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ABSTRACT 

 

Doctors require assistance with retrieving medical images in order to make accurate diagnosis, and reliability and speed are essential 

requirements. This work proposes a hybrid K-Nearest Neighbor (KNN) and Dyadic Gabor Wavelet Filter Bank (DGWFB) architecture 

to develop a power-efficient medical image retrieval system. DGWFB gathers texture and edge information at various resolutions, 

whereas Hybrid KNN increases classification accuracy using adaptive similarity metrics. The architecture is designed for VLSI 

implementation since portable medical equipment must have low power, scalability, and real -time performance. Results from 

simulations confirm that the solution achieves a decent balance between retrieval accuracy, speed, and hardware efficiency. The 

proposed method thus offers a reliable and energy-efficient solution for future applications involving the retrieval of medical images.  
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1. INTRODUCTION  

 

Medical imaging has become one of the most essential tools in modern healthcare, enabling early detection, accurate diagnosis , 

and effective treatment planning. With the rapid growth of digital imaging modalities such as MRI, CT, and X-ray, the volume of 

medical image data has increased significantly. This growing database of medical images creates a strong demand for efficient  image 

retrieval systems that can quickly and accurately provide relevant images to assist clinicians. Traditional image retrieval methods often 

suffer from high computational complexity, limited accuracy, and excessive power consumption, making them unsuitable for portable 

or low-power medical devices. To address these challenges, researchers have focused on feature extraction techniques and efficient 

classification algorithms that can be implemented in hardware-friendly architectures. 
 

In this project, we propose a Hybrid K-Nearest Neighbor (KNN) and Dyadic Gabor Wavelet Filter Bank (DGWFB) architecture 

for a power-efficient VLSI-based medical image retrieval system. The Dyadic Gabor Wavelet Filter Bank is utilized to extract multi -

resolution texture and edge features, which are highly effective in characterizing medical image patterns. The extracted features are then 

classified using a Hybrid KNN algorithm, which integrates adaptive weighting with distance-based similarity to achieve improved 

accuracy while reducing computational overhead. The proposed architecture is optimized for VLSI implementation, ensuring low power 

consumption, scalability, and high-speed operation. Such a design is particularly suitable for portable, battery-powered, and real-time 

medical applications, where both accuracy and hardware efficiency are crucial. The simulation results validate the effectiveness of the 

proposed approach, demonstrating a favorable balance between retrieval accuracy, processing speed, and energy efficiency. Thus, the 

integration of DGWFB with Hybrid KNN establishes a reliable and energy-aware solution for next-generation medical image retrieval 

systems, bridging the gap between advanced algorithms and practical hardware realization.  

 

The key contributions of this work are: 

A DGWFB-based feature extraction framework optimized for multi-resolution texture analysis. 

A Hybrid KNN classifier with distance-weighted voting for improved retrieval accuracy. 

A low-power FPGA-based VLSI design demonstrating superior performance over existing CBIR approaches. 
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2. LITERATURE SURVEY 

 

Medical image retrieval has been a big topic in research because it helps doctors make better diagnoses and plan treatments. But 

traditional methods for retrieving images take a lot of computer power and aren't good for small, portable medical devices. Gabor filters 

are commonly used to find texture features in images. However, the usual Gabor filter systems need a lot of complex math operations, 

which makes them expensive and uses a lot of power. To fix this, Dyadic Gabor Wavelet Filter Banks (DGWFB) were created. These 

systems use simpler shift-and-add operations instead of complex math, making them more energy-efficient while still capturing 

important visual details like direction and levels of detail. For classification, K-Nearest Neighbor (KNN) is widely used in medical 

image analysis because it's simple and works well. But its success depends a lot on the type of similarity measure used. Rese archers 

have made improvements by adding cosine similarity, adaptive distance measures, and ways to give more weight to certain features. 

These changes are called Hybrid KNN because they mix different similarity measures or adjust features to improve accuracy whi le 

balancing how well it finds the right matches. Unlike regular KNN, which only uses straight-line distance, Hybrid KNN can adjust based 

on how the features are spread out. This makes it better at handling similar-looking images (like different kinds of brain tumors) and 

variations within the same type (like tumors of different sizes). This adaptability improves the system's ability to find the right matches 

consistently. When it comes to hardware, recent work has focused on using FPGA and VLSI for implementing image retrieval systems. 

These systems offer fast performance and low power use, which are important for devices that are easy to carry. While DGWFB helps 

with efficient feature extraction and Hybrid KNN improves classification, putting them together on a VLSI platform hasn't been done 

much. This gap is what the new design aims to fill by combining DGWFB with Hybrid KNN for a low-power, fast image retrieval 

system. 

 

3. METHODOLOGY 

 

The proposed image retrieval system uses Dyadic Gabor Wavelet Filter Banks (DGWFB) for extracting features from medical images 

and a Hybrid KNN classifier to improve retrieval accuracy. It is designed for use in VLSI systems, making it energy-efficient, fast, and 

scalable. Unlike other systems that only focus on making the algorithm accurate, this system also considers how well it can w ork with 

hardware, allowing it to be used in both computer simulations and actual hardware setups. The key innovation is combining a filter bank 

that can look at images at different scales and directions with a classifier that uses different similarity measur es. This helps achieve a 

good balance between accuracy, speed, and power use. The system has four main parts: Preprocessing, DGWFB Feature Extraction, 

Feature Vector Construction, and Hybrid KNN Classification. Each part contributes to getting accurate results while keeping power 

use low. The overall process of the system is shown in Figure 1. 

 

 

 

Fig 1: Flowchart of Medical Image Retrieval Workflow 
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3.1 Preprocessing 

 

First, medical images are preprocessed in MATLAB by being resized to 512 × 512 pixels with a fixed resolution, then being converted 

to grayscale and normalized to 8-bit grayscale intensity levels. The preprocessed images are exported as.mem files, which are directly 

compatible with Verilog testbenches, to close the gap between MATLAB simulations and hardware implementation. 1. This guarantees 

a smooth transition between low-level hardware verification and high-level algorithm development. 

Mathematically, given an input image 𝑰(𝒙, 𝒚), the normalized intensity 𝑰𝒏(𝒙, 𝒚) is: 

 

𝑰𝒏(𝒙, 𝒚) = 𝒓𝒐𝒖𝒏𝒅(𝟐𝟓𝟓 ⋅
𝑰(𝒙, 𝒚) −𝒎𝒊𝒏⁡(𝑰)

𝒎𝒂𝒙⁡(𝑰) − ⁡𝒎𝒊𝒏⁡(𝑰)
) 

 

where 𝑰(𝒙, 𝒚)⁡is the original pixel intensity, and 𝒎𝒂𝒙(𝑰) ,𝒎𝒊𝒏⁡(𝑰)⁡denote the maximum and minimum values in the image 
 

3.2 Feature Extraction using DGWFB 

 

Orientation and scale-selective features are extracted using the Verilog implementation of the DGWFB module. 1. DGWFB uses dyadic 

coefficients instead of multiplications, which minimizes power dissipation and hardware area. This is in contrast to conventional Gabor 

filters. The implementation of 4- and 6-orientation filters was done. In parallel processing, each filter bank creates multi -resolution 

feature maps from the image. Afterwards, the outputs are reconstructed into images for verification after being saved in .mem files. 

Details about edge, texture, and orientation are provided in this stage, which is essential for identifying patterns in medical images. 

The 2D convolution output is defined as: 

 

𝑮(𝒖,𝒗) = ⁡∑ ∑𝑰(𝒖+ 𝒊, 𝒗 + 𝒋). 𝒉(𝒊, 𝒋)

𝑵−𝟏

𝒋=𝟎

𝑴−𝟏

𝒊=𝟎

 

 

where I is the input image window, and 𝒉(𝒊, 𝒋) are DGWFB filter coefficients. In the dyadic implementation, each coefficient is 

represented as a power of two: 

 

𝐡(𝐢, 𝐣) ≈ ⁡∑ 𝐬𝐤 ⁡. 𝟐
𝐤⁡, 𝐬𝐤 ∈ {−𝟏,𝟎, 𝟏}

𝐊

𝐤=𝟎

 

 

This allows multiplication to be implemented as a sequence of bit-shifts and additions, eliminating the need for hardware multipliers. 

Both 4-orientation and 6-orientation filter banks were implemented, enabling the system to capture texture variations in multiple 

directions. 

 

3.3 Feature Vector Construction 

 

The convolution outputs from DGWFB are post-processed in MATLAB to construct a compact feature vector. For each filtered image, 

Histogram of Oriented Gradients (HOG) and statistical descriptors (mean, standard deviation, skewness, kurtosis) are extracted. This 

creates a high-dimensional representation of medical images, capturing both local and global structures.  

For each filtered image, statistical and structural descriptors are extracted: 

 

i) First-order statistics: mean(μ), standard deviation(σ), skewness (γ), and kurtosis (κ). 

 

ii) Texture descriptors: Histogram of Oriented Gradients (HOG). 

 
The combined feature vector F for an image is given by: 

 

𝑭 = [𝑯𝑶𝑮𝟏,𝑯𝑶𝑮𝟐, … ,𝑯𝑶𝑮𝒏, 𝝁, 𝝈, 𝜸, 𝜿] 
 

This multi-dimensional representation ensures that both local edge patterns and global intensity features are retained. 
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3.4 Hybrid KNN Classification 

 

The retrieval stage employs Hybrid KNN, an extension of classical KNN that combines Euclidean distance and Cosine similarity 

with adaptive feature weighting. 

 

 Euclidean Distance between query Q and database image D: 

𝒅𝑬(𝑸,𝑫) = √∑(𝑸𝒊 −𝑫𝒊)𝟐
𝒏

𝒊=𝟏

 

 Cosine Similarity: 

𝒅𝒄(𝑸,𝑫) = 𝟏 −
∑ 𝑸𝒊. 𝑫𝒊
𝒏
𝒊=𝟏

√∑ 𝑸𝒊
𝟐𝒏

𝒊=𝟏 . ∑ 𝑫𝒊
𝟐𝒏

𝒊=𝟏

 

 Hybrid Distance Measure: 
 

𝒅𝑯(𝑸,𝑫) = 𝜶⁡. 𝒅𝑬(𝑸,𝑫) + (𝟏 − ⁡𝜶⁡). 𝒅𝑪(𝑸,𝑫) 
 

where 0 ≤ 𝜶 ≤ 1 an adaptive weight chosen based on dataset characteristics. 
 

The k nearest neighbors are selected based on 𝒅𝑯(𝑸,𝑫), and classification is performed by majority voting with weighted scores. This 

improves retrieval accuracy, especially in cases of inter-class similarity (different tumor types looking similar) or intra-class 

variability (same tumor appearing differently across patients).  

 

3.5 Hardware Realization 

 

The DGWFB Verilog modules were synthesized and simulated using Xilinx ISE. The testbench processes all images sequentially and 

writes the filtered outputs to memory files. 

 

 Clock frequency: 100 MHz simulated 

 Filter size: 5 × 5 convolution kernel 

 Image size: 512 × 512 pixels 

 Warm-up cycles: 25 cycles for filter stabilization 

 Board model number : xcku5p-ffvb676-2-e 

 

Pipelined convolution units enable pixel-by-pixel streaming in real time. Clock gating reduces dynamic power by disabling inactive 

modules. The 4-orientation and 6-orientation parallel filter banks work together to optimize throughput. The modular design allows 

scalability to higher orientations or larger datasets, making it suitable for FPGA prototyping and future ASIC integration.  This hardware 

realization ensures low power, reduced latency, and high throughput, making it suitable for real-time embedded medical devices. 

 

3.6 MATLAB–Verilog Integration  

 

The MATLAB–Verilog Integration in the system is as follows. MATLAB generates .mem files of preprocessed images. Verilog 

testbench reads .mem files and processes them through DGWFB. Filtered outputs are saved into .mem files by Verilog. MATLAB 

converts the outputs back to images, extracts features, and performs Hybrid KNN retrieval. Retrieval metrics such as ARP, ARR, F1-

score, Top-10 accuracy, and PSNR are computed.  

 

3.7 MATLAB–Verilog Integration Retrieval Metrics 

 

The retrieval system was evaluated using standard performance metrics:  

 

 Average Retrieval Precision (ARP) 

 Average Retrieval Rate (ARR) 

 F1-score 

 Top-10 Accuracy 

 Peak Signal-to-Noise Ratio (PSNR) between query and retrieved images 
 

These metrics validate both the classification accuracy (Hybrid KNN) and the feature extraction quality (DGWFB). 
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4. DATASET DESCRIPTION 

 

To thoroughly evaluate the proposed Hybrid KNN and DGWFB-based medical image retrieval system, three different datasets were 

employed. This staged evaluation approach allowed us to first validate the algorithm on small, controlled data and later scale it up to 

larger, more clinically relevant datasets.  

 

4.1 NEMA Dataset 

The first dataset used was the NEMA (National Electrical Manufacturers Association) medical imaging dataset  provided in the 

base reference paper [1]. 

 

 Total images: 60 

 Image type: MRI brain scans 

 Preprocessing: Images were resized to 256 × 256 and converted to grayscale before being fed into the DGWFB pipeline.  

 Purpose: This dataset was mainly used to validate the correctness of the DGWFB filter bank implementation and establish 
a baseline retrieval accuracy for small-scale experiments. 

 

4.2 Kaggle Brain MRI Dataset (Tumor vs. No Tumor)  

 

The second dataset was obtained from Kaggle, containing MRI images categorized into tumor and no tumor classes. 

 

 Total images: 60 (balanced across two classes) 

 Classes: Tumor / No Tumor 

 Resolution: Images were resized to 512 × 512 for consistency. 

 Preprocessing: RGB images were converted to grayscale, intensity-normalized, and stored as .mem files for Verilog input.  

 Purpose: This dataset enabled testing the system’s performance on a binary classification problem, focusing on the ability 
to differentiate abnormal (tumor) cases from healthy brain scans. 

 

4.3 MRI Brain Tumor Dataset (Four-Class) 

 

Finally, the proposed architecture was tested on a more comprehensive brain tumor MRI dataset, consisting of four categories: glioma, 

meningioma, pituitary tumor, and no tumor. 

 

 Total images: 1,311 

 Classes: Glioma (300), Meningioma (306), Pituitary (300), No Tumor (405) 

 Resolution: Standardized to 512 × 512 pixels 

 Preprocessing: Grayscale conversion, normalization, .mem file generation 

 Purpose: This dataset served as the final benchmark to evaluate the retrieval system under realistic clinical conditions. The 
diversity of tumor types and the presence of healthy scans allowed measurement of multi-class retrieval accuracy. 

 

4.4 Summary of Datasets 

 

Table 1: Summary of Datasets Used in the Study 

 

Dataset No. of Images Classes Resolution Purpose in Study 

NEMA CT 60 Brain MRI (single class) 256 × 256 Initial validation of DGWFB implementation 

Kaggle MRI 60 Tumor, No Tumor (binary) 512 × 512 Binary classification retrieval testing 

Brain MRI  1,360 Glioma, Meningioma, Pituitary, No Tumor 512 × 512 Final multi-class retrieval evaluation 
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5. EXPERIMENTAL RESULTS 

 

The proposed Hybrid KNN and DGWFB-based medical image retrieval system was validated through a combination of MATLAB-

based retrieval experiments and Verilog RTL simulations synthesized on FPGA. The results are presented under three categories: 

RTL/Hardware Simulation, Retrieval Performance, and Comparative Analysis with Baselines.  

 

5.1 RTL / Hardware Simulation Results 

 

The Verilog modules for the Dyadic Gabor Wavelet Filter Bank (DGWFB) were simulated in Xilinx Vivado to verify correctness 

and hardware feasibility. 

 Waveform verification: As shown in Fig 5 and 6 , the convolution outputs from the 4-orientation and 6-orientation DGWFB 

modules correctly respond to pixel inputs, validating the functionality of the multiplier-less shift-and-add implementation. 

 Resource utilization: 
o LUTs: 1% 

o Flip-Flops: 1% 

o DSPs: 5–8%  

o I/O: 15–21% 

 Power consumption:  

o Static power ≈ 0.450 W 

o Dynamic power ≈ 0.050–0.074 W 

o Total on-chip power ≈ 0.50–0.52 W 

These results confirm that the design is highly power-efficient, consuming less than 1 W, making it suitable for portable medical 

imaging systems. 

 

 

 

                                
 

 

 

Fig 2: RTL Schematic of 4 orientation filter    Fig 3: RTL Schematic of 6 orientation filter  

 

 

 

     
 

 

Fig 4: Simulation results of 4 orientation filter    Fig 5: Simulation results of 6 orientation filter 
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Fig 6 : Power and Utilization analysis of 4 orientation filter 

 

 

Fig 7 : Power and Utilization analysis of 6 orientation filter 

 

5.2 Retrieval Performance 

 

Retrieval experiments were conducted on the NEMA dataset, Kaggle tumor dataset, and Brain MRI dataset (4-class). Performance 

was evaluated using standard metrics: Average Retrieval Precision (ARP), Average Retrieval Rate (ARR), F1-score, PSNR, and 

Top-10 Accuracy. 

 

 Full dataset retrieval (4-class MRI, 13,110 images)           Fig.8a 
o ARP = 0.8163 

o ARR = 0.8163 

o F1-score = 0.8163 

o Top-10 Accuracy = 0.9943 

o Average PSNR = Inf dB 

o Total Retrieval Time = 258.02 seconds 

 

 Single-query retrieval (glioma example):            Fig.8b 

o Precision@10 = 1.0000 

o Recall@10 = 1.0000 

o F1-score = 1.0000 

o Top-10 Accuracy = 1.0000 

o Retrieval Time = 1.84 seconds 

o PSNR (Query vs Top-1) = Inf dB 

 

 External query (custom image)              Fig.8c 
o Retrieval Time = 1.65 seconds 

o PSNR (Query vs Top-1) = 13.46 dB 

o Hybrid Rank of external class = 4 

o APR (hybrid, %) = 25.00 

o ARR (hybrid) = 1 

 

 

 

Fig 8a: Mode 1 Command Window  Results, Fig 8b: Mode 2 Command Window  Results, 

 Fig 8c: Mode 3 Command Window  Results 
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5.2.1 Graphical Analysis of Retrieval Performance 

 

The retrieval results are illustrated using figures to provide visual insight into system performance across different evaluation modes. 

 

Mode 1: Full Dataset Evaluation 

 

The Cumulative Match Characteristic (CMC) curve in Fig.9  illustrates the growth of retrieval accuracy as the rank threshold K increases. 

The proposed method consistently achieves high recognition rates, with Top-10 accuracy exceeding 95%. This demonstrates the 

robustness of our approach in capturing relevant features for medical image retrieval. 

 

Fig 9: Mode 1 CMC Curve 

 

Fig.9 presents the Precision@K, Recall@K, and F1-score variations with increasing K. Precision decreases slightly as K grows, while 

recall improves, showing the expected trade-off. The F1-score curve indicates an optimal balance at intermediate K values, confirming 

that the system achieves both high precision and recall. 

 

Fig 10: Mode 1 Precision@K, Recall@K, and F1-score variations with increasing K 

 

The Precision–Recall curve in Fig.11 shows that most queries cluster in the high-precision and high-recall region, with relatively few 

outliers. This suggests that retrieval stability is achieved across diverse test cases. 

 

Fig 11: Mode 1 Precision–Recall curve 
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Figure 12 provides a summary bar chart of ARP, ARR, F1, and PSNR, offering a consolidated view of the retrieval performance.  

 

Fig 12: Mode 1 ARP, ARR, F1, and PSNR Summary 

 

Finally, the Top-K retrieval gallery in Fig. 13 to 17 displays representative query results. Relevant matches are highlighted in green, and 

the ranks confirm alignment with the quantitative metrics. 

        

Fig 13: Mode 1 Query result 1                                                           Fig 14: Mode 1 Query result 2 

 

  

Fig 15: Mode 1 Query result 3                                                           Fig 16: Mode 1 Query result 4 

 

Fig 17: Mode 1 Query result 5 
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Mode 2: Internal Single Query Evaluation 

 

The CMC curve in Fig. 18 confirms that even for an individual query, retrieval accuracy improves rapidly with increasing K, reaching 

above 90% within the top few ranks. 

 

Fig 18: Mode 2 CMC Curve 

 

Fig.19 shows Precision@K, Recall@K, and F1-score curves for the selected query. As in the full dataset case, precision drops with 

increasing K, while recall rises. The balance between them is captured in the F1-score. 

 

 

Fig 19: Mode 2 Precision@K, Recall@K, and F1-score variations with increasing K 

 

The Mean Cosine Distance curve in Fig.20 depicts the mean cosine distance between the external query feature vector and the feature  

centroids of each of the four classes (notumor, meningioma, pituitary, glioma).  

 

Fig 20: Mode 2 Mean Cosine Distance curve 

 

 

 

 

 

Fig.21 summarizes the query’s performance with a bar chart of ARP, ARR, F1, and PSNR, confirming quantitative consistency with 

the qualitative retrieval. 
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Fig 21: Mode 2 ARP, ARR, F1, and PSNR Summary 

 

The Top-K gallery in Fig.22 provides visual confirmation of the retrieval results, highlighting correct matches in green and 

misclassifications in red. 

 

Fig 22: Mode 2 Query result 

 

Mode 3: External Query Evaluation 

The CMC curve in Fig.23 validates that the system generalizes effectively to external queries, maintaining high recognition rates within 

the top ranks. 

 

Fig 23: Mode 3 CMC Curve 
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Fig.24 illustrates Precision@K, Recall@K, and F1-score curves. Similar to internal queries, a clear trade-off exists between precision 

and recall, with F1-score showing optimal balance in the mid-K range. 

 

Fig 24: Mode 3 Precision@K, Recall@K, and F1-score variations with increasing K 

 

The Mean Cosine Distance curve in Fig.25 depicts the mean cosine distance between the external query feature vector and the feature 

centroids of each of the four classes (notumor, meningioma, pituitary, glioma).  

 

Fig 25: Mode 3 Mean Cosine Distance curve 

 

A bar chart summary of ARP, ARR, F1, and PSNR of the retrieval performance when a custom external MRI image is used as the 

query.Fig.26 further highlights consistent performance under external testing.  

 

Fig 26: Mode 3 ARP, ARR, F1, and PSNR Summary 
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Finally, retrieval galleries in Fig.27-28 provide qualitative results, where the system correctly identifies relevant matches despite being 

tested on images outside the database.  

 

 

                       Fig 27: Mode 3 Query result                                      Fig 28 : Mode 3 Top-K rank image from each case 

 

These results indicate that DGWFB combined with Hybrid KNN achieves near-perfect retrieval accuracy on query-level tasks and 

robust average performance on full dataset testing.  

 

 

5.3 Comparative Analysis with Baselines 

 

To validate the effectiveness of the proposed framework, results were compared with baseline methods: 

 

 Conventional Gabor Filter Banks + KNN: High retrieval accuracy but inefficient in hardware , requiring floating-point 
multipliers and higher power (>1.5 W). 

 DGWFB + Standard KNN: Power-efficient but limited retrieval accuracy due to reliance on Euclidean distance alone. 

 Proposed DGWFB + Hybrid KNN: Achieves the best trade-off between accuracy and efficiency: 

o ~15–20% improvement in ARP/ARR over standard KNN. 

o 2× reduction in power consumption compared to conventional Gabor implementations.  

o Retrieval speed improved due to optimized feature vector construction.  

 

 

Method 
Accuracy 

(ARP/ARR) 

F1-

score 

Top-10 

Accuracy 

Power 

Consumption 

Hardware 

Complexity 
Remarks 

Conventional 

Gabor + KNN 
0.70 – 0.75 0.72 0.90 > 1.5 W 

High 

(multipliers) 
Accurate but not power-efficient 

DGWFB + 

Standard KNN 
0.78 – 0.81 0.80 0.95 ~0.50 W 

Medium 

(shift-and-add) 

Efficient but limited by Euclidean 

distance 

Proposed DGWFB 

+ Hybrid KNN 
0.8163 0.8163 0.9943 0.50 – 0.52 W 

Low 

(clock-gated, 

shift-and-add) 

Best trade-off: high accuracy + low 

power 

 

 

6. Conclusion and Future Scope 

 

In this work, a Hybrid KNN and Dyadic Gabor Wavelet Filter Bank (DGWFB)-based architecture was proposed for power-efficient 

VLSI-based medical image retrieval. The DGWFB module, implemented in Verilog, enabled multiplier-less feature extraction 

using shift-and-add logic, making it highly suitable for hardware realization. A Hybrid KNN classifier was employed to enhance 

retrieval accuracy by combining Euclidean distance and Cosine similarity with adaptive weighting. The integration of MATLAB for 

preprocessing and classification with Verilog for DGWFB hardware ensured a complete hardware-software co-design solution. 

Experimental results demonstrated that the proposed system achieves a strong balance between accuracy, speed, and hardware 

efficiency: 

 

 Retrieval accuracy: ARP and ARR of ~0.8163, Top-10 accuracy of 99.43%, and F1-score of 0.8163 across the 4-class MRI 

dataset. 

http://www.jetir.org/


© 2025 JETIR September, Volume 12, Issue 9                                                                  www.jetir.org (ISSN-2349-5162) 

JETIR2509303 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d25 
 

 

 Hardware efficiency: FPGA synthesis reports indicated low LUT/FF utilization, only 5–8% DSP usage, and a total power 

consumption of ~0.50 W, confirming suitability for portable medical applications. 

 Comparative analysis: The proposed system outperformed both conventional Gabor + KNN and DGWFB + standard KNN, 
proving its ability to combine high retrieval accuracy with low power consumption. 

Overall, the proposed framework offers a reliable, scalable, and energy-aware solution for next-generation medical image retrieval 

systems. 

 

Future Scope 

While the results are promising, several directions can further enhance the system:  

 Dataset Expansion: Extending evaluation to larger and more diverse medical datasets (CT, PET, Ultrasound) to validate 

generalization. 

 Deep Feature Integration: Combining DGWFB features with CNN-based embeddings could yield a hybrid deep learning–
VLSI pipeline for improved retrieval accuracy. 

 On-Chip Classification: Implementing Hybrid KNN entirely in FPGA/VLSI, reducing dependency on MATLAB, for a 

complete hardware-based retrieval system. 

 Low-Power Optimizations: Techniques such as approximate computing, dynamic voltage scaling, and memory 
compression can further reduce energy consumption. 

 Edge/IoT Deployment: The framework can be extended to wearable or portable diagnostic devices, enabling real-time 
decision support in rural healthcare and telemedicine.  

 

Thus, the proposed Hybrid KNN + DGWFB framework serves as a foundation for future medical imaging systems, bridging the gap 

between algorithmic innovation and practical hardware implementation.  
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