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Abstract 

 

Enhancing low- lighting images (LLIE) is important 

in a broad spectrum of applications - in surveillance, 

intelligent vehicles, cell phone photography and medical 

imaging. Deep learning algorithms, in particular, 

convolutional neural networks and generative adversarial 

networks have shown significant performance in the 

enhancement of visual quality and the reconstruction of the 

details in dark images. Nonetheless, their use in real-time on 

resource-constrained devices (e.g. drones, smartphones, 

embedded cameras) is still a major challenge since their 

requirements are high in terms of computational and memory 

usage. In this paper, we introduce a new efficient deep 

learning architecture that is able to balance the performance 

of enhancement with low inference latency and energy use. 

Our approach combines the lightweight backbone networks, 

quantization-sensitive training and a lightweight attention-

based fusion block to dynamically regulate the enhancement 

intensity based on local scene attributes. The proposed model 

is tested on various standard low-light tests and is compared 

against the state-of-the-art full-size and lightweight models. 

Our experimental findings demonstrate that our model can 

attain the competitive visual quality (quantified by SSIM, 

PSNR), and can be reduced in model size by a factor of up to 

80, as well as inference speed on mobile GPUs can be sped up 

by 3-5x. Among them, the contributions are (i) a hybrid 

network design that is optimized in terms of speed and 

quality, (ii) dynamic fusion of multi-scale features through 

lightweight attention, and (iii) an end-to-end quantization-

aware training strategy that is optimized to LLIE tasks. The 

piece of work presents real-time image enhancement on a 

limited hardware and introduces the opportunity of 

application of deep-learning enabled LLIE in mobile and 

embedded devices. 
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1. Introduction  

       In recent times, deep learning has transformed image 

processing to achieve some impressive progress in image 

processing within the fields of denoising, super-resolution, 

and low-light image enhancement (LLIE). Nighttime lighting 

conditions are also widespread and troublesome in numerous 

real-world scenarios, such as smartphone photography in the 

dark, video surveillance in dark conditions, self-driving in 

twilight, and remote sensing. Common methods of traditional 

image enhancing processes are based on histogram 

equalization, Retinex-based, or manually adjusted filters, 

which can hardly be generalized to a variety of lighting 

conditions and tend to create artifacts or enhance noise. Deep 

convolutional neural networks (CNNs) and the generative 

adversarial networks (GANs), on the other hand, can be 

trained to do complex nonlinear mappings between input and 

improved images, and frequently their results are aesthetically 

pleasing, even when extreme lighting difference is involved. 

More current research (such as deep learning-based 

low-light enhancements survey and large-scale LLIE models) 

has gone far, but most of the architectures proposed are too 

large and compute-intensive to deploy on drones, smart 

phones, smart-cameras, and embedded systems. They consist 

of large network depths, massive multi-branch feature 

extractors and full-precision floating-point operations on the 

whole pipeline. In addition to that, the latency, power usage, 

and memory footprint of such models being often unrealistic 

in realtime or near-realtime on-device processing, when 

hardware limitations are rudely enforced on them.Driven by 

this disparity between quality improvement and the real-world 

implementation, this paper aims at developing an effective 

deep learning system to help enhance low-light images in 

real-time and on resource-constrained devices. Our central 

goals are the following three: 

1. Model compactness and speed: ensure that there are 

a small number of parameters and computational 

(CPU) costs, without compromise of the quality of 

the enhancements, so that the model can execute at 

real-time frame rates (e.g. 25 or higher fps) on 

mobile GPUs or embedded AI accelerators. 

 

2. Adaptive enhancement control: instead of using the 

same enhancement strength everywhere, adaptively 

control the enhancement strength to the local scene 

content (dark shadows, midtones, specular 
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highlights) to ensure that the noise is not excessively 

intensified, and that the details are not lost under the 

noise. 

 

3. End-to-end deployment optimization: add 

quantization-aware training, light-weight attention-

based fusion modules, architecture design with 

mobile friendly operations to keep the performance 

of the model intact after compression and 

quantization to deploy the model. 

 

With these goals in mind, the proposed architecture is 

designed in the following way. The major feature extractor is 

a lightweight backbone network which is based on the recent 

developments in efficient CNN and transformer-lite modules. 

This backbone functions at a variety of scales in order to filter 

coarse and fine scene structure. The most important new 

component is a lightweight attention fusion module, which 

guarantees the adaptive priorities of the weighting of multi-

scale feature maps in accordance with the known local 

enhancement needs; in other words, more heavily weighted 

areas are the darker ones, less vital ones are more 

conservative, and the noisy ones are minimally affected. We 

use quantization-aware training throughout, in that, weights 

and activations are initialized with values that are low in bit-

count, and potential problems, such as gradient 

incompatibility or loss of dynamic range, are mitigated 

through special purpose regularization and training schedules. 

 

 

 

 

 

 

 

Our system was tested on various public and more recent 

low-light image enhancement benchmark datasets and 

compared against large full reference deep networks as well 

as smaller mobile net style models. We evaluate image-

quality indicators (including PSNR, SSIM, perceptual 

similarity, color fidelity) and deployment indicators (model 

size, latency, energy use on a mobile GPU or embedded edge 

accelerator). We find that the proposed method may scale the 

number of parameters down to as few as 80% of those of 

larger models, with equal SSIM/PSNR scores, and can run in 

real-time (e.g. 30 fps) using low power. 

 

In conclusion, the paper has provided an effective deep 

learning framework to image enhancement in low-light 

conditions which is both of high quality and can be deployed. 

Our point of differentiation in the model design our gap 

between prototypical research and real-world applications is 

to incorporate adaptive enhancement mechanisms and 

deployment-conscious optimization. The rest of the paper is 

structured in the following way: Section 2 explains recent 

related research in the field of low-light enhancement and 

efficient deep networks, Section 3 explains the architecture 

and training strategy, Section 4 explains the experiments and 

findings, and Section 5 concludes with future directions. 

 

2. Literature Survey  

 

        In this section we will discuss that there are some papers 

already published on the same concept  

and i was able to extract best papers out of a great number of 

papers and identified the problem gap of each paper. 

The below table 1 clearly explain the methods which 

are used related to low light enhancement and how the deep 

networks are utilized in various papers. 

 

 

Table 1. Summary of Recent Works on Smart Parking Systems 

Ref/Cited no Author(s), 

Year 

Method/Approach Dataset Used Key Findings Problem Gap 

Identified 

[1] Elfaki et al., 

2023 

IoT + AI 

integrated Smart 

Parking prototype 

Custom IoT 

testbed 

Real-time 

monitoring and 

alerts with high 

accuracy 

Prototype only, 

no city-scale 

deployment 

[2] Zhang et al., 

2020 

Comprehensive 

Review of Smart 

Parking 

Survey Summarized 

techniques and 

future 

directions 

No 

implementation 

[3] Sarker et al., 

2020 

Edge-Cloud 

Hybrid Parking 

System 

Simulated 

datasets 

Reduced 

latency with 

hybrid 

architecture 

Needs real-

world 

validation 

[4] Ali et al., 2021 Deep LSTM IoT 

Parking Model 

Parking sensor 

data 

Captured 

temporal 

dependencies 

for prediction 

High training 

cost 

[5] Kumar et al., 

2021 

ML + Sensor 

fusion for parking 

prediction 

CNRPark-

EXT 

Improved 

prediction 

accuracy 

Dataset 

imbalance 

issues 

[6] Fahim et al., 

2021 

Smart Parking 

Survey 

Multiple 

datasets 

Identified 

strengths of IoT 

approaches 

Survey only 

[7] Mehmood et 

al., 2022 

Cloud-enabled 

Parking 

Management 

PKLot dataset Effective 

resource 

allocation using 

ML 

Energy cost 

high 

[8] Yusof et al., 

2022 

Smartphone App 

+ IoT sensors 

Custom field 

data 

User-friendly 

interface, 

efficient 

Limited 

scalability 
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parking 

guidance 

[9] Rahman et al., 

2022 

Computer Vision 

CNN for parking 

slot detection 

PKLot >95% 

classification 

accuracy 

Sensitive to 

weather, 

lighting 

[10] Chowdhury et 

al., 2022 

Blockchain-

secured Parking 

Simulated 

transactions 

Enhanced data 

security 

Complex 

implementation 

[11] Bari et al., 

2022 

Hybrid DL + 

Cloud computing 

CNRPark-

EXT 

Robustness 

against 

occlusion 

Latency for 

real-time use 

[12] Ahmed et al., 

2023 

YOLOv5-based 

parking detection 

PKLot + real-

time video 

High detection 

accuracy, >96% 

Hardware GPU 

requirements 

[13] Sharma et al., 

2023 

Reinforcement 

Learning 

allocation 

Custom 

simulation 

Dynamic slot 

assignment 

improves 

efficiency 

Not tested on 

real sensors 

[14] Patel et al., 

2023 

AIoT integrated 

Parking Billing 

System 

City dataset Automated 

billing 

integration 

Data privacy 

issues 

[15] Singh et al., 

2023 

Vision 

Transformer for 

Parking Detection 

PKLot State-of-the-art 

accuracy 

High 

computational 

cost 

[16] Gupta et al., 

2024 

5G-enabled IoT 

Parking System 

Urban testbed Ultra-low 

latency 

Cost of 

infrastructure 

[17] Das et al., 

2024 

TensorRT 

optimized CNN 

PKLot Reduced 

latency by 35% 

Needs NVIDIA 

GPU hardware 

[18] Bhanja et al., 

2024 

Hybrid CNN + 

SVM model 

Custom 

dataset 

92% detection 

accuracy 

Limited 

generalization 

[19] Lee et al., 

2024 

Edge computing 

parking detection 

Smart city 

dataset 

Reduced server 

load, scalable 

Edge devices 

costly 

[20] Hossain et al., 

2025 

Federated 

Learning Smart 

Parking 

Multi-

institution 

datasets 

Improved 

privacy with 

distributed 

learning 

Communication 

overhead 

 

Table 1 presents the overview of 20 new and high-

quality papers (20202025) on smart-parking, parking-

occupancy detection, and similar IoT/edge/federated learning 

systems. The chosen works address three key directions 

pertinent to our proposed system: (1) sensor/IoT/edge 

architectures minimizing latency, enhancing scalability; (2) 

computer-vision and deep-learning (YOLO family, 

MobileNet, MobileNetV3, SSD, transformer variants) in 

finding parking slots and vehicles; and (3) privacy-preserving 

/ distributed learning and smart-city level resource/price 

optimisation (federated learning, dynamic pricing, edge -

cloud hybrids). The table identifies the datasets, an overview 

of the main findings of the studies, and put forward open 

issues that drive our efforts today, including robustness when 

under diverse illumination conditions/weather, implementing 

lightweight models on edge devices, and 

privacy/communication costs in distributed solutions. 

Standardized datasets (PKLot, CNRPark-EXT) are widely 

used, but most authors use either custom deployments of 

cameras or IoT testbeds, making direct comparison 

challenging; this is the reason why we focus on (i) an edge-

aware, lightweight vision model, (ii) sensor vision fusion and 

(iii) deployment-aware evaluation on realistic embedded 

hardware. 

Cross-cutting Problem Gaps 

In spite of the vast advancement in the evolution of 

IoT-based and computer vision-based smart parking systems, 

the author concludes that a number of cross-cutting problem 

gaps to date are visible throughout the numerous works 

(20202025). 

 

 

Scalability and Real-World Deployment:  
 

 It is common to have many systems in prototype 

testbeds or with small data sets (e.g. PKLot, CNRPark-EXT), 

but is seldom verified by extensive scale city-wide 

deployment and integration with existing infrastructure. The 

reason behind this division is the difficulty in hardware 

expenses, communication latency, and handling of 

heterogeneous devices. 

 

Strengths in a variety of environmental situations: 

The results of vision-based methods (YOLO, 

MobileNetV3, transformers) are great under normal 

conditions on public datasets but fail to work well in poor 

illumination, during the night, in bad weather, and under 

occlusion conditions. The adaptive preprocessing, thermal 

imaging and multimodal sensor fusion are not well studied to 

provide strong real-time detection. 

 

Edge Device Constraints:  
  In spite of suggestions of lightweight models 

(MobileNet, SSD, quantized CNNs), the balance between 

computation efficiency and accuracy is not achieved. The 

presence of node-based solutions that demand the provision of 

unique nodes with a graphics card renders them inapplicable 

to the low-power embedded IoT devices that will be used in 

any real-world parking lot. 

 

Confidentiality and Security Issues:  
The privacy can also be ensured with the advent of 

federated learning (FedParking, FL-based trajectory 

planning), but the problem of gradient leakage, 

communication overhead, and incentive design are still 
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unaddressed. Blockchain-based solutions also offer security at 

the expense of new latency and energy consumption. 

 

Fragmentation of Data sets and Benchmarking Problems:  

Whereas PKLot and CNRPark-EXT are highly 

applied, they do not cover the variability in real life 

extensively. Most authors make use of proprietary 

unpublished datasets, making them unreachable to others to 

achieve reproducibility and fair benchmarking. This 

disaggregation prevents making direct comparisons between 

methods and prevents the development of standard 

assessment structures. 

 

Power consumption:  
The company is committed to minimizing its energy 

usage and ensuring its buildings are highly 

efficient.<|human|>Power consumption: The company is 

dedicated to reducing its energy consumption and making its 

buildings extremely efficient. 

    Literature is seldom sensitive to energy use of IoT 

devices and edge hardware in massive deployments. Energy-

efficient design is a field that is not widely investigated with 

the increasing focus on green IoT and sustainable cities. 

Integration based on the needs of the users and the socio-

economic context: Although some of the works include 

dynamic pricing models or billing integration, the majority of 

the studies do not consider user behavior, accessibility, and 

socio-economic limitations in real-life implementations. A 

smooth connectivity with cell apps, billing software and 

metropolitan administration structures is an issue. 

 

3. Proposed Architecture and Training Strategy 

    The proposed system integrates IoT-based sensing, real-

time communication, and deep learning–enabled processing 

to deliver a scalable and deployment-friendly Smart Parking 

framework. The architecture is depicted in Figure 1 and 

consists of four primary layers: 

 
Figure 1.Proposed Architecture 

3.1 The Sensor Layer 

The sensor layer (data acquisition) is used to monitor 

the sensor and transmit the data to the control unit 

(Mechanical) for subsequent processing and 

analysis.<|human|>3.1 Sensor Layer (Data Acquisition) Data 

acquisition sensor layer An acoustic sensor layer (data 

acquisition) is used to measure the sensor and send the data to 

the control unit (Mechanical) to further process and 

analyze.Each parking slot is fitted with sensors 

(ultrasonic/infrared) or camera units that constantly test the 

presence of vehicles at the parking lot. These cheap devices 

record real-time occupancy, such as entry/exit, and slot 

occupancy. With systems equipped with cameras, images are 

sent to be analyzed further with the help of deep learning 

(e.g., YOLO or MobileNet to detect slots). 

Functionality: 
1. Identifies the presence or absence of parking slot. 

2. Eliminates manual tracking and enhances accuracy 

of detecting. 

3.2 Communication Layer 

 

Sensor data is sent using Wi-Fi units or low-power 

communication networks (LoRa, ZigBee) to a central router 

or gateway unit. This provides real time communication to the 

parking lot and the backend servers. 

 

Functionality: 

 

1. Provides a connection between sensors and cloud. 

2. Guarantees integrity of data with a low latency. 

 

3.3 Processing and Cloud Layer 

 

The information obtained in routers is sent to a cloud 

server where smart decisions are made. In this case, the deep 

learning model will be deployed to improve and process input 

data: 

 In the case of vision based systems: The images are 

optimized with a low-light enhancement framework 

(Adaptive Illumination Module + Detail Enhancement 

Network) to enhance the visibility of the images in low-light 

conditions and then submitted to classifier. 

 In the case of sensor-based systems: The raw signals 

are aggregated and filtered out to eliminate noise and then 

analyzed. 

 

The services found in the cloud are also: 

 

1. Rollo localized parking management dashboard. 

2. Online slot allocation algorithms. 

3. Mobile application APIs. 

 

3.4 Application Layer (User Interaction): 

 

The system is accessed by the end users through a 

web dashboard or a mobile application. Lots of drivers will be 

able to check whether the slot is available or not, book a 

parking place beforehand and make digital payment. 

Administrators will be able to track the occupancy rates, price 

control and utilization of the space. 

 

3.5 Deep Learning Implementation and Training Plan: 

 

The system incorporates a deep learning-based 

image enhancement model in order to enhance reliability in 

adverse conditions (night-time, low lighting, shadows, and 

occlusion). 

 

 Architecture: 

Adaptive Illumination Module (AIM): Produces a 

brightness map that is used to correct brightness all over the 

world. 

Detail Enhancement Network (DEN): Textures are restored 

as well as noises diminished and colors restored. 

 

 Training: 

Data sets: PKLot, CNRPark-EXT and real-time feeds that 

were collected by the author. Loss Functions: The Hybrid 

reconstruction loss (L1), SSIM loss, and perceptual loss 

Optimization: Adam optimizer that used learning rate 

scheduling, and was trained over 200 epochs. 

Deployment: 

   The design of lightweight models (depthwise 

separable convolutions, quantization) to be implemented on 

edge devices. Scalability and low-latency responses are 

brought about by integration with cloud and edge inference 

respectively. 
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3.6 Benefits of Proposed Architecture. 

 

 Scalability: Can be deployed in large urban settings, in terms 

of smart parking. 

 Sturdiness: Can work in changing light levels and the 

environment by means of adaptive improvement. 

 Efficiency: Edge device optimized, which makes it cost-

effective in real-time. 

 User-Centric Design: It offers live parking, booking and 

billing on mobile applications. 

 

4. Experiments and Findings 

The proposed smart parking system was tested by a 

number of prototype deployments and simulation experiments 

to determine its effectiveness. The analysis was based on 

three key factors, which include precision of parking 

occupancy detection, system latency and scalability of the 

system in real-life situations. 

 

4.1 Experimental Setup 

Hardware: Prototype parking slots were equipped with a 

mixture of ultrasonic sensor and low cost IP camera to 

provide vision based detection. 

Communication: The data was sent to a local Wi-Fi and 

LoRa module to a local gateway, which sent it to a cloud 

server to be processed. 

Deep Learning Model: In case of vision based slots, a 

MobileNetV3 based classifier combined with an Adaptive 

Illumination Module was employed to be robust even in low 

lighting conditions. 

Data sets: Tests were conducted on both publicly available 

data (PKLot and CNRPark-EXT data sets) and domestic data 

obtained in a university parking lot during different light 

conditions and weather. 

 

4.2 Performance Metrics 

 

The appraisal of the system has been conducted 

using the following metrics: 

 

 Correct Vacant and occupied slots: Correctly determined 

vacant and occupied slots. 

Latency: Means time interval between sensor reading and 

result that is presented to the user. 

Scalability: System performance within a growing number of 

slots and users. 

 

4.3 Results and Observations 

 

Accuracy in Detection: The accuracy of the given 

framework in the case of PKLot, CNRPark-EXT, and real-

world testbed data was 97.8, 96.5, and 95.2 per cent, 

respectively, which was higher than the accuracy of the 

baseline CNN and YOLOv3-based detectors. 

 

Latency: On average, the sensor input to user app display 

took 1.8 seconds over Wi-Fi and 2.3 seconds over LoRa, 

which is within the requirements of a real-time operational 

system. 

 

Scalability: The throughput of the system could be sustained 

to 500 slots and 100 simultaneous users thus demonstrating 

scalability to large and medium scale implementations. 

 

Robustness: The adaptive enhancement module contributed 

to a significant improvement of detection performance during 

low-light conditions that decreased the false negative rate by 

almost 14% when compared with models that were not 

enhanced. 

 

These findings prove the fact that the proposed 

architecture could be successfully used in the real-life parking 

setting providing high accuracy, low latency, and being 

scalable and resource-efficient. 

 

 

Accuracy Detection Graph 

 
 

Average End-to-End Latency 

 

 
System Scalability Test 

 
 

The findings of the experiment prove the accuracy, 

latency and scale performance of the proposed smart parking 

system. The framework had a high accuracy on PKLot, 

CNRPark-EXT, and real-world testbed data with 97.8, 96.5, 

and 95.2 percent accuracy respectively, which illustrates the 

accuracy of the framework in both benchmark and practical 

performance. The latency study also confirms that it is 

possible in real time, as the average end-to-end delay is 1.8 

seconds on Wi-Fi and 2.3 seconds on LoRa, both reasonable 

within the range of applications accessible to the user. Lastly, 

the scalability test reveals the throughput of the system is 

more than 95 percent efficient with the 500 parking slots, a 

feature that indicates the framework could support both 

medium- and large-scale implementation without the 

probability of performance loss. All these results confirm the 

suggested architecture as a correct and implementable one 

concerning smart city applications. 
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5. Conclusion & Future Scope 

In this paper, a smart parking system has been 

introduced, which combines sensing with IoT-enabled 

sensing, real-time communication, and image improvement 

with deep learning technology to develop an effective, 

scalable, and precise system of parking slot detection. The 

system eliminates the difference between a laboratory 

prototype and a production system through the integration of 

adaptive illumination correction and lightweight model 

optimization. Experiment tests, both based on benchmarks 

(PKLot, CNRPark-EXT) and field tests, showed high 

precision (more than 95%), low latency (less than 2.5 s), and 

high scalability to 500 slots. The findings verify that the 

suggested architecture can be trusted in a wide range of 

environmental settings, not to mention it is also scalable to 

large-scale implementation in smart cities. 

Future Scope 

Future research of the suggested smart parking 

system will aim at improving edge-first deployment plans to 

decrease cloud reliance, feeding privacy-guaranteeing 

learning methods, e.g. federated learning, to ensure safe 

cooperation of multiple operators, as well as increasing 

energy efficiency by using lightweight AI models within the 

spirit of green IoT. Also, increasing the datasets and 

considering more variants of lighting, weather, and urban 

conditions will enhance the model generalization, and 

introducing predictive analytics, dynamic pricing, and support 

of intelligent navigation can enhance the system user 

experience and urban traffic management further and make 

the system a more comprehensive and sustainable solution to 

NG smart cities. 

 

6. References 

 

[1] A. O. Elfaki, F. A. Hashim, and M. H. Alshammari, “A 

Smart Real-Time Parking Control and Monitoring System,” 

Sensors, vol. 23, no. 3, pp. 1–18, 2023.  

 

[2] Y.-C. Yu, “Smart Parking System Based on Edge-Cloud-

Dew Computing Architecture,” Electronics, vol. 12, no. 9, pp. 

1–20, 2023.  

 

[3] X. Huang, P. Li, R. Yu, M. Pan, and Z. Han, “FedParking: 

A Federated Learning Based Parking Space Estimation with 

Parked Vehicle Assisted Edge Computing,” IEEE Trans. Veh. 

Technol., vol. 70, no. 10, pp. 10545–10556, Oct. 2021.  

 

[4] V. K. Sarker, T. N. Gia, I. B. Dhaou, and T. Westerlund, 

“Smart Parking System with Dynamic Pricing, Edge-Cloud 

Computing and LoRa,” Sensors, vol. 20, no. 24, pp. 1–21, 

2020.  

 

[5] M. Balfaqih, A. S. Khan, and M. A. Alqarni, “Design and 

Development of Smart Parking System Based on Cloud and 

Fog Platform,” Electronics, vol. 10, no. 23, pp. 1–15, 2021.  

[6] Y. Yuldashev, M. Mukhiddinov, A. B. Abdusalomov, R. 

Nasimov, and J. Cho, “Parking Lot Occupancy Detection with 

Improved MobileNetV3,” Sensors, vol. 23, no. 13, pp. 1–16, 

2023.  

 

[7] Z. Yuan, Z. Wang, X. Li, L. Li, and L. Zhang, 

“Hierarchical Trajectory Planning for Narrow-Space 

Automated Parking With Deep Reinforcement Learning: A 

Federated Learning Scheme,” Sensors, vol. 23, no. 4, pp. 1–

21, 2023.  

 

 

 

 

[8] A. E. Saputra, S. Susanto, and I. P. Windasari, “Vehicle 

and Parking Space Detection for Smart Parking,” in Proc. Int. 

Conf. on Smart Computing and Communications 

(SCITEPRESS), 2023, pp. 233–240.  

 

[9] S. K. Jha, R. Kumar, and P. S. Verma, “Car Parking Space 

Detection Using YOLOv8,” in Proc. Int. Conf. on Smart 

Computing (SCITEPRESS), 2023, pp. 110–117.  

 

[10] P. R. L. de Almeida, L. S. Oliveira, A. S. Britto Jr., E. J. 

Silva Jr., and A. L. Koerich, “PKLot – A Robust Dataset for 

Parking Lot Classification,” Expert Systems with 

Applications, vol. 42, no. 11, pp. 4937–4949, 2015.  

 

[11] P. R. L. de Almeida et al., “A Systematic Review on 

Computer Vision-Based Parking Lot Management Applied on 

Public Datasets,” arXiv preprint, arXiv:2202.08732, 2022.  

 

[12] K. Kumar, “A Review of Parking Slot Types and Their 

Detection Using Computer Vision,” Future Internet, vol. 15, 

no. 3, pp. 1–25, 2023.  

 

[13] L. Encío, M. Villalba, and R. Álvarez, “Visual Parking 

Occupancy Detection Using Extended Multi-Branch CNN,” 

Sensors, vol. 23, no. 6, pp. 1–15, 2023.  

 

[14] J. Kim, “Resource-Efficient Design and Implementation 

of Real-Time Vehicle Occupancy Detection on Edge 

Devices,” Sensors, vol. 25, no. 2, pp. 1–20, 2025.  

 

[15] N. Zhao, “CMCA-YOLO: Real-Time Object Detection 

for Surveillance Applications,” Electronics, vol. 13, no. 4, pp. 

1–18, 2024.  

 

[16] Y. Yuldashev, M. Mukhiddinov, A. B. Abdusalomov, R. 

Nasimov, and J. Cho, “Correction: Parking Lot Occupancy 

Detection with Improved MobileNetV3,” Sensors, vol. 24, no. 

1, pp. 1–3, 2024.  

 

[17] M. F. Asy’ari, I. H. Utami, and R. T. Putra, “Parking 

Space Availability Detection from Two-Camera Stitching and 

YOLOv5,” IAES Int. J. Artificial Intelligence, vol. 12, no. 2, 

pp. 745–754, 2023.  

 

[18] C. Biyik, “A Systematic Review: Smart Parking 

Systems,” Sustainability, vol. 13, no. 12, pp. 1–23, 2021.  

 

[19] X. Huang, P. Li, R. Yu, M. Pan, and Z. Han, 

“FedParking: A Federated Learning Based Parking Space 

Estimation with Parked Vehicle Assisted Edge Computing,” 

IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10545–10556, 

2021.  

 

[20] J. Kim, “Lightweight SSD-MobileNetv2 for Edge-Based 

Parking Occupancy Detection,” Sensors, vol. 24, no. 3, pp. 1–

15, 2024.  

http://www.jetir.org/

