JETIR.ORG

JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Review on tridax procubens linn

Akshada Vasant Ransing (1), Ms. Pratiksha Rajkumar Ravank'ole (2)

Department of Pharmaceutics, Delight College of Pharmacy, Koregaon Bhima, Pune, Maharashtra, India-412216.

2Assistant Professor, Department of Pharmaceutical Chemistry, Delight College of Pharmacy, Koregaon Bhima, Pune, Maharashtra, India-412216.

Address for correspondence

Ms. Pratiksha Rajkumar Ravankole, Assistant Professor, Department of Pharmaceutical Chemistry, Delight College of Pharmacy, Koregaon Bhima, Pune, Maharashtra, India- 412216.

❖ ABSTRACTS

Tridax procumbens L. (Asteraceae), commonly known as coat buttons, tridax daisy, or "ghamra", is a perennial creeping herb distributed across tropical and subtropical regions worldwide. Traditionally used in folk medicine for wound healing, hemostatic, antimicrobial and anti-inflammatory purposes, T. procumbens has attracted research interest for its diverse phytochemical profile and wide spectrum of biological activities. This review provides a detailed and updated account of the plant's taxonomy, botanical description, geographical distribution, cultivation and propagation, phytochemistry, pharmacological activities, traditional uses, preparations, toxicity and safety, analytical methods, formulation approaches, and future prospects for therapeutic development.

KEYWORD

Oleanolic acid, Centaurein, Fumaric acid, Lauric acid, Lupeol, Luteolin

INTRODUCTION

Tridax procumbens Linn. (Tridax) family Compositae commonly known as 'Ghamra' and in English popularly called 'coat buttons' because of appearance of flowers has been extensively used in Ayurvedic system of medicine for various ailments and is dispensed for "Bhringraj" by some of the practitioners of Ayurveda which is well known medicine for liver disorders. The plant is native of tropical America and naturalized in tropical Africa, Asia, Australia and India [1].

It is a wild herb distributed throughout India [2]. Traditionally herbal medicinal compounds have proven to show several therapeutic benefits and have been utilized several hundred years for curing several ailments in humans. In addition to modern antibiotics usefulness as antimicrobial, there are reports of several plant products proven to show antimicrobial activity in the treatment of various infectious diseases [3]. These species contain various

pharmacological activities due to the presence of various phytochemicals like alkaloids, tannins, flavonoids. Leaves juice extract of Tridax procumbens were used for various infectious skin diseases [4].

T. procumbens is widely distributed in India up to 2400 m above sea level. The leaves of the plant are used as raw feed to cattle and food additive by humans. The leaves have medicinal value and used to treat catarrh, dysentery and diarrhea [5]. The different leaf extracts are used as antiseptic to treat fresh cuts, wounds, burns and in anemia. It also contains hair growth enhancing ability [6].

The evaluation of these drugs is mostly based on:

- Pharmacogenetic investigation
- Phytochemical investigation
- Pharmacological investigation

Kingdom Plantae Plant:

- Sub kingdom. Tracheobionta-Vascular plants
- Division: Spermatophyta
- Subdivision: Magnoliophyte-Flowering plants
- Class: Magnoliopsida Dicotyledons
- Subclass: Asteridae
- Order: Asterales
- Family: Asteraceae-Aster family Genus: Tridas tridax

• Species: Tridax procumbens L. cout bumans

MORPHOLOGY AND CYTOLOGY

Appearance – Tridax procubens is a partial prostate, yearly, climber basil with stalk climbing to 30-50 cm in tallness, divided, thinly hirsute and entrenched at bulges

Flower- Tridax procumbens flower have white rays and yellow disc flower they are about 0.4-0.6 inches (1-1.5 cm) long stalk flower are tubular in nature with hairs having a capitulum inflorescence [7]. This has two types of flower ray's florists and disc florests with basal placentation.[8]

Fruit- Fruit is hard achene covered with hairs and having a feathery, plum like white pappus at one end, which assist in aerial dispersal fruits are achenes that are dark brown to black in color oblong 0.08 inches (2mm) long presence of 58 to 78% light. This are water stress the chromosome numbers are 36 (diploid) and (haploid) in gametes [9]. The prolongation is through spreading steam and seed Production

Calyx- It is represented by scales or reduced pappus.

Leaves- Greeneries are unevenly jagged and usually arrow summit shaped, they are simple ovate, opposite, exstipulate and lanceolate and they are shortly petiole hairy on both surfaces.

Stem and root- Stem are cylindrical, hispid, covered with multicellular hair of mm

tuberculation the base root is strong taproot system. The stem is ascending 30-50 cm height, branched, sparsely hairy rooting at nodes.

Origin and distribution- Tridax procumbent linn is native tropical America and neutralized in

tropical Africa, Australia and India the wild herb is distributed throughout India coat button

are found or road side, waste ground rail roads, dyke, riverbanks, meadow and importance as awed are because of its spreading stem and plentiful seed production.[10]

PHARMACOLOGICAL ACTIVITY

➢ Wound healing

Research indicates that *Tridax procumbens* promotes wound healing [11]. Early studies demonstrated its prohealing properties in animal models [12]. Further work has explored its efficacy in healing wounds complicated by diabetes and confirmed its wound-healing activity, attributing it to phytochemicals like flavonoids and tannins [13].

> Antimicrobial activity

Studies highlight the antimicrobial potential of *Tridax procumbens*. It has shown broad-spectrum antibacterial activity against human pathogens and antifungal effects against various strains, including *Aspergillus niger* [14]. The plant has also demonstrated effectiveness against the parasite that causes leishmaniasis [15].

Anti-inflammatory activity

Tridax procumbens exhibits anti-inflammatory properties. Studies using different animal models of pain and inflammation have shown significant effects [16]. Research has also investigated the molecular mechanisms

underlying this activity, and reports indicate that aqueous leaf extracts can inhibit protein denaturation, a marker of anti-inflammatory action [17].

Antioxidant activity

The plant possesses antioxidant activity. Research has compared its antioxidant capacity to standard antioxidants [18]. Reviews note the high antioxidant potential linked to the plant's phenolic content, and studies have evaluated the antioxidant activity of different extracts [19].

Antidiabetic activity

Studies support the antidiabetic activity of Tridax procumbens. Research in animal models confirmed that oral administration of extracts lowered blood glucose levels [20]. Findings suggest that flavonoids in the plant may help regenerate pancreatic beta-cells. The plant's antidiabetic effects have been noted in conjunction with its antioxidant and anti-urolithiasis properties [21]

Table 1. Parts of Tridax Procubens, Constituents and Uses

Sr.no.	Plant Parts	Chemical	Pharmacological Uses
		Constituent	>
1.	Leaves	Oleanolic acid	Antidiabetic
	1 LE	Centaurein	Anti-inflammatory
	1 2	Luteolin	Blood clotting
	15	B-sitosterol	Tissue repair
		Qurcetin	Anti-microbial
2.	Stem	Procumbenetin Procumbenetia	Antioxidant
		Linoleic	Anti-septic
	1 34	Lupeol	Anti-microbial, Hemostasis
3.	Root	Lauric acid	Anti-inflammatory
		Esculein	Anti-oxidant
		Centaurein	Blood stop
		Palmitic acid	Collagen production increases
		Fumaric acid	Immunomodulatory
4.	Fruit	Catechin	Promote tissue regeneration
		Apigenin	Anti-inflammatory
		Bcarotene	Anti-oxidant
5.	Flower	Apigenin	Promote skin barrier
		Kaempferon	Anti-oxidant, Anti-microbial
		Quercetin	Anti-inflammatory

***** THERAPEUTIC USES

- Healing of wounds Applying fresh leaf juice to wounds, burns, and cuts Hair and cuts hair development and maintenance Applying leaf extract to the scalp can encourage hair growth and stop hair loss.[22]
- Skin conditions Leaf decoction or paste for infections, eczema, and acne Applying an anti-inflammatory poultice or decoction helps to lessen pain and swelling [23]. Issues with the respiratory system Decoction for bronchial catarrh, cold, and cough.
- Dysentery and diarrhea an oral aqueous leaf extract.[24]
- Malaria and fever Leaf decoction is used to treat malaria and as a febrifuge.
- Hepatic conditions in traditional medicine, used as a liver tonic.
- Dental care Leaf paste for toothaches and pyorrhea applied to the gums Issues with the eyes Conjunctivitis eye drops made from diluted leaf juice (folk practice).[25]

***** FUTURE SCOPE

Future Scope: Research on Tridax procumbens' active ingredients, safety, clinical trials, and innovative formulations could lead to its standardization as a herbal medication.

Tridax procumbens still has wide research potential. Future work can focus on:

- Isolation and identification of new active compounds.
- Use of nanotechnology and novel formulations to improve its effect.
- Detailed toxicity and safety studies.
- Clinical trials to prove its medicinal claims.
- Study of its exact action mechanisms.
- Standardization of extracts for quality control.
- Use in polyherbal and biotechnological approaches

CONCLUSION

Tridax procumbens is a multiuse medicinal herb with a strong ethnomedicinal background and growing scientific validation for several bioactivities, notably wound healing and antimicrobial properties. While preclinical evidence is encouraging, robust clinical data and comprehensive safety evaluations are essential before widespread therapeutic adoption. The plant's accessibility and phytochemical diversity make it an attractive candidate for further phytopharmaceutical research.

* RESULT

Tridax procumbens shows many medicinal properties. It has antioxidant, wound healing, antimicrobial, antidiabetic and liver protective activities. The plant also helps in blood clotting and supports immunity. These results agree with its traditional uses in medicine

REFERENCE

- 1. Mungi NA, Galetti M, Ratnam J, Chala D, Sanín MJ, Svenning JC. Alien plants and novel ecosystems in the Greater Tropics. Nature Reviews Biodiversity. 2025 Jul 14:1-7.[1]
- 2. Sharma P, Saini S, Sharma J, Hasanpuri P, Kataria N, Sharma A. Botanical specifications, ethnobotany, phytochemistry, and pharmacology of herb Digera muricata (L.) Mart: a systematic review. Phytochemistry Reviews. 2025 Mar 21:1-29.[2]
- 3. El-Saadony MT, Saad AM, Mohammed DM, Korma SA, Alshahrani MY, Ahmed AE, Ibrahim EH, Salem HM, Alkafaas SS, Saif AM, Elkafas SS. Medicinal plants: bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits-a comprehensive review. Frontiers in immunology. 2025 Apr 28; 16:1491777.[3]
- 4. Shootha D, Tripathi D, Singh M, Rawat P, Srivastava P, Kumar D. Comparative study of phytochemicals and pharmacological properties of different parts of Berberis sikkimensis (CK Schneid.) Ahrendt. Biochemical Systematics and Ecology. 2024 Aug 1; 115:104850.[4]
- 5. Plaatjie MT, Onyiche TE, Ramatla T, Bezuidenhout JJ, Legoabe L, Nyembe NI, Thekisoe O. A scoping review on efficacy and safety of medicinal plants used for the treatment of diarrhea in sub-Saharan Africa. Tropical Medicine and Health. 2024 Jan 3;52(1):6.[5]
- 6. Borges A, Calvo ML, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. Materials. 2024 Aug 24;17(17):4199.[6]
- 7. Kriska G. Flower, Inflorescence, and Fruit. In teaching Biology: Photosynthetic Organisms 2025 Apr 4 (pp. 109-156). Cham: Springer Nature Switzerland.[7]
- 8. Mander L, Julier AC, Jaramillo C. The architecture of floral diversity: a bipartite network of flower morphology in the Neotropical rainforest of Barro Colorado Island, Panama. Botanical Journal of the Linnean Society. 2025 May 29: boaf032.[8]
- 9. Al-Sayed WM, El-Shazly HH, El-Nahas AI, Omran AA. Cytogenetic impact of gamma radiation and its effects on growth, yield and drought tolerance of maize (Zea mays L.). BMC Plant Biology. 2025 Feb 3;25(1):141.[9]
- 10. Vunyingah M, Ngwa CA. Sorghum (Bicolor Moenech) Production and Sustainable Community Livelihood in Kedjom Community, Cameroon. Asian Development Perspectives. 2024 Jul 1;15(2)[10]
- 11. Gubbiveeranna V, Megha GT, Kusuma CG, Ravikumar H, Thoyajakshi RS, Vijayakumar S, Mathad SN, Nagaraju S, Wazzan H, Khan A, Alzahrani KA. Effect of 'Procumbenase'a serine protease from Tridax procumbens aqueous extract on wound healing: a scar free healing of full thickness wounds. International Journal of Biological Macromolecules. 2024 Jul 1; 273:133147.[11]
- 12. Patenall BL, Carter KA, Ramsey MR. Kick-starting wound healing: a review of pro-healing drugs. International Journal of Molecular Sciences. 2024 Jan 21;25(2):1304.[12]
- 13. Anbar HS, Shehab NG, Yasin A, Shaar LM, Ashraf R, Rahi Z, Alamir R, Alsabbagh D, Thabet A, Altaas I, Lozon YA. The wound healing and hypoglycemic activates of date palm (Phoenix dactylifera) leaf extract and saponins in diabetic and normal rats. Plos one. 2024 Sep 23;19(9):e0308879.[13]
- 14. Sakshi G, Aniket G, Gitanjali G. Review on Green Synthesis of Antifungal agents using Plant extracts. Research Journal of Science and Technology. 2025 May 17;17(2):155-61.[14]
- 15. Sundar S, Singh J, Singh VK, Agrawal N, Kumar R. Current and emerging therapies for the treatment of leishmaniasis. Expert opinion on orphan drugs. 2024 Dec 31;12(1):19-32.[15]
- 16. Baile SB, Parmar GR. A Review: Investigating the Pharmacogenetic, Phytochemical and Therapeutic Properties of Tridax procumbens from the Asteraceae Family. Pharmacognosy Research. 2024;17(1).[16]

- Thida M, Aung HM, Aung T, Linn ZN. In Vitro Anti-Inflammatory Potential of Twelve Myanmar 17. Medicinal Plant Extracts via Anti-Protein Denaturation and Membrane Stabilization Effect. Pharmaceutical Sciences Asia. 2025 Jan 1;52(1). Baile SB, Parmar GR. A Review: Investigating the Pharmacognostic, Phytochemical and Therapeutic Properties of Tridax procumbens from the Asteraceae Family. Pharmacognosy Research. 2024;17(1).[17]
- 18. Altaf L, Wani SA, Hussain PR, Suradkar P, Baqual MF, Bhat AA. Bioactive compounds and antioxidant activity in various parts of Morus alba L. Cv. Ichinose: a comparative analysis. Discover Life. 2024 Jul 30;54(1):7.[18]
- 19. Asomadu RO, Ezeorba TP, Ezike TC, Uzoechina JO. Exploring the antioxidant potential of endophytic fungi: A review on methods for extraction and quantification of total antioxidant capacity (TAC). 3 Biotech. 2024 May;14(5):127.[19]
- Baile SB, Parmar GR. A Review: Investigating the Pharmacognostic, Phytochemical and Therapeutic 20. Properties of Tridax procumbens from the Asteraceae Family. Pharmacognosy Research. 2024;17(1).[20]
- Jaglan P, Kaushik D, Kumar M, Singh J, Oz F, Shubham S, Bansal V, Proestos C, Kumar V, Rani R. A 21. critical review on Moringa oleifera: current status, physicochemical attributes, and food industrial applications. Natural Product Research. 2025 Apr 18;39(8):2293-307.[21]
- 22. Jayasinghe IG, Dahanayake D. Transformative Applied Research in Computing, Engineering, Science and Technology Exploring the Benefits of Natural Plant Compounds in Hair Oils—A Mini Review. Transformative Applied Research in Computing, Engineering, Science and Technology. 2024:322-7.[22]
- 23. Srivastav A, Srivastav Y, Hameed A, Ahmad MI. Prevention and cure of dermatology disorders using herbal medications: summary. International Journal of Indigenous Herbs and Drugs. 2024 Feb 28:1-4.[23]
- 24. Nyagumbo E, Nyirenda T, Mawere C, Mutaramutswa A, Kapanga D, Ngorima G, Nhari L, Maunganidze F, Pote W, Bhebhe M, Maroyi A. Medicinal plants used for the treatment and management of malaria in Zimbabwe–review and perspectives. Ethnobotany Research and Applications. 2025 Apr 16; 30:1-41.[24]
- 25. Refaey MS, Abosalem EF, El-Basyouni RY, Elsheriri SE, Elbehary SH, Fayed MA. Exploring the therapeutic potential of medicinal plants and their active principles in dental care: A comprehensive review. Heliyon. 2024 Sep 30;10(18). [2]