JETIR.ORG

JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Self-Nanoemulsifying Drug Delivery Systems of Herbal Oils with Flavonoids: Emerging Therapeutic Strategies for Obesity

Authors- Aanchal Dahiya^{1*},Dr. Nakul Gupta², Satyendra Kumar Mishra³

Affiliation: - IIMT College of Pharmacy, Greater Noida, Uttar Pradesh-201306

Email: - aanchalredhu@gmail.com

Abstract

Obesity is a complex chronic condition that affects over a billion people worldwide, contributing to a growing burden of metabolic disorders, including diabetes, cardiovascular disease, and insulin resistance. Natural bioactive compounds such as flavonoids and herbal oils have attracted considerable attention for their ability to regulate lipid metabolism, reduce inflammation, and improve overall metabolic health. However, the therapeutic potential of these compounds is often limited by poor water solubility, resulting in low oral bioavailability and reduced clinical efficacy. Self-nanoemulsifying drug delivery systems (SNEDDS) have emerged as an innovative solution, offering improved solubility, stability, and absorption of poorly water-soluble compounds. This review highlights the development and application of SNEDDS for key flavonoids including quercetin, myricetin, naringenin, and luteolin, demonstrating their ability to enhance plasma exposure, modulate lipid profiles, and improve insulin sensitivity in preclinical obesity models. Similarly, herbal oils such as flaxseed, olive, pomegranate seed, Nigella sativa, and gamma-linolenic acid-rich oils have been successfully incorporated into SNEDDS, showing hypolipidemic, antioxidant, and anti-inflammatory effects. Importantly, combining flavonoids with herbal oils in a single SNEDDS formulation remains largely unexplored, offering significant potential for synergistic therapeutic outcomes. By bridging traditional herbal wisdom with modern nanotechnology, these advanced delivery systems provide a promising strategy to develop safe, effective, and patient-friendly interventions for obesity and associated metabolic disorders. This review emphasizes the importance of further research into combined flavonoid-herbal oil SNEDDS to fully harness their therapeutic potential.

Keywords: Obesity, Flavonoids, Herbal Oils, Self-nanoemulsifying drug delivery system (SNEDDS), bioavailability, nanoemulsion

Introduction

Obesity is a chronic complex disease and when a person's weight exceeds what is standardized to be healthy for their height, they are said to be obese[1]. According to a recent Lancet study, over 1 billion people worldwide suffer from obesity as of 2022. Since 1990, the prevalence of adult obesity has more than doubled globally, and among children and adolescents, it has quadrupled[2].

One of the most researched substances due to its many advantageous benefits is flavonoids, which can be used to treat obesity,neoplasia, diabetes, hypertension, and cardiovascular disease. What makes flavonoids particularly fascinating is how researchers have beginning to understand exactly how they work in our bodies, with numerous studies pointing to their capacity to activate AMPK, a critical cellular energy regulator that could hold the key to better obesity therapies[3]. In the kingdom of plants, flavonoids are extensively dispersed and are utilized for defense and growth. Two benzene rings and a heterocyclic pyrone ring define their structural makeup. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases [4].

Despite their therapeutic potential, many herbal compounds face a fundamental challenge - they simply don't dissolve well in water, which makes it difficult for our bodies to absorb them effectively after we take them orally. Fortunately, pharmaceutical scientists have developed clever solutions using nanotechnology, creating tiny delivery vehicles like lipid nanoparticles and liposomes that can carry these stubborn compounds safely to where they're needed in the body [5].

What makes SNEDDS particularly attractive to pharmaceutical scientists is their elegant simplicity - they're relatively easy to make, remain stable over time, and can be scaled up for commercial production without losing their effectiveness [6]. These innovative delivery systems work through a sophisticated interplay of mechanisms: they help drugs dissolve better in the digestive system, stay in the body longer, trigger natural digestive processes, and make it easier for therapeutic compounds to cross intestinal barriers. SNEDDS technology works through multiple complementary pathways in the body - it helps drugs bypass the liver's initial screening process, encourages absorption through lymphatic channels, and prevents the intestines from pumping therapeutic compounds back out before they can do their job [7].

These formulations work like a pharmaceutical magic trick - they start as a simple mixture of oils and emulsifiers, but the moment they contact the watery environment of our digestive system, they instantly transform into tiny, perfectly formed nanoparticles. The merger between ancient herbal wisdom and cutting-edge nanotechnology has already begun to bear fruit, with several promising products making their way from laboratory benches to pharmacy shelves [8]. The secret lies in their incredibly small size - these droplets are so tiny that they create an enormous surface area relative to their volume, giving poorly soluble drugs many more opportunities to dissolve and be absorbed by the body. As we look toward the future of medicine, nanoemulsions are emerging as a gamechanging technology that could dramatically improve how we deliver treatments and, ultimately, how patients respond to therapy[9].

Novelty

While researchers have created many SNEDDS carrying either plant compounds or oils separately, there's a clear gap in the literature where no one has explored combining flavonoids with herbal oils in the same delivery system, especially for treating metabolic diseases like obesity[10]. For example, quercetin-loaded SNEDDS showed dramatically better absorption than regular quercetin and offered superior protection against heart problems linked to metabolic disorders, yet this work focused solely on the flavonoid without exploring potential synergistic effects with herbal oils[11]. When formulated pomegranate seed oil into SNEDDS, it became over 14 times more effective at blocking fat-digesting enzymes compared to the plain oil, showing excellent promise for obesity treatment—though no studies have yet combined such oils with flavonoids in the same formulation[12]. This review highlights a significant research gap, as no study has yet combined specific flavonoids with herbal oils in SNEDDS for obesity management. By addressing this gap, we explore the untapped potential of such formulations to harness synergistic therapeutic effects while overcoming the bioavailability limitations of individual components.

Method of preparation

The preparation of self-nanoemulsifying drug delivery systems (SNEDDS) generally follows a systematic process in which lipid-based excipients are combined with surfactants and co-surfactants to form isotropic mixtures. Upon exposure to aqueous fluids, these mixtures spontaneously generate nanoemulsions that improve the solubility and absorption of poorly water-soluble compounds [13]. This approach has particular relevance for bioactive flavonoids and herbal oils that exhibit therapeutic potential in obesity management.

The first step in developing SNEDDS is the selection of an appropriate oil phase. Oils act not only as solvents for poorly soluble compounds but may also serve as active ingredients themselves. For example, herbal oils rich in omega-3 fatty acids or medium-chain lipids have been investigated both for their solubilizing properties and for their inherent hypolipidemic effects, making them particularly suitable for obesity-related applications [14].

After oil selection, surfactants and co-surfactants are introduced in carefully optimized ratios to ensure rapid and uniform emulsification. High-HLB surfactants such as polysorbates are often paired with co-solubilizers like polyethylene glycols or Transcutol P to enhance dispersibility. In many cases, ternary phase diagrams are constructed to identify the self-emulsifying region and guide the choice of excipient ratios [15].

In addition to conventional liquid SNEDDS, solid forms have been developed to improve stability, handling, and patient compliance. These are typically produced by converting liquid SNEDDS into free-flowing powders through techniques such as adsorption onto porous carriers, spray drying, or melt granulation. Such solidified systems retain their self-emulsifying properties when reconstituted and are regarded as a step toward translating laboratory formulations into clinically viable dosage forms [16].

Observation

Self-nanoemulsifying drug delivery systems (SNEDDS) and nanoemulsions have emerged as promising strategies to enhance the solubility, stability, and oral bioavailability of natural therapeutics such as flavonoids and herbal oils, which often face formulation challenges due to poor water solubility. Flavonoids including quercetin, naringenin, myricetin, and luteolin have been successfully incorporated into SNEDDS or nanoemulsion systems. In vivo studies demonstrate that quercetin SNEDDS significantly improved plasma exposure and positively modulated lipid profiles in high-fat diet animal models, highlighting its potential in obesity management [17]. Similarly, naringenin SNEDDS enhanced oral absorption and showed improvements in insulin resistance and lipid metabolism in rats, demonstrating efficacy against metabolic dysfunction [18]. Myricetin SNEDDS exhibited rapid self-emulsification, nanoscale droplet formation, and significantly higher plasma concentrations, suggesting potential benefits in modulating obesity-associated metabolic parameters [19]. Luteolin nanoformulations have also been explored in preclinical models of metabolic syndrome, improving lipid and glucose homeostasis and reducing adipose inflammation, which are closely linked to obesity management [14].

Table 1: Flavonoids for SNEDDS Applications

Flavonoid	SNEDD	Animal Model /	Key Observations	Reference
	Study Type	Study Type		
Quercetin	SNEDDSfor mulation, in vivo rats	High-fat diet rats	Improved plasma exposure; reduced lipid accumulation; enhanced oral bioavailability	[17]
Naringenin	SNEDDSfor mulation, in vivo rats	High-fat diet / insulin resistance rats	Enhanced oral absorption; improved lipid metabolism; reduced insulin resistance	[18]

					<u> </u>
Myricetin	SNEDDSfor	Rats	Rapid self-emulsification;	[19]	
	mulation, in	(bioavailability	nanoscale droplets (20–40 nm);		
	vivo rats	study)	significantly higher plasma		
			concentration		
Luteolin	Nanoformul	Preclinical	Improved lipid and glucose	[14]	
	ation	metabolic	homeostasis; reduced adipose		
		syndrome models	inflammation		

Herbal oils have been increasingly explored as self-nanoemulsifying drug delivery systems (SNEDDS) to improve the solubility, bioavailability, and therapeutic potential of their bioactive compounds in obesity and metabolic disorders. Flaxseed oil, rich in alpha-linolenic acid (ALA) and lignans, has been incorporated into SNEDDS formulations, showing promising hypolipidemic and anti-inflammatory effects, as well as improved insulin sensitivity in rodent models (20,21). Extra virgin olive oil, containing oleic acid and polyphenols such as hydroxytyrosol and oleuropein, has been formulated in SNEDDS to enhance absorption of lipophilic nutraceuticals, demonstrating antioxidant, cardioprotective, and lipid-lowering benefits in both clinical and preclinical studies (22,23,24,25). Pomegranate seed oil, a rich source of punicic acid, has been delivered via SNEDDS or nanoemulsions, preventing diet-induced obesity and insulin resistance in mice while exerting antiinflammatory effects (26,27). Nigella sativa oil, which contains thymoquinone and unsaturated fatty acids, has shown improved oral bioavailability in SNEDDS formulations, reducing blood glucose, adiposity, and systemic inflammation in animal studies (28,29). Finally, gamma-linolenic acid-rich oils such as evening primrose and borage oil have been incorporated into SNEDDS to enhance stability and solubility, leading to improved lipid metabolism and reduced inflammatory markers in preclinical models (30,31). Collectively, these findings show the versatility of SNEDDS for delivering bioactive flavonoids and herbal oils in therapeutic strategies targeting obesity and related metabolic disorders.

Table 2: Herbal Oils for SNEDDS Applications

Herbal Oil	Major	Therapeutic	SNEDDS	ClinicalEvidenc	Reference
	Component	Properties	Applications	e /	
Flaxseed	Alpha-linolenic	Hypolipidemic,	Incorporated into	Rodent studies:	[20],[21]
Oil	acid (ALA),	anti-	SNEDDS to enhance	improved lipid	
	lignans	inflammatory,	solubility,	profile, reduced	
		improves	bioavailability, and	body fat	
		insulin	lipid-lowering effect		
		sensitivity			
Olive Oil	Oleic acid,	Cardioprotectiv	Used in SNEDDS to	Clinical &	[22],[23],[24],[25
(Extra	polyphenols	e, antioxidant,	improve absorption of	preclinical]
Virgin)	(hydroxytyroso	anti-	lipophilic	evidence:	
	l, oleuropein)	inflammatory,	nutraceuticals	reduces	
		mild		oxidative stress,	
		hypolipidemic		improves lipid	
				profile	

Pomegranat	Punicic acid	Anti-obesity,	Incorporated into	Mice studies:	[26],[27]
e Seed Oil	(conjugated	anti-	SNEDDS/nanoemulsio	prevented diet-	
	linolenic acid)	inflammatory,	n to enhance	induced obesity	
		improves	bioavailability	and insulin	
		insulin		resistance	
		sensitivity			
Nigella	Thymoquinone,	Hypoglycemic,	SNEDDS formulations	Rodent studies:	[28],[29]
sativa Oil	unsaturated	anti-	improve oral	decreased blood	
	fatty acids	inflammatory,	bioavailability of	glucose and	
		antioxidant,	active compounds	adiposity	
		anti-obesity			
Evening	Gamma-	Anti-	SNEDDS used to	Animal studies:	[30],[31]
Primrose	linolenic acid	inflammatory,	enhance solubility and	improved lipid	
Oil, Borage	(GLA)	improves lipid	stability	profile and	
Oil)		metabolism		inflammatory	
	4			markers	
	1			ANT	

Result and Discussion

SNEDDS effectively enhance the solubility and bioavailability of flavonoids such as quercetin, naringenin, myricetin, and luteolin, improving plasma exposure and metabolic outcomes in preclinical obesity models [17–19,14]. Quercetin SNEDDS reduced lipid accumulation, while naringenin SNEDDS improved insulin sensitivity and lipid metabolism.

Herbal oils like flaxseed, olive, pomegranate seed, Nigella sativa, and gamma-linolenic acid-rich oils also show enhanced therapeutic effects when delivered via SNEDDS, including lipid-lowering, anti-inflammatory, and antioxidant activities [20–31].

Combining flavonoids with herbal oils in a single SNEDDS formulation presents an unexplored opportunity for synergistic benefits, addressing bioavailability limitations and potentially offering superior outcomes in obesity management.

SNEDDS are simple to prepare, stable, and scalable, with solidified forms improving patient compliance and translational potential. Overall, flavonoid-herbal oil SNEDDS represent a promising, novel strategy for obesity and metabolic disorders, warranting further investigation.

Conclusion

Self-nanoemulsifying drug delivery systems (SNEDDS) offer a promising solution to one of the biggest challenges in herbal and flavonoid therapeutics—their poor water solubility and limited oral absorption. By encapsulating bioactive flavonoids and herbal oils, SNEDDS not only improve bioavailability but also enhance the therapeutic effects of these natural compounds, particularly in managing obesity and metabolic disorders. Preclinical studies with flavonoids like quercetin, naringenin, myricetin, and luteolin, as well as herbal oils such as flaxseed, olive, pomegranate seed, and Nigella sativa, highlight significant improvements in lipid metabolism, insulin sensitivity, and anti-inflammatory activity.

Importantly, the combination of flavonoids with herbal oils in a single SNEDDS formulation remains largely unexplored, representing a novel strategy with potential synergistic benefits. The ease of preparation, stability, and

scalability of SNEDDS further support their translational potential for clinical applications. Overall, flavonoidherbal oil SNEDDS stand out as a versatile, innovative, and promising approach for improving metabolic health, offering hope for more effective and patient-friendly interventions against obesity.

References

- 1. World Health Organization. Obesity and overweight [Internet]. Geneva: WHO; 2025 [cited 2025 Sep 29]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
- World Health Organization. One in eight people are now living with obesity. Geneva: WHO; 2024 Mar 1. 2. Available from: https://www.who.int/news/item/01-03-2024-one-in-eight-people-are-now-living-with-obesity
- Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D and Chaari A (2023) Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front. Nutr. 10:1177897. doi: 10.3389/fnut.2023.1177897
- 4. Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients. 2020 Aug 10;12(8):2393. doi: 10.3390/nu12082393. PMID: 32785059; PMCID: PMC7469047.
- Ranjbar S, Emamjomeh A, Sharifi F, Zarepour A, Aghaabbasi K, Dehshahri A, Sepahvand AM, Zarrabi A, Beyzaei H, Zahedi MM, Mohammadinejad R. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics. 2023 Jul 14;15(7):1944. doi: 10.3390/pharmaceutics15071944. PMID: 37514130; PMCID: PMC10383758.
- Rathore C, Hemrajani C, Sharma AK, Gupta PK, Jha NK, Aljabali AAA, Gupta G, Singh SK, Yang JC, Dwivedi RP, Dua K, Chellappan DK, Negi P, Tambuwala MM. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res. 2023 Jan;13(1):292-307. doi: 10.1007/s13346-022-01193-8. Epub 2022 Jul 13. PMID: 35831776; PMCID: PMC9726673.
- Lin L, Chen Q, Dai Y, Xia Y. Self-Nanoemulsifying Drug Delivery System for Enhanced Bioavailability of vivo Evaluation. Int J Nanomedicine. 2023;18:2345-2358. Madecassic Acid: vitro and in In https://doi.org/10.2147/IJN.S408115
- Saipriya G, Karuppaiah A, Syamala G, Venkatesh G, Siram K, Babu D, Sankar V. Self-nanoemulsifying drug delivery system of aqueous leaf extracts of Justicia adhatoda and Psidium guajava to enhance platelet count. 3 Biotech. 2022 Jun;12(6):124. doi: 10.1007/s13205-022-03164-9. Epub 2022 May 6. PMID: 35535327; PMCID: PMC9076760.
- Preeti, Sambhakar S, Malik R, Bhatia S, Al Harrasi A, Rani C, Saharan R, Kumar S, Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica (Cairo). 2023 Oct 28;2023:6640103. doi: 10.1155/2023/6640103. PMID: 37928749; PMCID: PMC10625491.
- Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the 10. Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics. 2020 Dec 9;12(12):1194. doi: 10.3390/pharmaceutics12121194. PMID: 33317067; PMCID: PMC7764143.
- Ahmed OAA, Hassan NA, Azhar AS, El-Mas MM, El-Bassossy HM. A Nano-Pharmaceutical Formula of Quercetin Protects from Cardiovascular Complications Associated with Metabolic Syndrome. Front Pharmacol. 2021 Aug 11;12:696981. doi: 10.3389/fphar.2021.696981. PMID: 34456723; PMCID: PMC8385560.
- 12. Eid AM, Issa L, Arar K, Abu-Zant A, Makhloof M, Masarweh Y. Phytochemical screening, antioxidant, anti-diabetic, and anti-obesity activities, formulation, and characterization of a self-nanoemulsion system loaded with pomegranate (Punica granatum) seed oil. Sci Rep. 2024 Aug 14;14(1):18841. doi: 10.1038/s41598-024-68476-7. PMID: 39138188; PMCID: PMC11322287.

- 13. Čerpnjak, Katja, et al. "Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs" Acta Pharmaceutica, vol. 63, no. 4, Croatian Pharmaceutical Society, 2013, pp. 427-445. https://doi.org/10.2478/acph-2013-0040
- 14. Taghipour, Y. D., Hajialyani, M., Naseri, R., Hesari, M., Mohammadi, P., Stefanucci, A., ... Abdollahi, M. (2019). Nanoformulations of natural products for management of metabolic syndrome. International Journal of Nanomedicine, 14, 5303–5321.
- 15. Salawi, A. (2022). Self-emulsifying drug delivery systems: a novel approach to deliver drugs. Drug Delivery, 29(1), 1811–1823. https://doi.org/10.1080/10717544.2022.2083724
- 16. Nasr, A.; Gardouh, A.; Ghorab, M. Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Oral Delivery of Olmesartan Medoxomil: Design, Formulation, Pharmacokinetic and Bioavailability Evaluation. Pharmaceutics 2016, 8, 20. https://doi.org/10.3390/pharmaceutics8030020
- 17. Tran TH, Guo Y, Song D, Bruno RS, Lu X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci. 2014 Mar;103(3):840-52. doi: 10.1002/jps.23858. Epub 2014 Jan 24. PMID: 24464737.
- 18. Khan, A. W., Kotta, S., Ansari, S. H., Sharma, R. K., & Ali, J. (2014). Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Delivery, 22(4), 552–561. https://doi.org/10.3109/10717544.2013.878003
- 19. Jin Qian, Houjun Meng, Lei Xin, Mengxin Xia, Hongyi Shen, Guowen Li, Yan Xie, Self-nanoemulsifying drug delivery systems of myricetin: Formulation development, characterization, and in vitro and in vivo evaluation, Colloids and Surfaces B: Biointerfaces, Volume 160,2017, Pages 101-109, ISSN 0927-7765, https://doi.org/10.1016/j.colsurfb.2017.09.020.
- 20. Rodriguez-Leyva, Delfin, Wendy Weighell, Andrea L. Edel, Renee LaVallee, Elena Dibrov, Reinhold Pinneker, Thane G. Maddaford et al. "Potent antihypertensive action of dietary flaxseed in hypertensive patients." Hypertension 62, no. 6 (2013): 1081-1089.
- 21. Akrami A, Nikaein F, Babajafari S, et al. The effects of flaxseed oil omega-3 fatty acids supplementation on metabolic status of patients with diabetic nephropathy. Iran J Kidney Dis. 2019;13(1):34-43.
- 22. Covas MI, Konstantinidou V, Fitó M. Olive oil and cardiovascular health. Journal of cardiovascular pharmacology. 2009 Dec 1;54(6):477-82.
- 23. Visioli F, Bogani P, Grande S, et al. Olive oil and oxidative stress. GrasasAceites. 2004;55(1):66-75.
- 24. Beauchamp GK, Keast RS, Morel D, et al. Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437(7055):45-46.
- 25. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25): e34.
- 26. Vroegrijk IO, van Diepen JA, van den Berg S, Westbroek I, Keizer H, Gambelli L, Hontecillas R, Bassaganya-Riera J, Zondag GC, Romijn JA, Havekes LM. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food and Chemical Toxicology. 2011 Jun 1;49(6):1426-30.
- 27. Aruna P, Venkataramanamma D, Singh AK, et al. Health benefits of punicic acid: a review. Compr Rev Food Sci Food Saf. 2016;15(1):16-27.
- 28. Alimohammadi, S., Hobbenaghi, R., Javanbakht, J. *et al.* RETRACTED ARTICLE: Protective and antidiabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: an experimental study with histopathological evaluation. *DiagnPathol* **8**, 137 (2013). https://doi.org/10.1186/1746-1596-8-137
- 29. Benhaddou-Andaloussi A, Martineau LC, Vallerand D, et al. Multiple molecular targets underlie the antidiabetic effect of Nigella sativa seed extract in skeletal muscle, adipocyte and liver cells. Diabetes Obes Metab. 2010;12(2):148-157.

- Sergeant S, Rahbar E, Chilton FH. Gamma-linolenic acid, dihommo-gamma linolenic, eicosanoids and 30. inflammatory processes. European journal of pharmacology. 2016 Aug 15;785:77-86.
- Kapoor R, Huang YS. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Curr Pharm Biotechnol. 2006;7(6):531-534.

