ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue RNAL OF EMERGING TECHNOLOGIES AND NOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ϕ -Primary Subtractive ideals in Ternary **Semirings**

Harish Ganesh Nemade

Associate Professor Department of Mathematics Dhanaji Nana Mahavidyalaya, Faizpur, India hgnemade123@gmail.com

Abstract: Let S be a commutative ternary semiring. In this paper I have defined ϕ -primary ideal in S and prove the result I is ϕ primary ideal if and only if for ideals A, B and C of S, ABC $\subseteq I - \phi(I)$ implies $A \subseteq I$ or $B \subseteq I$ or $C \subseteq \sqrt{I}$, where I and $\phi(I)$ are subtractive ideals of *S*.

Keywords: ternary semiring, ϕ -primary ideal, subtractive ideal, ϕ -semiprime ternary semiring

2020 Mathematics Subject classification: 16Y60

I. INTRODUCTION

The concept of primary ideals and its extension play a significant role in for their uses in a variety of fields, including graph theory, commutative algebra topological spaces, algebraic geometry, information science, coding theory, etc. Here we generalize the concept of ϕ -primary ideal from semirings [5] to ternary semirings. Here our approach is purely algebraic.

Definition 1.1. [2] A non-empty set S together with a binary operation called addition (+) and a ternary operation called ternary multiplication (\cdot) is called ternary semiring if S is an additive commutative semigroup satisfying the following conditions:

- $(a \cdot b \cdot c) \cdot d \cdot e = a \cdot (b \cdot c \cdot d) \cdot e = a \cdot b \cdot (c \cdot d \cdot e);$
- there exists $0 \in S$ such that a + 0 = a = 0 + a, $a \cdot b \cdot 0 = a \cdot 0 \cdot b = 0 \cdot a \cdot b = 0$;
- iii) $(a+b) \cdot c \cdot d = a \cdot c \cdot d + b \cdot c \cdot d, a \cdot (b+c) \cdot d = a \cdot b \cdot d + a \cdot c \cdot d,$ $a \cdot b \cdot (c + d) = a \cdot b \cdot c + a \cdot b \cdot d$; for all $a, b, c, d, e \in S$.

Definition 1.2. [2] A ternary semiring S is said to be commutative if,

$$a \cdot b \cdot c = a \cdot c \cdot b = c \cdot a \cdot b$$
 for all $a, b, c \in S$.

Note. For convenience we write ab instead of $a \cdot b$.

Definition 1.3. [2] A subset K of a ternary semiring S is called a ternary sub-semiring if K is itself a ternary semiring under the

Definition 1.4. [2] A non-empty subset I of a ternary semiring S is called a left (resp. lateral, right) ideal of S if the following conditions are satisfied:

- $a, b \in I \text{ implies } a + b \in I;$
- ii) $a \in I$, $r,s \in S$ implies rsa (resp. ras, ars) $\in I$.

If I is a left, a lateral and a right ideal of S, then I is called an ideal of S.

Definition. [2] An ideal I of a ternary semiring S is called subtractive ideal (k-ideal) if for $a, a + b \in I$, $b \in S$ implies $b \in S$.

Definition. [1] An ideal $I \neq S$ of a ternary semiring S is called prime if $abc \in I$, where $a, b, c \in S$ implies $a \in I$ or $b \in I$ or $c \in I$.

II. ϕ -PRIMARY SUBTRACTIVE IDEALS

Definition 2.1. Let S be commutative ternary semiring. Let I(S) be the set of all ideals of S and $I^*(S)$ be set of all proper ideals of S with a function, $\phi: I(S) \to I^*(S)$. A proper ideal I of S is called a ϕ -primary ideal if for all $a, b, c \in S$, with $abc \in I - \phi(I)$ implies $a \in I$ or $b \in I$ or $c^n \in I$ for some odd positive integer n.

Note. Since $I - \phi(I) = I - (I \cap \phi(I))$, we have $\phi(I) \subseteq I$.

Lemma 2.2. Every prime ideal in a commutative ternary semiring S is ϕ -primary.

Lemma 2.3. Every ϕ -prime ideal of a commutative ternary semiring S is ϕ -primary.

Lemma 2.4. If I is a ϕ -primary ideal of a commutative ternary semiring S and $\phi(I)$ is a primary ideal, then I is a primary ideal of S.

Proof. Let $a, b, c \in S$. Let I be an ϕ -primary ideal of S. Suppose that $abc \in I$, if $abc \notin \phi(I)$ as I is ϕ -primary ideal, $a \in I$ or $b \in S$. I or $c^n \in I$ for some odd positive integer n and if $abc \in \phi(I)$, as $\phi(I)$ is a primary ideal, $a \in \phi(I) \subseteq I$ or $b \in \phi(I) \subseteq I$ or $c^n \in I$ $\phi(I) \subseteq I$, for some odd positive integer n.

Definition 2.5. Given two functions $\psi_1, \psi_2 : I(S) \to I(S) \cup \{\Phi\}$. We define $\psi_1 \le \psi_2$ if $\psi_1(J) \subseteq \psi_2(J)$ for each $J \in I(S)$.

Proposition 2.6. Let S be a commutative ternary semiring and J be proper ideal of S. Let $\psi_1, \psi_2 : I(S) \to I(S) \cup \{\Phi\}$ be functions with $\psi_1 \leq \psi_2$. Then if *J* is ψ_1 -primary ideal, then *J* is ψ_2 -primary ideal.

Proof. Suppose that, $abc \in J - \psi_2(I)$, where $a, b, c \in S$. As $\psi_1 \leq \psi_2$, we have $\psi_1(J) \subseteq \psi_2(J)$. Hence $abc \in J - \psi_1(I)$ and therefore $a \in J$ or $b \in J$ or $c^n \in J$ for some odd positive integer n. Thus J is ψ_2 -primary ideal.

Theorem 2.7. Let I be a ϕ -primary subtractive ideal of a commutative ternary semiring S. Then $I^3 \subseteq \phi(I)$ or I is a primary ideal. **Proof.** Suppose that $I^3 \nsubseteq \phi(I)$. Let $abc \in I$ for $a, b, c \in S$.

If $abc \notin \phi(I)$, then $a \in I$ or $b \in I$ or $c^n \in I$ for some odd positive integer n. So, in this case I is primary ideal.

Assume that $abc \in \phi(I)$. If $abI \nsubseteq \phi(I)$, then there exists $z \in I$ such that $abz \notin \phi(I)$.

Now, $abc + abz \notin \phi(I)$, that is $ab(z + c) \notin \phi(I)$. Hence $a \in I$ or $b \in I$ or $(c + z)^n \in I$, for some odd positive integer n. Since $(c+z)^n = \sum_{k=0}^n c^k z^{n-k} \in I$ and since $z \in I$ we have $c^n \in I$. So $a \in I$ or $b \in I$ or $c^n \in I$.

Now suppose that $abI \subseteq \phi(I)$. If $aIc \nsubseteq \phi(I)$, then there exists $y \in I$ such that $ayc \notin \phi(I)$. Now $a(b+y)c \in I - \phi(I)$ implies $a \in I$ or $b + y \in I$ or $c^n \in I$. As I is subtractive $b \in I$. So $a \in I$ or $b \in I$ or $c^n \in I$. Hence suppose that $alc \subseteq I$ $\phi(I)$. Similarly for other cases we get same result. Since $I^3 \nsubseteq \phi(I)$.

There exists $r, s, t \in I$ such that $rst \notin \phi(I)$, then $(a + r)(b + s)(c + t) \in I - \phi(I)$. So $a \in I$ or $b \in I$ or $c^n \in I$. Hence I is primary ideal.

Definition 2.8. A commutative ternary semiring S is called ϕ -semiprime if $I^n \subseteq \phi(I)$ for each ideal I of S and an odd positive integer n, implies $I \subseteq \phi(I)$.

Corollary 2.9. Let S be a ϕ -semiprime commutative ternary semiring. Then a subtractive ideal I of S is ϕ -primary if and only if $I = \phi(I)$ or *I* is primary.

Proof. Let *n* be an odd positive integer. If n = 1, $I = \phi(I)$.

Suppose that n > 1, we have $I^n = I^3 I^{n-3}$. By Theorem 2.7 and definition 2.8 result holds trivially.

Definition 2.10. Let I be an ideal in a commutative ternary semiring S and let

 $\sqrt{I} = \{x \in S : x^m \in I, \text{ for some odd positive integer } m\}, \text{ then } \sqrt{I} \text{ is an ideal of } S \text{ and } I \subseteq \sqrt{I}.$

Lemma 2.11. Let *I* be primary ideal of a commutative ternary semiring *S*. Then \sqrt{I} is a prime ideal of *S*.

Proof. Let $abc \in \sqrt{I}$, where $a, b, c \in S$. Then there exists odd positive integer m such that $(abc)^m = a^m b^m c^m \in I$. Since I is primary ideal we have $a^m \in I$ or $b^m \in I$ or $(c^m)^n \in I$ for some odd positive integer n.

Thus $a \in \sqrt{I}$ or $b \in \sqrt{I}$ or $c \in \sqrt{I}$. Hence \sqrt{I} is a prime ideal of S.

Lemma 2.12. Let I be a ϕ -primary ideal of a commutative ternary semiring S, with $\sqrt{\phi(I)} = \phi(\sqrt{I})$. Then \sqrt{I} is ϕ -prime ideal of S.

Proof. Let $abc \in \sqrt{I} - \phi(\sqrt{I})$ and $a, b \notin \sqrt{I}$, where there exists an odd positive integer m such that $a^m b^m c^m \in I$.

If $(abc)^m \in \phi(I)$, then $abc \in \sqrt{\phi(I)} = \phi(\sqrt{I})$ which is not possible. Hence $(abc)^m \notin \phi(I)$, so $(abc)^m \in I - \phi(I)$. But I is ϕ -primary ideal and $a, b \notin \sqrt{I}$. hence $c \in \sqrt{I}$.

Lemma 2.13. If I and J be subtractive ideals of a ternary semiring S. Then $I \cup J = I$ or $I \cup J = J$.

Lemma 2.14.[4] Let S be a commutative ternary semiring, I be ideal of S and $x, y \notin I$.

- If I is subtractive, then (I:x) is also subtractive. (i)
- (ii) If I is prime ideal of S and (I:x) is subtractive, then I is subtractive.

Theorem 2.15. Let S be a commutative ternary semiring and I a subtractive ideal of S, then the following statements are equivalent:

- (i) *I* is ϕ -primary ideal.
- If $x \notin \sqrt{I}$, then $(I:x) = I \cup (\phi(I):x)$. (ii)
- If $x \notin \sqrt{I}$, then (I:x) = I or $(I:x) = (\phi(I):x)$. (iii)

Proof. $(i) \Rightarrow (ii)$ Let $t \in (I:x)$, then $txy \in I$.

If $txy \in \phi(I)$ for some $y \notin I$, then $t \in (\phi(I):x) \subseteq I \cup (\phi(I):x)$.

If $txy \notin \phi(I)$ for some $y \notin I$, then $t^n \in I \subseteq I \cup (\phi(I):x)$. So, $(I:x) \subseteq I \cup (\phi(I):x)$.

On the other hand, let $k \in I \cup (\phi(I):x)$. Then $kxy \in \phi(I) \subseteq I$. Now $k \in (I:x)$.

- $(ii) \Rightarrow (iii)$ Since I is subtractive ideal by Lemma 2.13 and Lemma 2.15 we get the required result.
- $(iii) \Rightarrow (i)$ Let $xyz \in I \phi(I)$ and $x, z \notin \sqrt{I}$, then $y \notin (\phi(I):x)$ and $y \in (I:x)$ so $y \in I$.

Lemma 2.16. Let *I* be a ϕ -primary subtractive ideal of a commutative ternary semiring *S* that is not primary, then $\sqrt{\phi(I)} = \sqrt{I}$.

Proof. Let I be a ϕ -primary subtractive ideal of a commutative ternary semiring S that is not primary, then by Theorem 2.7 $I^3 \subseteq \phi(I)$. So $I \subseteq \sqrt{\phi(I)}$ hence $\sqrt{I} \subseteq \sqrt{\phi(I)}$. Obviously $\sqrt{\phi(I)} = \sqrt{I}$. Hence $\sqrt{\phi(I)} = \sqrt{I}$.

Theorem 2.17. Let I and $\phi(I)$ are subtractive ideals of a commutative ternary semiring S. Then I is ϕ -primary ideal if and only if for ideals A, B and C of S, ABC $\subseteq I - \phi(I)$ implies $A \subseteq I$ or $B \subseteq I$ or $C \subseteq \sqrt{I}$.

Proof. Suppose that I is a ϕ -primary ideal of S. If I is primary, then nothing to prove. So, suppose that I is not primary ideal. Let A, B and C be ideals of S such that $ABC \in I - \phi(I)$, $A \nsubseteq I$, $B \nsubseteq I$ and $C \nsubseteq \sqrt{I}$. Let $b \in B$, $c \in C$. If $c \notin \sqrt{I}$, then either (I:c) = Ior $(I:c) = (\phi(I):c)$. Now $Abc \subseteq ABC \subseteq I$, where $A \subseteq (I:c)$. Choose $a \in A - I$, then $a \in (I:c) = I$, so, we get $A \not\subseteq I$ and $(I:c) = (\phi(I):c)$. Therefore $A \subseteq (\phi(I):c)$ and $Abc \subseteq \phi(I)$.

Now suppose that $c \in \sqrt{I}$, then $c \in I$ and $c \in \sqrt{I} \cap C$, choose $c' \in C - \sqrt{I}$, then $(c + c') \in C - \sqrt{I}$ and hence $Abc' \subseteq \phi(I)$ and $Ab(c + c') \in \phi(I)$. So $Abc \subseteq \phi(I)$. Therefore $ABC \in \phi(I)$. A contradiction.

Conversely, if $abc \in I - \phi(I)$, where $a, b, c \in S$, then $a, c \in S$ then $c > \subseteq \sqrt{I}$.

REFERENCES

- [1] T.K. Dutta and S. Kar, "On prime ideals and prime radical of ternary semirings", Bull. Cal. Math. Soc. 97 (5) (2005) 445-454.
- [2] T.K. Dutta and S. Kar, "On regular ternary semirings", Advances in Algebra. Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (New Jersey, 2003) 343–355.
- [3] T.K. Dutta and S. Kar, "On semiprime ideals and irreducible ideals of ternary semirings", Bull. Cal. Math. Soc. 97 (5) (2005) 467-476.
- [4] Harish Ganesh Nemade, ϕ Prime Subtractive ideals in Ternary Semirings", Journal of Emerging Technologies and innovative Research, 12(9), (2025) 198-201.
- [5] Ahmad Khaksari, Gh. Moghimi and S. J. Bavaryani, "φ-Prime Subtractive Ideals in Semirings", International Journal of Algebra, 7(15), (2013) 717-721.
- [6] A. Khaksari, S. Jahanpanah and A. Jafari, "\(\phi\)-Primary subtractive Ideals in Semirings", Int. Mathematical Forum, vol 8(36), (2013) 1761-1765.

- [7] D.H. Lehmer, "A Ternary Analogue of Abelian Group", Amer. J. Math. 59 (1932) 329–338.
- [8] W.G. Lister, "Ternary rings", Trans. Amer. Math. Soc. 154 (1971) 37–55.

