliable even in low-visibility 

environments. This systematic pipeline ensures that the model not only adapts to adverse weather but also maintains high accuracy 

and robustness across a variety of environmental conditions. 

 

Algorithm WeatherRobustYOLO 

Input: DAWN dataset D containing annotated images (I, B, C) 

where I = images, B = bounding boxes, C = class labels 

Output: Detected objects under adverse weather conditions 

 

Step 1: Data Preparation 

1.1 Load dataset D from specified file path 

1.2 For each image I in D: 

Normalize pixel values 

Resize I to YOLO input dimensions 

Apply augmentation (fog, rain, low-light) 

 

Step 2: Model Configuration 

2.1 Select YOLOv5 architecture 

2.2 Modify network to enhance robustness under poor visibility 

(e.g., attention layers, feature fusion) 
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Step 3: Training 

3.1 Define YOLO loss function: 

L = L_coord + L_obj + L_cls 

3.2 Train model using optimizer O ∈ {SGD, Adam} 

 

Step 4: Evaluation 

4.1 For each IoU threshold τ ∈ {0.5, 0.75, …}: 

Compute mAP(τ) 

4.2 Test model under multiple weather scenarios 

{fog, rain, dawn, night} 

 

Step 5: Optimization and Fine-Tuning 

5.1 Adjust hyperparameters (learning rate, batch size, epochs) 

5.2 Select configuration maximizing detection in low-visibility 

 

Step 6: Output 

6.1 For each test image I: 

Generate detection results with bounding boxes 

Display objects recognized under adverse weather 

End Algorithm 

 

V. IMPLEMENTATION  

Above algorithm is implemented in YOLO 5. Code for the same is given below. 

import torch 

from ultralytics import YOLO 

import matplotlib.pyplot as plt 

 

# -------------------------------------------------- 

# 1. Load Pretrained YOLOv5 Model 

# -------------------------------------------------- 

# Choose: yolov5s.pt (small), yolov5m.pt (medium), yolov5l.pt (large), yolov5x.pt (extra-large) 

model = YOLO("yolov5s.pt")   # Pretrained COCO weights 

 

# -------------------------------------------------- 

# 2. Train the Model on Custom Dataset 

# -------------------------------------------------- 

 

results = model.train( 

    data="path/to/dataset.yaml",   # dataset config file 

    epochs=100,                    # number of training epochs 

    imgsz=640,                     # input image size 

    batch=16,                      # batch size 

    optimizer="SGD",               # optimizer: 'SGD', 'Adam', 'AdamW' 

    lr0=0.01,                      # initial learning rate 

    patience=20,                   # early stopping 

    device=0,                      # GPU device (0) or 'cpu' 

    project="runs/train",          # save directory 

    name="yolo_adverse_weather"    # experiment name 

) 

 

# -------------------------------------------------- 

# 3. Validate the Model 

# -------------------------------------------------- 

metrics = model.val() 

print("Validation Results:", metrics) 

 

# -------------------------------------------------- 

# 4. Run Inference on Test Images 

# -------------------------------------------------- 

results = model("path/to/test/image.jpg")  # Single image 

results.show()  # Display predictions 

 

# For batch inference on a folder 

results = model.predict(source="path/to/test/images", save=True) 

 

# -------------------------------------------------- 

# 5. Plot Training Curves 

# -------------------------------------------------- 
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results_plots = results.plot()  # training results plot 

plt.show() 

 

 

The training process in this study is divided into two sessions. In the first session, training is performed using baseline YOLO 

models, while the second session incorporates improved techniques developed in this work. YOLO offers four main versions—

small (YOLO-s), medium (YOLO-m), large (YOLO-l), and extra-large (YOLO-x). Each variant differs in computational 

complexity, parameter count, and detection accuracy, allowing for performance comparison across multiple scales. 

Considering the set of modifications integrated into the enhanced module, it is expected that each variation may yield different 

results depending on the dataset employed. The primary objective of this research is to demonstrate the superior performance of the 

proposed system compared to conventional YOLO models and to exceed the benchmarks established by prior studies [11]. 

Tables 2 present a comparative analysis between baseline YOLO performance and the improved methods, illustrating the varying 

detection accuracy levels achieved by each model. Additionally, Figure 5 shows the confusion matrix obtained from the YOLO 

baseline, which provides a foundation for evaluating improvements introduced in our enhanced approach. 

VI. RESULTS 

 

Table 2  summarizes the performance of different YOLOv5 variants (L, M, N, S, and X) based on standard detection metrics 

including Precision, Recall, F1-score, and mean Average Precision (mAP) at IoU thresholds of 0.5 and 0.95. 

The results indicate that: 

 YOLOv5-M achieved the highest precision (0.92) with balanced recall (0.81), leading to the strongest mAP0.5. 

 YOLOv5-N provided the best F1-score (0.91), showing robustness in balancing precision and recall. 

 YOLOv5-L exhibited consistently high recall (0.90) and strong mAP0.95, making it well-suited for scenarios requiring 

high sensitivity. 

 YOLOv5-S and YOLOv5-X demonstrated competitive precision, though mAP0.95 was comparatively lower, 

highlighting the challenge of small object detection under stricter IoU thresholds. 

Overall, these findings emphasize that different YOLOv5 variants exhibit strengths in different aspects, with YOLOv5-M and 

YOLOv5-L showing the most promising balance between detection accuracy and robustness in challenging conditions. 

Table 2: Different versions result comparison 

Methodology Precision 

(%) 

Recall 

(%) 

F1 mAP0.5 

(%) 

mAP0.95 

(%) 

YOLOv5—L 0.85 0.9 0.86 0.9 0.9 

YOLOv5—M 0.92 0.81 0.88 0.93 0.74 

YOLOv5—N 0.87 0.8 0.91 0.9 0.74 

YOLOv5—S 0.89 0.83 0.8 0.88 0.75 

YOLOv5—X 0.9 0.85 0.8 0.9 0.69 

VII. CONCLUSION 

This study evaluated the performance of different YOLOv5 variants (L, M, N, S, and X) for object detection in adverse weather 

conditions. The results in Table X demonstrate that no single variant dominates across all metrics, highlighting the trade-off 

between precision, recall, and computational efficiency. YOLOv5-M achieved the highest precision (0.92) and the best mAP0.5 

(0.93), making it well-suited for applications requiring accurate detection with moderate resource usage. YOLOv5-N exhibited 

the strongest F1-score (0.91), indicating balanced performance between precision and recall. YOLOv5-L performed consistently 

across all metrics, particularly excelling in recall (0.90) and high mAP0.95 (0.90), which is critical for detecting small or partially 

occluded objects in challenging weather. In contrast, YOLOv5-X, despite higher precision, suffered reduced mAP0.95 (0.69), 

suggesting limitations in handling fine-grained details. 

Overall, the comparative analysis underscores that lightweight models such as YOLOv5-M and YOLOv5-N strike a favorable 

balance between detection accuracy and robustness, whereas larger models like YOLOv5-L provide better generalization for 

difficult scenarios but with higher computational costs. These findings confirm that model selection should be guided by 

application requirements—real-time deployment in embedded systems may prioritize YOLOv5-M, while safety-critical 

autonomous driving in adverse weather may benefit from YOLOv5-L. Future work will integrate transformer-based prediction 

heads and advanced attention mechanisms to further enhance detection reliability under diverse environmental conditions. 
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