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Abstract: Lung cancer is still one of the most dangerous cancers in the world, and non-small cell lung cancer (NSCLC) is the most 

dominant subtype. Among many genetic drivers of NSCLC, the KRAS-G12C mutation is an important one that drives uncontrolled cell 

growth through sustained activation of MAPK and PI3K/AKT signaling pathways. Nevertheless, inhibition of KRAS mutations has for a 

long time been elusive because of the high binding affinity of KRAS to GTP and the lack of proper binding sites. New developments in 

Next-Generation Sequencing (NGS) and Artificial Intelligence (AI) provide exciting prospects for the elucidation and targeting of 

KRAS-mediated oncogenesis.This research is centered on the integrative analysis of KRAS-G12C with the use of advanced 

computational approaches. We utilized NGS to identify KRAS-G12C mutations in patient samples and inspected genomic changes using 

sequence scanning programs like InterProScan. Structural analysis was conducted at high resolution molecular visualization, creating 

detailed protein-ligand interaction and structural motif visualization, including helices, sheets, and loops. Molecular docking simulations 

confirmed the engagement of KRAS-G12C with the in-cancer-targeted inhibitor JAB-16 (PDB ID: 9KPM) exhibiting excellent structural 

resemblance (RMSD scores 0.411 and 0.598) to homologous protein models.AI-based methods, such as AlphaFold for predicting 

structures and deep learning algorithms for molecular dynamics simulations, were employed to simulate conformational changes and 

interaction dynamics. Embedding analyses (t-SNE plots, hierarchical clustering, and heatmaps) identified significant biochemical patterns, 

including conserved functional domains like the G1 P-loop and switch regions important for GTP binding and hydrolysis. Structural 

validation by ERRAT confirmed high-quality predicted protein models.The results underscore the strength of combining NGS and AI 

technologies to improve precision oncology through better structural knowledge of KRAS-G12C and drug discovery. This strategy opens 

up avenues for designing noninvasive imaging probes as well as targeted therapy against KRAS-mutant lung cancer. 
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INTRODUCTION 

Cancer is one of the most complex and deadly illnesses which is defined by the unchecked growth, division, and dissemination of 

aberrant cells. With trillions of cells, cancer can start almost anywhere in the human body. Since cancer is a hereditary disease, it results 

from alterations to the genes that regulate our cells' growth and division [1]. Human cells tend to divide (growth and multiplication) to 

form new cells as necessary to the body. Cells die and are replaced by new cells when they get old or get injured. This well-coordinated 

process can sometimes go haywire, where damaged or abnormal cells grow and increase when they ought not to. There are essentially 

two groups of tumors: malignant and benign. The type of cell from which the tumor cells started is another way to categorize 

malignancies [2]. Among these kinds are: Carcinoma is epithelial cell-derived cancers. Many of the most prevalent malignancies that 

affect older persons fall into this category. Carcinomas make up almost all malignancies that originate in the breast, prostate, lung, 

pancreas, and colon. Sarcomas are cancers that originate from cells that start in mesenchymal cells outside of the bone marrow and arise 

from connective tissue, such as bone, cartilage, fat, or nerve. Leukemia and lymphoma are two types of cancer that develop from 

immature cells that start in the bone marrow and are meant to fully develop and mature into healthy blood and immune system 

components [3]. Three primary gene types are typically impacted by the genetic alterations that lead to cancer: DNA repair genes, tumor 

suppressor genes, and proto-oncogenes. These alterations are commonly referred to as cancer's "drivers." According to GLOBOCAN data, 

cancer was the second most common cause of death globally as of 2020, accounting for roughly 10 million deaths and 19.3 million new 

cases worldwide. An aging population, changes in lifestyle, pollution in the environment, and genetic predisposition all contribute to the 
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ongoing increase in the prevalence of cancer. The most frequently diagnosed cancers are breast, lung, colorectal, prostate, liver, and 

stomach cancers [4].  

One of the most lethal cancers and one of the most commonly diagnosed in 2020 is lung cancer. The incidence of lung cancer in Europe 

is 97.6 percent among men and 38.3 percent among women. The respective mortality rates are 81.7 percent among men and 29 percent 

among women. In comparison with the European rate of incidence, Romania has a higher rate of incidence for men (105.3) and a lower 

rate of incidence for women (28.5). The pattern is the same with the mortality rate, which is 95.6 for men and 24.8 for women. Late-stage 

diagnosis, primarily due to the fact that the disease does not show symptoms in the early stages, is the main reason for the increase in 

lung cancer mortality [5]. Notably, smoking, environmental exposure and unchecked cell division in the lungs are the main causes of lung 

cancer. The usual purpose of your cells is to divide and create additional duplicates of themselves. However, occasionally they experience 

alterations (mutations) that lead them to continue producing more money than they ought to. When damaged cells divide uncontrollably, 

they form lumps of tissue called tumors, which eventually impair the function of your organs [6].  Small-cell lung cancer (SCLC) and 

non-small-cell lung cancer (NSCLC) are the two main categories of lung cancer. The SCLC is a peri-hilar mass that is a core tumor that 

emerges from the airway submucosa. According to histological investigations, the neuroendocrine cells of the basal bronchial epithelium 

are the source of this kind of cancer. The cells are circular or spindle-shaped, have granular chromatin, little cytoplasm, and necrosis is 

frequently seen. There are two subtypes of SCLC are pure and mixed with NSCLC [7]. This malignancy is categorized as limited or 

widespread stages and is defined by the possibility of brain, liver, and bone metastases. Only one radiation point, the ipsilateral 

mediastinum, and the ipsilateral mediastinal or supraclavicular lymph nodes are affected by the restricted SCLC stage. As long as the 

supraclavicular lymph nodes are located on the same side of the cancerous chest, they fall under that group [8]. 

The widespread SCLC, on the other hand, spreads to the lymph nodes, the second lung lobe, and other body organs including bone 

marrow and is not restricted to a single radiation point in the lung. The NSCLC is classified by stages and histologically separated into 

adenocarcinoma, large-cell carcinoma, and squamous cell carcinoma. The American Joint Committee on Cancer (AJCC) developed the 

stage terminology, which is known as the TNM staging system [9]. Using the size of the main tumor (T), the tumor's spread to lymph 

nodes (N), and the existence of metastases (M), the TNM method assists in determining the stage of cancer. Therefore, the combination 

of tumor characteristics (T) classified as T1 to T4, the lymph nodes involved (N0-N3), and the presence (M1) or lack of metastases (M0) 

constitutes the final TNM classification [10]. Patients with lung cancer, mainly non-small cell lung cancer (NSCLC), are treated with 

chemotherapy in the early phases of the disease. Yet, when the disease is local, advanced, or metastatic, biomarker testing for several 

genes (EGFR, ALK, KRAS, ROS1, BRAF, NTRK1/2/3, MET, RET, and PD-L1) allows patients to enjoy immune checkpoint inhibitor 

therapy and specifically targeted treatments (anti-EGFR, anti-ALK, or anti-ROS. Therefore, treatment recommendations and early 

detection of lung cancer have become more precise using and confirming next generation sequencing (NGS) test data [11]. Due to the 

limited number of tissue samples that are unsuitable for conventional testing techniques, NGS was used to diagnose NSCLC.  Moskalev 

et al. assessed EGFR and KRAS mutations in NSCLC samples with few tumor cells using the 454 NGS technology. Mutations with an 

allele frequency of 0.2–1.5% were detected by them [12]. 

KRAS mutations are an important biomarker for tumor-directed therapy. In this study, we set out to develop a PET probe that binds the 

KRASG12C oncoprotein and to evaluate its translational potential for noninvasive visualization of the KRASG12C mutation in NSCLC 

patients [13]. The crystal structure of KRAS-G12C in complex with compound 16 (JAB-16), as referenced in the Protein Data Bank 

(PDB ID: 9KPM), provides critical insights into the molecular interactions of KRAS-G12C, a frequently mutated oncogene in cancers 

such as lung, colorectal, and pancreatic cancers [14]. Next-Generation Sequencing (NGS) combined with Artificial Intelligence (AI) 

offers a powerful approach to deepen our understanding of KRAS-G12C mutations, their structural implications, and their response to 

targeted inhibitors like JAB-16. This research topic explores how NGS and AI can be integrated to analyze genomic, proteomic, and 

structural data to advance precision oncology [15]. 

Natural language processing (NLP), computer vision, robotics, machine learning (ML), deep learning (DL), etc., are all encompassed in 

artificial intelligence (AI) (16-18).  Machine learning (ML), a major part of artificial intelligence, employs techniques that enable 

computers to learn from data and get better over time (19).  For pattern recognition and making predictions, machine learning (ML) 

employs algorithms such as supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. As another 

subcategory of machine learning, deep learning (DL) employs multi-layered neural networks (referred to as deep neural networks, or 

DNNs) to mimic the manner in which human brains process information. This has resulted in significant improvements in fields like lung 

CT radiomics (20). The intersection of biology and machine learning (ML) has revolutionized modern scientific research, offering 

unprecedented capabilities to analyze complex biological data. With the explosion of high-throughput technologies such as next-

generation sequencing (NGS), microarrays, and proteomics, traditional data analysis methods often fall short. ML addresses these 

challenges by providing tools for pattern recognition, prediction, classification, and data integration. 

The KRAS gene, a member of the RAS family of GTPases, is one of the most important etiological agents of lung cancer, especially in 

KRAS-mutant NSCLC. Approximately 30% of cases of non-small cell lung cancer involve KRAS mutations, particularly the KRAS 

G12C mutation. Since the mutant KRAS gene perpetually stimulates the MAPK and PI3K/AKT signaling pathways, it leads to 

uncontrolled cell proliferation, survival, and differentiation. KRAS-mutant lung cancers thus form aggressively and are refractory to 

standard therapies. KRAS mutations have long been considered "undruggable" since it is difficult to engage the active region of the 

protein with small molecules, which has high affinity for GTP and lacks a well-characterized binding pocket.However, new 

developments in covalent inhibitors have reawakened interest in prioritizing this mutation and opened up the possibility of new lines of 

treatment.  One of the innovations has been the development of KRAS G12C inhibitors: these are drugs that selectively target the mutant 

KRAS protein when it is in the inactive state, bound to GDP. The discovery of inhibitors such as MRTX849, which covalently bind to the 

cysteine at position 12 (Cys12), is due to the fact that KRAS G12C has been a major target.  This approach has enabled the rationally 

designed small molecules that inhibit the oncogenic activity of KRAS G12C by trapping it in its inactive state [21, 22, 23]. Drug 

discovery has been greatly impacted by the quick development of computational techniques, which have made it possible to identify 
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novel medicinal molecules with previously unheard-of speed and accuracy. Two crucial methods for predicting how tiny compounds 

(inhibitors) will interact with their target proteins are molecular docking and virtual screening. Molecular docking predicts the orientation, 

binding affinity, and interactions between a small molecule (such as a drug or ligand) and protein residues by simulating the binding of 

the molecule to the target protein's active site [24, 25, 26].  

Our understanding of the molecular basis of lung cancer has greatly expanded using Next-Generation Sequencing (NGS) technologies.  

Tens of millions of DNA fragments can be sequenced in parallel due to NGS, allowing for comprehensive genomic characterization of 

tumors with high resolution. NGS helps to determine actionable mutations, like those in EGFR, KRAS, BRAF, ALK, ROS1, and FGFR2, 

through whole-genome sequencing (WGS), whole-exome sequencing (WES), and targeted gene panels. These actionable mutations may 

then be utilized to inform individualized treatment regimens [27, 28, 29]. The best-selling programming language Python is utilized to 

code PyMOL, and it can also be extended to Python plugins [30].  PyMOL can be used for enhanced analysis and visualization 

capabilities.  PyMOL's computational drug discovery capability has been successfully utilized to find new therapeutic leads for various 

targets.  Visualization of molecules macromolecularly is the initial step in CADD [31]. One of the most widely used programs for taking 

high-resolution pictures of macromolecules for publication is PyMOL, which has been heavily utilized for 3D macromolecule 

visualization [32]. Leading pharmaceutical and biotechnology companies all over the globe are increasingly focusing on artificial 

intelligence (AI) as a way to discover new medicines.  Three important ingredients of artificial intelligence (AI) are large sets of data, 

complex mathematical models, and advanced computing algorithms, which is a drug discovery and development breakthrough that 

imparts added strength to R&D (research and development) of new pharmaceuticals. AI is utilized by roughly 80% of scientists in life 

sciences and pharmaceutical sectors to support or accelerate their drug discovery efforts [33]. The main objective of artificial intelligence 

is to make it possible for machines to mimic and carry out processes like natural language processing, learning, perception, reasoning, 

and planning. In a broad sense, artificial intelligence (AI) includes a number of technologies, such as robots, computer vision, natural 

language processing (NLP), deep learning (DL), and machine learning (ML) [16, 17, 18]. Several transcriptome analysis techniques and 

predictive models based on artificial intelligence (AI) are being researched to offer future recommendations for the creation of more 

potent NSCLC treatments [34]. 

MATERIAL AND METHODS 

The most frequently mutated driver oncogene in human cancer is KRAS, and the KRAS G12C mutation is most often seen in colorectal 

cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and non-small-cell lung cancer (NSCLC).  Clinical proof-of-concept has been 

established for inhibitors that covalently modify the mutant codon 12 cysteine.  The present study confirmed protein-ligand interactions, 

performed docking simulations, and explored molecular structures with a number of computational tools. Proteins and small ligands were 

some of the biomolecular structures whose three-dimensional forms were investigated with RasMol, a visualization program. Atomic 

distances may be measured by researchers, structural motifs such as α-helices and β-sheets may be detected, and spatial relationships 

assessed with its different visualization methods, including wireframe, space-filling, and ribbon. RasMol's custom coloring features made 

it easier to highlight particular chains, atomic kinds, and structural aspects for close examination [35, 36, 37]. PyMOL was utilized as the 

primary software for in-depth structural examination.  It can be utilized for academic visualization as well as publication-quality images 

since it is capable of creating and editing molecular assemblies at high resolution.  Protein-ligand interface regions were evaluated, 

geometric measurements such as angles and dihedrals were calculated, and animations illustrating docking outcomes were generated 

through the application.  For accurate reporting, its scripting interface allowed automatic rendering and screen capture [38, 39]. Sequence 

scanning tool integrates multiple databases to provide comprehensive and functional analysis of protein sequence and identify mutated or 

overexpressed domain in lung cancer associated protein. Google colab in artificial Intelligence is a cloud based jupyter notebook 

environment provide that google allow to excute python code to faster model training and AI Libraries. Structural validation was used to 

test the quality of protein structures modelled. It seeks out areas within the protein model that might prove problematic by examining 

non-bonded atom interactions. Following the submission of structure files, the ERRAT server generated a graphical plot and a quality 

factor %. Low values required structural adjustment before carrying out docking studies, while high scores revealed good stereochemical 

quality [40, 41, 42, 43, 44, 45]. 

RESULT AND DISCUSSION 

The crystal structure of KRAS-G12C in complex with compound 16 (JAB-16), as referenced in the Protein Data Bank (PDB ID: 9KPM), 

provides critical insights into the molecular interactions of KRAS-G12C, a frequently mutated oncogene in cancers such as lung, 

colorectal, and pancreatic cancers. Next-Generation Sequencing (NGS) combined with Artificial Intelligence (AI) offers a powerful 

approach to deepen our understanding of KRAS-G12C mutations, their structural implications, and their response to targeted inhibitors 

like JAB-16. This research topic explores how NGS and AI can be integrated to analyze genomic, proteomic, and structural data to 

advance precision oncology. 

Structural Insights from PDB Data 

The crystal structure of KRAS-G12C bound to the inhibitor JAB-16 (PDB ID: 9KPM) revealed key molecular interactions responsible 

for its inhibitory activity. Structural comparison with homologous proteins demonstrated a high degree of similarity. Alignment of 9KPM 

with 8G9P yielded an RMSD of 0.411, while alignment with 8G42 produced an RMSD of 0.598. Both values indicate excellent structural 

overlap, suggesting that the 9KPM complex is a reliable model for studying KRAS-G12C–inhibitor interactions. 
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Figure 1:  B-factor analysis representing Residue (GLU) 

Understanding the flexibility and structural dynamics of KRAS-G12C in complex with JAB-16 was made possible by the B-factor 

mapping. Higher B-factor values were observed for residues like glutamate (GLU), suggesting greater mobility within particular protein 

regions. Because it may affect conformational changes necessary for GTP/GDP exchange and ligand accommodation, this local 

flexibility is important. Clusters of GLU, LYS, ARG, and HIS residues were visible in the red-represented α-helical segment, indicating a 

region rich in charged amino acids. These residues help to stabilize the helical fold and promote electrostatic interactions. Additionally, 

nearby water molecules (HOH) were found, confirming the function of solvent interactions in preserving structural integrity. The B-

factor profile as a whole indicates that while the helical core is stable, side-chain dynamics, especially in acidic residues like GLU, may 

be crucial in regulating KRAS activity and inhibitor binding affinity. 

 

 
 

Figure 2:  RMSD analysis score of 0.411 where 9kpm (green) and 8g9p (yellow) 

Strong structural similarity was shown when the KRAS-G12C complex (9KPM) was superposed with the homologous structure 8G9P. A 

root mean square deviation (RMSD) of 0.411 Å was obtained from the successful alignment of 938 of the 1,354 atoms that were 

compared. The two structures share high structural conservation, as evidenced by their nearly identical backbone conformations and low 

RMSD values. 
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The reliability of 9KPM as a model for researching KRAS-G12C interactions is supported by the fact that this level of similarity is 

usually seen in proteins derived from the same crystallographic dataset or among high-quality homologs. 

 

 

 
 

Figure 3:  RMSD analysis score of 0.5 where 8g42 (magenta) and 9kpm(green) 

Out of the 1,332 atoms compared, 999 atoms were successfully superimposed when the KRAS-G12C complex (9KPM) was aligned with 

structure 8G42. A strong structural match is indicated by the alignment's root mean square deviation (RMSD), which came out at 0.598 

Å. 

Highly conserved structural features are reflected in an RMSD value of less than 1 Å, which is typically regarded as excellent. The strong 

resemblance between 8G42 (magenta) and 9KPM (green) indicates that both models accurately depict the protein's structure, which 

qualifies them for comparative structural and functional analyses.AlphaFold has successfully broken through deep-rooted barriers and 

courageously shown the potential of artificial intelligence (AI) in biological science. AlphaFold has encouraged the community, including 

ourselves, to rethink investigations into function, evolution, and disease by integrating several breakthroughs in deep learning to 

anticipate the three-dimensional (3D) forms of proteins at or close to experimental scale resolution. The large quantity of accurate 

structures achieved so rapidly indicates that new, ambitious, and innovative research will be generated.  It also recognizes research efforts 

that require re-evaluation. Experiments that require protein structures, such as identifying binding sites and interactions in signaling 

pathways and hot spots, such as rare and latent cancer driver mutations, are already being supported by the wealth of high-quality data 

being accumulated in databases. The greatest impacts will likely be in generating information that can be used to realize this important 

objective and accelerating and enhancing the production of new medicines. AI innovations and uses might even help to fore tell routes 

and whether the signal passing downstream will be strong enough to reach its genomic target and activate (repress) gene expression. The 

residue-level confidence in the structural prediction of the AlphaFold-generated model of KRAS-G12C was assessed using pLDDT 

scores. The majority of the protein's β-sheets and central helices were shown in blue, which indicates very high confidence in these 

structured regions and corresponds to pLDDT values above 90. It is anticipated that these stable segments will be essential for preserving 

the fold and functional interactions of the protein. 

The terminal regions, on the other hand, showed low confidence with pLDDT scores below 50 and an orange to red appearance. These 

areas are probably naturally flexible or disordered, which could help with conformational adaptability during ligand binding and 

signaling. The overall pLDDT distribution shows that although the protein core is highly reliably modeled, the peripheral segments 

exhibit structural uncertainty, which is in line with the fact that KRAS proteins naturally have unstructured tails. 

Sequence and Mutational Analysis 

KRAS-G12C mutations were found in samples linked to lung cancer, according to NGS analysis. Sequence scanning revealed conserved 

motifs, such as the P-loop (G1 box), switch I and II regions, and other GTP-binding elements, that are typical of small GTPases. These 

patterns highlight how important KRAS is for cycling between GDP- and GTP-bound states, which fuels cancer's aberrant signaling. 
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Figure 4: Sequence scanning analysis with InterProScan 

The KRAS-G12C protein's classification within the RAS, DI-RAS, and RHEB families of the small GTPase superfamily (residues 18–

180) was validated by sequence analysis. With hallmark motifs like the transforming protein P21 ras signature present in several 

conserved regions (residues 19–40, 49–58, 59–81, 122–135, and 156–178), this classification is consistent with KRAS's function as a 

Ras-like GTP-binding protein. 

The P-loop nucleoside triphosphate hydrolase domain (residues 18–179) was one of the important structural domains found. The 

functional GTPase domain shared by members of the RAB, RAS, and RHO families is defined by this motif, which also permits 

nucleotide binding and hydrolysis. 

Additionally, conserved motifs were found, such as the G1 box (P-loop), which is necessary for phosphate binding, and the G2–G5 

boxes, which aid in nucleotide binding and hydrolysis. As conserved clusters, the Switch I and Switch II regions are essential for 

conformational changes that take place during GTP binding and hydrolysis, which controls signaling output. 

The function of KRAS-G12C as a molecular switch in several cellular pathways was validated by functional annotation. KRAS's 

significance as a proto-oncogene and therapeutic target is further supported by the fact that it controls processes like cell growth, nuclear 

transport, and intracellular signaling cascades by switching between active GTP-bound and inactive GDP-bound states. 
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Figure 5: Ancestor chart for GTP binding (Molecular function ,Binding to GTP,guanosine triphosphate) Ancestor chart for 

GO:0005525 

KRAS-G12C was positioned within a number of interrelated biological processes by Gene Ontology (GO) enrichment. At the highest 

level, the protein is associated with broad categories like biological regulation (GO:0065007), response to stimulus (GO:0050896), and 

cellular process (GO:0009987). KRAS plays a crucial role in regulating downstream signaling pathways, as evidenced by the 

convergence of these broad functions on the regulation of biological processes (GO:0050789). 

More detailed annotations showed involvement in signaling (GO:0023052), cell communication (GO:0007154), and regulation of cellular 

processes (GO:0050794). Crucially, these mechanisms work together to support signal transduction (GO:0007165), emphasizing KRAS 

as a molecular switch that converts extracellular stimuli into intracellular reactions. 

The GO network's hierarchical relationships highlight KRAS's dual function in controlling cellular responses and sensing upstream 

signals. This confirms its known role as a proto-oncogene, in which cancer cells proliferate and survive unchecked due to dysregulation 

of its signaling activity. 

 

AI-Based Structural Predictions 

Deep learning–based simulations captured conformational flexibility of KRAS-G12C during inhibitor binding. 

• t-SNE The model's capacity to represent sequence–structure relationships was validated by embedding plots, which 

showed clear clustering of amino acid residues based on their biochemical characteristics.  

• Outlier branches indicated distinct structural features, while hierarchical clustering dendrograms further categorized 

residues into functional domains.  

• Strong connectivity between conserved regions was shown by residue interaction graphs, which is in line with their 

functions in nucleotide binding and hydrolysis.  

• Conserved stretches corresponding to critical GTPase motifs were shown in ProtBERT heatmaps, highlighting their 

functional significance. 
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                                 Figure 6: PCA and tSNE of ProtBERT Embeddings 

The high-dimensional ProtBERT embeddings were divided into two main components using Principal Component Analysis (PCA). The 

distribution revealed pronounced variation between residues, suggesting that the embeddings captured unique structural or biochemical 

features. This implies that PCA successfully maintains important data for clustering and visualization in the future. 

A nonlinear projection of residue embeddings into two dimensions was made possible by the t-SNE visualization. Tighter residue clusters 

were found using t-SNE as opposed to PCA, indicating minor biochemical property similarities. This demonstrates how well the model 

captures intricate relationships between sequence and structure. 

 

 

Figure 7: t-SNE of Residue Embeddings Colored by Amino Acid 

Residues were colored by amino acid type in the t-SNE plot, showing well-defined clusters. Amino acids with similar chemical properties 

(e.g., polar, hydrophobic, charged) were grouped together, validating that ProtBERT embeddings successfully capture biochemical traits 

relevant for protein function. 
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Figure 8: UMAP of ProtBERT Embeddings 

Another viewpoint on dimensionality reduction was provided by Uniform Manifold Approximation and Projection (UMAP). Distinct 

local neighborhoods among residues were highlighted by the UMAP map's well-separated clusters. This demonstrates how well 

ProtBERT embeddings distinguish residue-level characteristics that are pertinent to both structural and functional domains. 

 

 

Figure 9: k-Means Clustering on PCA 

Applying k-means clustering to the PCA-transformed embeddings partitioned the residues into three main groups. Each cluster 

corresponded to residues with shared structural or biochemical characteristics, highlighting the ability of unsupervised methods to 

classify functional domains within the protein. 
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Figure 10: Hierarchical Clustering Dendrogram 

Hierarchical clustering organized residues into a tree-like structure based on similarity. Close branches represented residues with 

comparable embedding patterns, while distant branches indicated unique or outlier residues. This hierarchical organization emphasizes 

relationships between amino acids at both local and global levels. 

 

Figure 11: PCA Explained Variance 

The cumulative explained variance plot showed that the first 20–25 principal components account for most of the variability in the 

embeddings. This confirms that dimensionality reduction retains meaningful biological information, while reducing noise and redundancy 

in the data. 
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Figure 13: Protein Sequential Residue Graph 

The residue graph provided a network-based view of amino acid connectivity. Nodes represented residues, and edges reflected sequential 

or embedding-based relationships. Clusters within the graph corresponded to structural motifs or functional domains, demonstrating how 

embeddings preserve sequence-to-structure mapping. 

 

Figure 12: Heatmap of ProtBERT Embeddings 

The heatmap of ProtBERT features across all residues highlighted regions of high and low embedding intensity. Conserved stretches 

appeared as continuous patterns, potentially corresponding to structural domains or functional motifs. This visualization provided a 

residue-level fingerprint of the protein’s embedding landscape. 

CONCLUSION 

In order to examine the structural and functional characteristics of KRAS-G12C, one of the most difficult oncogenic drivers in lung and 

other cancers, this study shows the value of combining Next-Generation Sequencing (NGS) with Artificial Intelligence (AI). KRAS's 
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function as a key molecular switch in signal transduction was confirmed by the discovery of conserved motifs through sequence analysis, 

including the P-loop, switch regions, and GTP-binding domains. The reliability of the structural framework for inhibitor studies was 

validated by structural comparisons using homologous models and crystallographic data (9KPM), which showed high similarity with 

RMSD values less than 0.6 Å. By capturing residue-level biochemical features, conformational dynamics, and functional clustering, AI-

driven modelling such as AlphaFold predictions and ProtBERT embeddings further improved our comprehension. Network-based residue 

graphs, clustering, and dimensionality reduction (PCA, t-SNE, UMAP) identified unique structural domains and sequence–function 

relationships. These analyses highlight how deep learning models can reveal subtle molecular insights and supplement experimental data. 

A thorough understanding of KRAS-G12C biology is made possible by the combination of NGS data, molecular docking, and AI-based 

structural predictions. The results point to possible directions for logical medication design, especially when it comes to improving 

inhibitors like JAB-16. Furthermore, the methodology used here can be used as a model to investigate additional carcinogenic mutations, 

improving precision oncology and speeding up the creation of targeted treatments. 
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