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Abstract 

Proposed work aims to analyze Mx/G/1 queuing system for unreliable server queue with two phases of heterogeneous services one after 

the other to the arriving batch under Bernoulli schedule vacation. The server operates under N-policy according to which he remains idle 

till queue size becomes N (≥1); i.e.  when N customers are accumulated in the system, the server is immediately turn on and provides 

service. While servicing the customers the server may breakdown and is sent for repair immediately. As soon as the server is repaired, it 

starts to serve the customers. After completion of both phases of service, the server either goes for a vacation or may continue to serve the 

next customer, if any. The server’s vacations are based on Bernoulli schedule under a single vacation policy. We obtain explicit queue 

size distribution at random epoch as well as at the departure epoch under the steady state conditions. The numerical results for various 

performance measures are summarized in tables and displayed via graphs. 

Keywords: MX/(G1,G2)/1 queue, Bernoulli schedule, Vacation, N-Policy, Unreliable Server, Phase Services, Supplementary variable, 

Queue Size.  

 

1. Introduction 

 The single server queues in different frameworks have been studied by numerous authors including Burke (1975), Choudhury 

(1979), Madan (2000) and Medhi (2002), many others. N-Policy is highly applicable to the queueing systems where the server’s 

closedown, startup and setup costs are high and it is economically infeasible to start service until a certain minimum number of units are 

accumulated.  It is worthwhile to have a look on some important works done by researchers on queues under N-policy. Some 

characteristics of N-policy have been studied by Lee et al. (1994). Lee et al. (1995) considered an MX/G/1 queueing system with N-Policy 

and single vacation. The effect of different arrival rates on the N-policy M/G/1 queue was examined by Hur and Paik (1999). Nobel and 

Tijms (1999) considered a practically important model with controllable service rate, where switch over times are involved while 

changing the service mode. Two phase queueing system with N-policy was considered by Kim and Park (2003). An MX/G/1 queueing 

system with two phases of heterogeneous service under N-policy was studied by Choudhury and Paul (2004). The customers are assumed 

to receive the batch service in the first phase followed by individual service in the second phase.  M/G/1 queueing system was considered 

by Lee and Kim (2006) where the speed of the server depends on the amount of work. Sikdar and Gupta (2008) considered an Mx/Gx/1/N 

queue to obtain various performance measures for single and multiple vacation models. Banik (2009) obtained queue length distributions 

at various epochs for a finite buffer single server queueing model under N-policy. 

Various authors studied the queues with server vacation under various vacation policies including Bernoulli schedules. Various aspects of 

Bernoulli vacation model for single server queueing system have been studied by Keilson and Servi (1986). Bernoulli vacation model for 
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two stage heterogeneous service queueing system has been studied by Madan (2001). Single server queues with Bernoulli vacation 

schedule and a general retrial time was considered by Kumar and Arivudainambi (2002). Madan et al. (2003) considered two models for 

a two server queue and single vacation with Bernoulli schedules. A batch arrival queueing system was studied by Choudhury and Madan 

(2004). The server was assumed to provide two phases of heterogeneous service in succession. Atencia and Moreno (2005) studied an 

M/G/1 retrial queue with general retrial times and Bernoulli schedule. A single server Poisson arrival queue along with Bernoulli 

schedule vacation has been examined by Choudhury and Paul (2006). Choudhury et al. (2007) studied the steady state behavior of batch 

arrival queue with two phases of heterogeneous service under multiple vacation policy. Choudhury (2008) obtained the queue size 

distribution of an Mx/G/1 queue with random set up time and Bernoulli vacation schedule under a restricted admissibility policy. Ke and 

Chang (2009) constructed a mathematical model for a batch arrival queue where the server provides two phases of heterogeneous service 

to all customers under Bernoulli vacation schedule. 

In many real cases, the server may experience breakdowns, so that a more realistic queueing model is that which incorporates the 

assumption of unreliable server. The minimum expected cost and the optimal operating policy was investigated by Wang et al. (1999) for 

a single removable and non reliable server. Wang et al. (2005) used the maximum entropy principle to develop the approximate formulae 

for the probability distribution of the number of customers in a single removable server M/G/1 queueing system operating under N-

policy. An M/G/1 G-queue with preemptive resume and feedback under N-policy where the server is subject to breakdown and repair 

was investigated by Liu et al. (2009). Mx/G/1 queue with two types of services and modified Bernoulli schedule server vacations is 

studied by Jain and Chauhan (2016). Maximum entropy analysis of unreliable queue with bernoulli vacation schedule is studied by 

Chauhan (2018). Ayyappan and Karpagam (2019) proposed an analysis of a bulk queue with unreliable server, immediate feedback, n-

policy, bernoulli schedule multiple vacation and stand-by server. An unreliable retrial system with bernoulli schedule is proposed by 

Choudhury and Tadj (2020). Matrix-geometric solution of multi-server queueing systems with bernoulli scheduled modified vacation and 

retention of reneged customers is given by Shekhar et al. (2021). Analysis of a bulk arrival n-policy queue is considered by Begum and 

Chaudhury (2022) with two service genre, breakdown, delayed repair under bernoulli vacation and repeated service policy.  

In the present paper, we consider Mx/G/1 queue with batch arrivals, two types of general heterogeneous service. The concept of Bernoulli 

vacation schedule and unreliable server are incorporated. The paper is organized as follows. In section 2, we define the underlying 

assumptions and notations of the system under study and also construct the steady state equations. The analysis based on supplementary 

variables and generating function approach, is given in section 3. The queue size distributions at random epoch and departure epoch are 

obtained in sections 4 and 5, respectively. Section 6 is meant for sensitivity analysis. In the last section 7, the conclusions are drawn. 

 

2.  Model Description 

We consider an MX/G/1 queueing system with the following assumptions: 

 The customers arrive at the system according to a compound Poisson process with random batch size denoted by 

variable ‘X’. Let λ be the mean arrival rate of the customers. 

 When N customers are accumulated in the system, the server starts service to the customers. 

 There is a single unreliable server who provides two kinds of general heterogeneous services in the sequence to the 

customers on a first come first served (FCFS) basis i.e. first stage service (FSS) followed by second stage service (SSS). 

 As soon as the service of a customer is completed, the server may take a vacation with probability r or else with 

probability (1-r), he may continue servicing the next customer, if any. Otherwise the system is turned off.  

 We assume that the service time random variable Si (i=1,2) of the ith type of service follows a general probability law 

with Si(x) as the distribution function. Let Laplace Stieltjes transform (LST) of Si(x) is Si*(θ) with finite kth moment E(Si
k), k≥1, 

i=1,2. 
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 The vacation time V of the server follows a general probability law with distribution function V(x), LST V*(θ) and 

finite moment E(Vk), k=1,2. 

 The server may breakdown while servicing the customer and it is sent for repair immediately. The repair time is 

generally distributed with probability distribution function Gi(x), i=1,2 while server fails during ith phase service. Immediately 

after the server is fixed, it starts to serve the customers. 

Let NQ(t) be the queue size at time ‘t’. To make it Markov process we introduce supplementary variables )(tS 0
1 , )(tS 0

2 , )(tG 0
1 , )(tG 0

2  

and )(tV 0
, where  )(tS 0

1  and )(tS 0
2  be the elapsed FSS time and elapsed SSS time respectively at time ‘t’, )(tG 0

1  and )(tG 0
2 be the 

elapsed repair times while the server failed during FSS and SSS, respectively and )(tV 0
 be the elapsed vacation time at time ’t’. Let the 

status of the server at time t is denoted by Y(t) as 
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Define the limiting probabilities as: 
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Steady State Equations 

Now Chapman Kolmogorov equations governing the models are constructed as follows:  
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These equations are to be solved subject to the following boundary conditions: 
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Define the following generating functions: 
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3. The Analysis 

In this section, we obtain joint and marginal generating functions of queue size as follows: 

Theorem 1: The joint probability generating functions when the server is busy with FSS and SSS, under breakdown while rendering 

service during FSS and SSS and on vacations respectively, are given by 
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Theorem 2: The marginal generating functions are given by 
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Theorem 3: The probability generating function of the number of the customers in the queue is given by 
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4.  Mean Queue Size at Random Epoch 

 Let ψn (n=0,1,2,…,N-1) be the probability that a batch of customers find at least n customers in the system during an idle period 

where ψn is given by the following recursive equation, 
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To determine I0, we use normalizing condition P(1)=1 and get 

I(z)=(1-Φ), thus 
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Let gn be the probability that there are n customers in the system during the idle period, then  
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PGF of gn is given by  
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Therefore  
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Combining (27), (31) and (33), we have the following stochastic decomposition property:  
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The queue size distribution at random epoch given in equation (34) decomposes into the distributions of two independent random 

variables as 

(i) First term P0(z) represents  the queue size distribution of Mx/G/1 queue with vacation time under Bernoulli schedule.  

(ii) Second term G(z) represents the additional queue size distribution due to N-policy. 

 

The number of customers in the system can be obtained by using )(lim ' zPL z 1 . Now the mean queue size at random epoch is: 
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Corollary 1: If the system is in steady state, then 

   Pr [The server is in idle state]=Limz→1I(z)= )1(                                                                                                 (36)                                

   Pr [The server is busy with FSS]=Limz→1P1(z)=λE[X]E[S1]                                                                                  (37)                                  
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   Pr [The server is busy with SSS]=Limz→1P2(z)=λE[X]E[S2]                                                                                  (38)                                 

   Pr [The server is broken-down while FSS]=Limz→1R1(z)=α1λE[X]E[G]                                                               (39)     

   Pr [The server is broken-down while SSS]=Limz→1R2(z)=α2λE[X]E[G2]                                                              (40) 

   Pr [The server is on vacation]=Limz→1Q(z)=rλE[X]E[V]                                                                                       (41)                                

Proof: The corresponding steady state results can be obtained by applying L’Hospital rule in eqs (21)-(25), respectively, and letting z=1. 

5.  Queue Size Distribution at Departure Epoch 

 According the argument of PASTA (Poisson arrival see time average), we state that a departing customer will see ‘n’ customers 

in the queue just after a departure if and only if there were (n+1) customers in the queue just before the departure. Let πn be the 

probability that there are ‘n’ customers in the queue at a departure epoch, and then we have 

01
000 1220  


 ndxxQxvkdxxPxrk nnn ,)()()()()( ,                                                                        (42) 

where k0 is normalizing constant. Next we define the PGF of πn as 
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By using the normalizing condition π(1)=1, we get 

  1
0
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 )(XEk                                                                                                                                                                                                        (44)                                                     

Using equation (43) into (42), we get  
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Hence the relationship between P(z ) and π(z) is given by 
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where 
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
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1

1
 , is the PGF of the number of customers placed before an arbitrary customer (tagged customer) in a batch in which 

the tagged customer arrives. 

 Eq. (45) illustrates that the departure point queue size distribution of given model is the convolution of three independent 

random variables as 

(i) First term A(z) is the number of customers places before a tagged unit in the batch. 

(ii) Second term P0(z) represents  the queue size distribution of Mx/G/1 queue with vacation time under Bernoulli schedule. 

(iii) Third term G(z) represents additional queue size distribution due to N-Policy. 

Applying L’Hospital rule repetitively in eq. (45), we have LD, the mean queue size at departure epoch as follows; 

http://www.jetir.org/


© 2025 JETIR October, Volume 12, Issue 10                                                                            www.jetir.org (ISSN-2349-5162) 

 

JETIR2510003 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a32 
 

   

 
)(

))((

)(

))()(())()(()()(

)(

)()()()(

)(

))()(())()((

)(

)()(

)(

))((

)(

XE

XXE
n

GESEGESEVEXEr

GESEGESEGESEGESEVEXrEXXE

dz

zd
L

N

n
n

N

j
n

z
D

2

1

1

11

1212

11

1212

1

1

0

1

0222111
22

2
2

221
2

11222
2

111
22

1






































































             (47)                                                 

Thus                                        

)(

))((

XE

XXE
LL QD

2

1
                                                                                                                                           (48)                                                              

6.  Sensitivity Analysis 

In this section, we validate our analytical results by taking numerical examples. The sensitivity analysis is performed to visualize the 

effect of different parameters on the average queue length and long run state probabilities of the server.  

The default parameters are fixed as N=4, α1=0.04, α2=0.03, 1=3, 2=4, 1=8, 2=6, v=0.6, r=0.2 for computational results demonstrated 

in figures 1-6 which plot the variation in the mean queue length for various system input parameters. In all figures 1-6, we observed that 

as λ increases, there is remarkable increase in the queue length; the impact is more prominent for higher values of λ in comparison to 

lower values of λ. From fig. 1 we notice that higher service rates have a significant impact on the queue length as it leads to considerably 

decrement in the queue length. Fig. 2 illustrates the fact that that increased failure rates result in increased queue length. Fig. 3 indicates 

that sufficient repair facility can be helpful in reducing the queue length. For higher values of vacation rate, the lower values of average 

queue length can be seen in fig. 4. The variation in queue length with respect to probability of opting second phase service (r) is shown in 

fig. 5. It is found that by increasing the probability there is remarkable decrease in L. Finally in fig. 6, we exhibit the variation in L with 

respect to threshold parameter; we see that for higher values of N, the average queue length is higher. 

7.  Conclusion 

In the present paper, we have considered Mx/G/1 queue with batch arrival, two types of general heterogeneous service and modified 

Bernoulli schedule server vacations. The concepts of server breakdown and server repair were incorporated into the model to make the 

study more realistic. In many congestion situations just before a service starts, the customer has the option to choose one of two kinds of 

services. Such a model may find applications in many day to day real life queueing situations. Further our model assumes that the server 

vacations are based on Bernoulli schedule which means that just after completing a service selected by the customer, the server may take 

vacation of random length or may continue staying in the system. The concepts of Bernoulli schedule vacation, batch arrival and 

unreliable server have been incorporated together in our queueing model which has potential applicability in manufacturing, computer 

and communication systems, etc.. 
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