JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ROLE OF AGNI (TEMPERATURE) IN AYURVEDIC PHARMACEUTICS – FROM TRADITION TO MODERN STANDARDS

¹Dr Devraj J Saroj, ²Dr Maitry Sachinwala

¹Assistant Professor, Vijyashree Ayurvedic Medical College and Hospital, Jabalpur, Madhya Pradesh, India. ²Assistant Professor, Parul Institute of Ayurved, Vadodara, Gujarat, India.

ABSTRACT

Introduction: Ayurveda recognizes Agni (fire/heat) as a transformative principle central to both human physiology and pharmaceutical processes. In pharmaceutics, temperature regulation ensures purification, transformation, stability, and therapeutic efficacy of formulations ranging from herbal decoctions to Rasaushadhi (Herbo-mineral preparations). Materials and Methods: This review based on classical texts (Charaka Samhita, Sushruta Samhita, Ashtanga Hridaya) and modern scientific literature sourced through targeted keywords such as Agni, Bhasma, and Ayurvedic pharmaceutics. Data were synthesized to correlate traditional heating methods (Shodhana, Paka, Puta) with contemporary analytical findings (XRD, SEM, HPTLC) and GMP guidelines. **Results and Discussion:** Temperature is shown to be the pivotal factor in drug transformation, determining safety, efficacy, and reproducibility. Classical classifications of Agni (e.g., Mridu, Madhyama, Tivra Agni) and specialized systems such as Puta provide frameworks for heat application, ensuring detoxification, nanoparticle formation, and shelf-life stability. In Sneha Kalpana and Avaleha Kalpana, precise Paka Lakshanas mark therapeutic readiness, while in Rasashastra preparations, controlled heating achieves Sukshmatva, Laghutva, and Yogavahitva. Modern technologies such as programmable furnaces, thermocouples, and advanced analytical tools quantify and validate these processes, bridging empirical tradition with scientific reproducibility. Conclusion: Agni functions as both a philosophical and technological cornerstone in Ayurvedic pharmaceutics. Its controlled application ensures purification, transformation, and enhanced bioavailability. Integration with modern tools strengthens standardization and global acceptability, making temperature the decisive mediator between traditional wisdom and scientific validation.

Keywords: Ayurveda, Agni, Paka, Puta, Rasaushadhi, Ayurvedic pharmaceutics, temperature regulation.

INTRODUCTION

Ayurveda, the ancient system of medicine originating in India, emphasizes a holistic approach to health, integrating physical, mental, and spiritual well-being.[1] Central to Ayurvedic pharmaceutics is the concept of Agni, the principle of transformation and metabolism, which extends from digestion in the human body to the preparation and processing of medicinal formulations. In Ayurvedic pharmaceutics, Agni is not merely a metaphorical concept but a practical regulator of temperature, determining the efficacy, safety, and stability of herbal, mineral, and herbo-mineral/metallic preparations.

Temperature plays a critical role in the transformation of raw materials into therapeutic forms. Classical methods such as Shodhana (purification) [2], marana (incineration) [3], puta (calcination) [4], and paka (cooking) [5] rely on precise control of heat to modify chemical and physical properties, enhance bioavailability, and eliminate toxicity. For example, the preparation of Bhasma (calcinated mineral/metallic powders) [6] requires repeated heating cycles at defined temperatures to convert metals into bioavailable and safe forms. Similarly, the preparation of medicated oils (Sneha Kalpana) [7], decoctions (Kwatha) [8], and confections (Avaleha) [9] depends on careful thermal regulation to optimize extraction, stability, and therapeutic potential of active constituents.

Modern research has begun to correlate classical temperature-based practices with scientific principles. Thermochemical studies, X-ray diffraction (XRD), scanning electron microscopy (SEM), and other analytical techniques have confirmed that controlled heating induces structural changes, nanoparticle formation, and chemical transformations essential for efficacy. Furthermore, research has demonstrated that deviations from optimal temperature ranges can lead to degradation of bioactive constituents, incomplete purification, or formation of toxic by-products, highlighting the critical nature of thermal control in Ayurvedic pharmaceutics.

Despite these insights, challenges remain in standardizing temperature-dependent processes. Traditional heating methods, such as cow-dung cake furnaces (puta), are variable, relying heavily on empirical experience and organoleptic endpoints such as colour, smell, and texture. This subjectivity makes reproducibility difficult, particularly in the context of modern pharmaceutical manufacturing and regulatory compliance. To bridge this gap, contemporary studies have explored programmable furnaces, thermocouple monitoring, and digital thermal profiling to replicate classical Agni processes with reproducibility and safety, aligning Ayurvedic pharmaceutics with Good Manufacturing Practices (GMP).

The purpose of this review is to analyse the importance of temperature in Ayurvedic pharmaceutics, emphasizing its role in chemical transformation, safety, standardization, and therapeutic efficacy. It synthesizes classical knowledge, modern research findings, and emerging technological adaptations, thereby providing a comprehensive understanding of how temperature functions as a critical determinant in *Ayurvedic* drug preparation. By integrating traditional wisdom with modern science, the review highlights pathways for optimizing efficacy, ensuring safety, and achieving global acceptability of *Ayurvedic* medicines.

MATERIALS AND METHODS

This review collates evidence from classical Ayurvedic texts including the Charaka Samhita, Sushruta Samhita, Ashtanga Hridaya, Sharangdhara Samhita, etc. and modern scientific literature retrieved from Journals. The analysis focused on extracting documented temperature parameters, thermal transformation effects, and standardization data (e.g. XRD, SEM, HPTLC) to correlate classical heating concepts (Shodhana, paka, puta) with contemporary thermal science and GMP.

RESULTS AND DISCUSSION

The Conceptual Framework of Agni and Paka in Pharmaceutics: In Ayurvedic pharmaceutics (Aushadha Nirmana), the principle of Agni (fire/transformation) is fundamental, extending its metaphysical significance into a practical role as the thermal energy essential for drug preparation. The classical methods of Agni Tapa (direct heat) and *Bhanu Tapa* (solar heat) form the foundation of pharmaceutical operations. The entire process is governed by the attainment of *Paka*, a state of complete transformation or perfect processing. *Paka* includes a spectrum of heating methods, including Bharjana (frying), Swedana (steaming), and Putapaka (incineration). This principle is central to Samskara (processing), wherein the interaction of a substance (Dravya) with heat enables Gunantaradhanam (Enhancement of existing therapeutic properties and acquisition of new ones).[10] This transformative role of heat is briefly highlighted in Acharya Charaka "Toya Agni Sannikarsha" the critical interaction with water and fire.[11]

Classical Systems for Classifying and Sourcing Heat: Ancient Ayurvedic texts present sophisticated, multitiered systems for classifying heat intensity, moving well beyond simple qualitative descriptions. One such framework is the six-tier system (Shadvidha), applied particularly in preparations like Arka Kalpana. In this system, heat is categorized into six distinct types - Dhumagni, Dipagni, Mandagni, Madhyamagni, Kharagni, Bhatagni.[12] Six types of Agni are described in sequence. Dhumagni is characterized by smoke without flames, while *Dipagni* arises when the intensity increases two to four times of *Dhumagni*. A still stronger flame forms *Mandagni* with an intensity four times greater than that of Dipagni, and when doubled it becomes

Madhyamagni, a balanced heat. Kharagni high-intensity flame used for all pharmaceutical processes. The most intense is *Bhatagni*, where flames rise to the vessel's top and spread in all directions. Each stage of heat was carefully defined with prescribed quantities of fuel to ensure precision.

The principle of *Agni* is closely integrated with the *Puta* system, which serves as the unit of heat essential for the proper Paka (processing) of Rasadi Dravya. A widely practiced three-tier (Trividha) classification distinguishes Mridu Agni (mild), Madhyama Agni (moderate), and Tivra Agni (intense), each produced through specific Putas.[13] For example, Lavaka and Kapota Puta generate Mridu Agni; Kukkuta and Varaha Puta produce Madhyama Agni, while Gaja and Maha Puta produces Tivra Agni, with Gajaputa demanding one thousand Upalas. Traditionally, Upalas, particularly Vanyopala derived from forest-grazing cows, were preferred for their ability to produce high and sustained heat and their property of Svanga Shitata (gradual self-cooling), providing a controlled thermal environment ideal for delicate processes such as Bhasma Nirmana. The concept of Puta is further categorized by heat source into Surya Puta, Chandra Puta, and Agni Puta, the latter being the most widely used in Rasaushadhi [14] preparation. To ensure reproducibility, Acharyas standardized these methods by defining the number of Upalas and constructing pits of precise dimensions for controlled heating, forming the basis of the Trividha Agni system. While these empirical methods were highly effective, they depended on variable natural fuel sources; modern Ayurvedic pharmaceutics now supplements them with controllable sources like LPG and electricity to ensure consistency and standardization.

Table 1: Types of Agni and Their Characteristics

Type of Agni	Features		
Dhumagni	Smoky, no visible flame, produces a large amount of fumes		
Deepagni	Flame is 2–4 times that of Dhumagni		
Mandagni	Flame is 4 times that of Deepagni		
Madhyamaagni	Flame intensity is 2 times that of Mandagni		
Kharaagni	High-intensity flame, used for all purposes		
Bhataagni	High burning flame, spreads evenly across the vessel		

Application in Herbal Formulations: The role of *Agni* in herbal formulations is meticulously defined, with the attainment of *Paka* serving as the decisive marker for concluding the heating process. Each preparation type has its own criteria for determining the correct stage of transformation. In the case of Swarasa (fresh juice extraction) [15], fibrous drugs are subjected to Putapaka, a method where a bolus of the drug is heated indirectly until the outer coating attains the colour of red-hot coal, described as Lepasya Angara Varnata.[16] This ensures complete extraction of the active principles. For *Kwatha* (decoction) [17], the drug is boiled over sustained Mandagni (gentle heat) until the liquid is reduced to one-eighth of its original volume. Various derivatives, or *Upakalpanas*, such as *Pramathya* [18], *Laksharasa* [19], *Yavagu* [20] and *Yusha* [21], follow specific reduction ratios, each designed to target particular doshas (Vata, Pitta, or Kapha).

In Sneha Kalpana [22], the stage of Paka is critical for therapeutic efficacy. Ama Paka (undercooked) has soft Kalka with high water content and crackles on heating, while the Sneha is heterogeneous. Mridu Paka (slightly moist) shows sticky Kalka with traces of water; Sneha emits faint crackling and is ideal for Nasya. Madhyama Paka is water-free, non-sticky, rollable into a Varti; Sneha is frothy or shows froth subsidence, with good colour, odour, and taste. Khara Paka has hard, blackened Kalka and dry Sneha, suitable for Abhyanga. Dagdha Paka is burnt, rough, and charred, with loss of colour, odour, and therapeutic properties. Proper control of Paka ensures the desired consistency, efficacy, and stability of the formulation. [23]

In Avaleha Kalpana [24] preparations, heating is continued until the Tantu (thread-forming) stage, ensuring proper preservation, taste, and therapeutic efficacy. Quality is assessed using classical markers: Tantumatva (thread-like appearance), Peeditomudra (finger prints on pressing), Apsumajjana (sinks in water), Gandhavarnarasodbhava (correct odour, colour, taste), Sthiratva and Kshiptastunishchala (firmness), Sukhamarda (softness for rolling), Sukhasparsha (smooth touch), and Darvipralepa (adhesion to stirring tool).

These markers, described in Sharangdhara Samhita, Bhava Prakasha, and Bhaishajya Ratnavali, ensure proper *Paka*, consistency, and overall quality.[25]

Table 2: Agni Requirements for Various Aushadha Kalpanas

Kalpana	Heat Requirement	Agni Type	Remarks
Swarasa Kalpana	Direct/Indirect heating	Mridu, Madhyama, Tīvraagni	Kalka is covered and heated indirectly
Churna Kalpana	Roasting (Bharjana)	Mandagni	Drugs like <i>Hingu, Kupeelu</i> require roasting before powdering
Kwatha Kalpana	Continuous heat till reduction	Mandaagni	Heat maintained until 16 parts of water with 1 part of <i>Dravya</i> reduces to 1/8 th
Phanta Kalpana	Heating of water	Mandaagni	Pounded <i>Dravya</i> added to heated water
Mantha Kalpana	Churning with cold water	Indirect heat	Friction during churning generates required heat
Avaleha Kalpana	Heating till consistency	Mandaagni	Mixture becomes semisolid, suitable for licking
Vati / Guti / Guggulu Kalpana	Reheating of Kwatha	Mandaagni	Guggulu or Guda added to Kwatha, heated till desired consistency
Guda Paaka	Heating till consistency	Mandaagni	1 part of water and 4 parts of <i>Guda</i> heated to <i>Avalehya</i> consistency
Khanda Kalpana	Frying with Ghrita	Mandaagni	Kalka or Churna fried with Ghrita till 4-5 thread consistency
Sneha Kalpana	Varies on different stages of paka	Mandaagni	Heat energy administered to achieve desired consistency

The Pinnacle of Thermal Processing in Rasashastra: The preparation of Rasaushadhi (herbo-mineral formulations) epitomizes the most precise and transformative use of Agni in Ayurveda. The process begins with Shodhana (purification) [26], where heat is applied through Svedana (sudation) and Paka (processing) removing impurities (Mala) and toxic principles (Visha). Thermal treatment initiates oxidation-reduction reactions that convert raw metals into safer, bioavailable forms, such as the transformation of iron into nontoxic iron oxide nanoparticles in Lauha Bhasma. Similarly, heating detoxifies toxic alkaloids in herbs like Vatsanabha.[27] Modern tools like XRD and SEM confirm that Shodhana reduces microbial load and converts toxic metals into inert forms.

Following purification, Marana (calcination) [28] is undertaken through carefully regulated Puta systems. Bhavana (levigation) [29] softens the drug and makes it more receptive to heat, while Marana applies controlled high temperatures to induce complete transformation into Bhasma. Temperature here governs detoxification, oxidation, particle size reduction, and the acquisition of therapeutic qualities such as sukshmatva (subtlety) and laghutva (lightness). For instance, three Kukkutaputas suffice for Tuttha, whereas Abhraka may demand up to one thousand Gajaputas. The success of Marana is judged by classical Bhasma Pariksha.[30] Rekhapurnatva (fineness filling finger furrows) reflects adequate particle reduction, while Varitaratva (floatability on water) indicates lightness from proper thermal breakdown. Nishcandratva (loss of metallic shine) and Apunarbhava (irreversibility) confirm complete chemical conversion, achievable only at correct heating cycles and peak temperatures. Without proper temperature, Bhasma may remain coarse, retain toxicity, or fail to acquire stability.

Specialized preparations like *Parpati* and *Kupipakva Rasayana* further highlight thermal precision. In *Parpati* Kalpana, the stage of Paka is assessed by texture and the iridescent shine of Mayuracandrika Varna. In Kupipakva preparations, heat is applied in a graded manner, rising from Mridu Agni (150-250 °C) to Tīvra Agni (500-650 °C), to enable sublimation and compound formation. Thus, temperature is not just a technical parameter but the very determinant of safety, efficacy, and pharmacological potency in Rasaushadhi preparation. It ensures that physical, chemical, and energetic transformations are complete, producing formulations that pass both classical tests and modern scientific validation.

Mechanisms of Transformation, Stability, and Enhanced Bioavailability: In Rasashastra, the judicious application of Agni governs every stage of Rasaushadhi preparation, ensuring that crude, unstable or toxic substances are transformed into safe, stable, and therapeutically potent medicines. Heat acts at multiple mechanistic levels: it decomposes undesirable impurities, drives oxidation-reduction reactions that convert raw metals and minerals into bio assimilable forms, and facilitates the extraction and solubilization of active phytoconstituents. Thermal processing also reorganizes materials into optimized nano- and microarchitectures, directly enhancing their pharmacological performance.

Stability is another crucial dimension shaped by Agni. Correct heating removes residual moisture, inactivates degradative enzymes, and stabilizes active principles, thereby preventing spoilage and degradation. In Sneha Kalpana (preparation of medicated oils and ghee), maintaining temperatures around 90–110 °C evaporates water and prevents rancidity, while in *Bhasma Nirmana*, high-temperature calcination converts metals into inert, nanocrystalline oxides resistant to environmental decay. Modern analytical studies validate these observations, showing that optimized thermal treatment lowers peroxide values in oils, reduces microbial load, and significantly extends shelf-life.

Agni not only drives chemical reactions but also strengthens and stabilizes the bonding among particles, ensuring structural integrity during processing. Beyond this transformative role, Agni functions as a fundamental bioenhancer (Yogavahi) through calcination, metals are reduced to nano-sized particles with vastly increased surface area, enhancing absorption and systemic availability. In herbal preparations, moderate heating between 70-100 °C optimizes the release of thermolabile constituents such as alkaloids and flavonoids, thereby improving therapeutic bioavailability. Contemporary pharmacokinetic studies confirm these principles, showing that heat-processed formulations yield higher plasma concentrations of active compounds compared to their raw forms. Thus, the pinnacle of thermal processing in Rasashastra lies not only in detoxification and preservation but also in imparting the subtle qualities like Sukshmatva, Laghutva, and Yogavahitva, that make Rasaushadhis uniquely potent and therapeutically reliable.

Standardization and Modern Integration: Although the classical system of *Agni* application in *Rasashastra* is profound, its dependence on subjective Lakshanas (organoleptic markers) and naturally variable fuel sources often limits reproducibility. In the present era, Good Manufacturing Practices (GMP) demand standardized, validated and reproducible methods. This has prompted a necessary convergence between traditional empirical wisdom and modern scientific technology. A significant advancement in this integration is the quantification of traditional heat categories: Mridu Agni, Madhyama Agni and Tivra Agni with 300–900 °C. Such mapping allows ancient protocols to be reliably reproduced under laboratory and industrial conditions.

Technological innovations further support this transition. Programmable electric furnaces and controlled heating systems now simulate classical *Puta* cycles with precise temperature–time profiles, ensuring uniformity in Bhasma preparation. These instruments preserve the spirit of traditional methodology while eliminating variability. At the same time, advanced analytical tools such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-performance liquid chromatography (HPLC), and gas chromatographymass spectrometry (GC-MS) validating classical Paka Lakshanas. Changes once judged by colour, texture, or behaviour are now validated by measurable parameters like nanoparticle size, crystalline structure, phytochemical profile, and reduced toxicity. This synergy of tradition and science ensures batch-to-batch consistency, enhances safety, and paves the way for the global acceptance of Ayurvedic formulations without compromising their therapeutic essence. Looking ahead, emerging tools such as AI-driven (Artificial Intelligence-driven) predictive modelling and IoT-enabled (Internet of Things-enabled) smart furnaces hold promise for further refining, automating, and scaling these ancient principles with unprecedented precision, realizing a seamless fusion of empirical heritage and scientific rigor.

CONCLUSION

Agni in Ayurvedic pharmaceutics is both a transformative principle and a precise technological tool. From Shodhana and Bhasma Nirmana to specialized preparations like Parpati and Kupipakva Rasayana, controlled application of heat ensures purification, stability, and enhanced bioavailability. Classical Paka Lakshanas, once judged organoleptically, are now validated through modern techniques such as XRD, SEM, and HPLC, confirming their scientific reliability. The integration of programmable furnaces, quantified heat ranges, and advanced analytics bridges ancient wisdom with modern standardization, ensuring reproducibility and safety. Emerging technologies like AI-driven modeling and smart furnaces promise even greater precision. Thus, Agni stands as a timeless mediator between tradition and science, ensuring that transformation remains the foundation of therapeutic efficacy.

REFERENCES

- Sushruta Samhita, Sutrasthana, 8th ed. Varanasi: Chaukhamba Orientalia; 2005, Dosha-Dhatu-Mala 1. Kshaya Vriddhi Vijnaniya Adhyaya 15, Verse 41, Page No. 75.
- Acharya Sadanada Sharma, Rasa Tarangini, Translated by Shri Kashinath Shastri, 11th Edition, Reprint 2004, Motilala Banarsidas, New Delhi, Chapter 2, Verse 52, Page No. 22
- Dr. C. B. Zha, Ayurvediya Rasashastra, 2nd Edn, Chaukhambha Surbharati Prakashana, 2002, Page
- Shastry Ambikadatta, Rasaratna Samucchaya of Sri vaghbhata, Varanasi, Chowkambha Amarabharati 4. prakashana, 8th edition; Chapter 10, Verse 47, Page No. 164.
- Radhakanthadeva, Shabdakalpadhruma, 5. Bahudureya Dwiteeya Delhi, khanda. Nagpublishers, 1987; Page No. 88-89.
- Sharma H.S, Hindi commentary on Rasendra Mangala of Nagarjuna, Chaukhambha Orientalia, Varanasi; 2003, Edition Ist, Chapter 2, Verse 46, Page No. 45.
- Shrivastava.S, Sharangdhar Samhita, Chaukhamba Orientalia, Madhyam khanda, Chapter-9, 1996, 7. Page No. 215-243.
- Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, Chapter 2, Verse 1, Reprint 2021; Page No. 144.
- 9. Pt. Parashuram Shastri Vidyasagar (eds), Sharangadhara Samhitha, 1st ed. Varanasi: Chowkhamba Krishnadas Academy, Madhyama Khanda 8/1. 2013; Page No. 206.
- 10. Charaka Samhitha of Agnivesha, Vaidya Manorama Hindi commentary, Vol1, Vimana Sthana, Varanasi, Chowkambha, Surabharathi Prakashana, chapter 1, shloka 21, Reprint 2015; Page No. 554.
- 11. Charaka Samhitha of Agnivesha, Vaidya Manorama Hindi commentary, Vol1, Vimana Sthana, Varanasi, Chowkambha, Surabharathi Prakashana, chapter 1, shloka 21, Reprint 2015; Page No. 554.
- 12. Pandith Mukunda Rama, Arkapraksha of Ravana, Mumbai, Shri Venkateshwara Press, Chapter 1, Verse 80-86, Reprint 2019; Page No. 18-19.
- 13. Sadanand Sharma, Rasa tarangini, 3rd edn., Motilal Banarasidas Publication, Delhi, Chapter 2, Verse 52, 1986, Page No. 22.
- 14. Rasa Vagbhata, Rasa RatnaSamucchaya, Indian Medical Practitioners Cooperative Pharmacy Ltd, Adyar, Chennai, 1st Ed, 28 (Uttara Khanda 17)/1-2, 1963; Page No. 453.
- 15. Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 1, Verse 2, Reprint 2021; Page No. 138.

- 16. Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 1, Verse 21, Reprint 2021; Page No. 141.
- 17. Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 2, Verse 1, Reprint 2021; Page No. 144.
- 18. Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 2, Verse 150-151, Reprint 2021; Page No. 164.
- Dravyaguna Vigyana of Vaidya Yadavji Trikamji Acharya, Kolkata, Janawani Press and Publication Limited, Reprint 2010.
- 20. Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 2, Verse 152-153, Reprint 2021; Page No. 164.
- 21. Sharangdhar Samhita, Dipika Hindi commentary by Brahmanand Tripathi, Choukhambha Sanskrit Bhawan, Varanasi, 2011, Madhyama khanda, Chapter 2, Verse 154.
- Shastri.K and Chaturvedi.G, 2013, Charaka Samhita, Chaukhambha Bharti Academy, Volume 1, 22. Sutrasthan, Chapter-13, Page No. 255-280.
- 23. Shrivastava.S, Sharangdhar Samhita, Chaukhamba Orientalia, Madhyam khanda, Chapter-9, 1996, Page No. 215-243.
- 24. Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 8, Verse 1, Reprint 2021; Page No. 206.
- Sharangadhara Samhitha of Aadhamalla virachitha 'Deepika Vyakhya'& Pandit Kashiram Vaidya, MadhyamaKhanda, Varanasi, Chowkambha Surabharathi Prakashana, chapter 8, Verse 3, Reprint 2021; Page No. 207.
- Acharya Sadanada Sharma, Rasa Tarangini, Translated by Shri Kashinath Shastri, 11th Edition, Reprint 2004, Motilala Banarsidas, New Delhi, Chapter 2, Verse 52, Page No. 22.
- 27. Angadi R. Rasa Tarangini of Sri Sadanandasarma, 1st Ed. Varanasi: Chaukhamba Surbharati Prakashan. Chapter 24, Verse 19-25. 2015. Page No. 436.
- 28. Dr. C. B. Zha, Ayurvediya Rasashastra, 2nd Edn, Chaukhambha Surbharati Prakashana, 2002, Page No. 73.
- Charaka Samhita, Kalpasthana, Reprint edition, Varanasi: Chaukhambha 29. Acharya YT. Orientalia; 2004, Chapter 12, Verse 48.
- Dr. Ashok D Satpute, Rasaratnasamucchaya Sanskrit text with English translation, Delhi, 30. Chaukhambha Sanskrit Pratishthan, 2003; Chapter 10, Verse 48-50, Page No. 234.