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Abstract  

In this paper, we introduce some closed neighbourhood degree-based reachability matrices of graph and obtain 

its Energy and Estrada index. Additionally, we find some closed neighbourhood degree-based reachability 

energies for regular graph. Also, we establish the bounds for this energy and index.  
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1. INTRODUCTION  

 The Energy of a simple graph was introduced by Ivan Gutman in 1978 [14,15,18]. The Energy of a graph 𝐺, 

denoted by 𝐸(𝐺), is defined to be the sum of the absolute value of the eigenvalues of its adjacency matrix (i.e) 

𝐸(𝐺) = ∑ |𝜆𝑖|
𝑝
𝑖=1 . Various other energy measures based on different matrices have been discussed [5,17].  

 De la Pe˜na et.al., introduced the Estrada index of a graph in 2007[6]. Estrada index of the graph 𝐺 is defined 

by 𝐸𝐸(𝐺) = ∑ 𝑒𝜆𝑖𝑝
𝑖=1  , where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑝 are the eigenvalues of the adjacency matrix 𝐴(𝐺) of 

𝐺.Denoting by 𝑀𝑘(𝐺) to the 𝑘-th moment of the graph 𝐺, we get 𝑀𝑘(𝐺)  = ∑ (𝜆𝑖)
𝑘𝑝

𝑖=1 and recalling the power 

series expansion of 𝑒𝑥 , we have 𝐸𝐸 = ∑
𝑀𝑘

𝑘!

∞
𝑘=0 . It is well known that 𝑀𝑘(𝐺) is equal to the number of closed 

walks of length 𝑘 of the graph 𝐺 [12]. In fact, Estrada index of graphs has an important role in chemistry and 

physics and there exists a vast literature that studies this special index [7,8,9,10,11,13,16].  

 Bala et. al., introduced the Reachability degree sum matrix and its energy of a graph in 2024 [1], Reachability 

energy and Estrada index of a graph [2], Reachability degree sum Estrada index of a graph [3], Reachability 

average LH matrix and Inverse reachability degree sum matrix and their corresponding energy and Estrada 

index [4] in 2025.  

 Let 𝐺(𝑇,𝑊) be a simple connected graph with 𝑝 vertices and 𝑞  edges. The Reachability matrix [5] 

𝑀1(𝐺)   = (𝑏𝑖𝑗) of a graph 𝐺 is the 𝑝 × 𝑝 matrix with 

𝑀1(𝐺)   = (𝑏𝑖𝑗) = {
1,   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖 

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 . 

Reachability degree sum matrix [1]: 

𝑀2(𝐺) = (𝑏𝑖𝑗) = {
𝑟𝑖𝑗 + 𝑑𝑖 + 𝑑𝑗 ,   𝑡𝑗 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖  

0              ,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where 𝑑𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑖 and 𝑟𝑖𝑗 = {
1 , 𝑖 ≠ 𝑗
0 , 𝑖 = 𝑗

.  
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Reachability Average LH matrix [4]:  

𝑀3(𝐺) = (𝑏𝑖𝑗) = {
1

2
(𝑙𝑐𝑚(𝑑𝑖, 𝑑𝑗) + ℎ𝑐𝑓(𝑑𝑖, 𝑑𝑗)),   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖  

0                                                   ,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 . 

where 𝑑𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑖.  

Inverse Reachability degree sum matrix [4]:  

𝑀4(𝐺)  = (𝑏𝑖𝑗) = {

1

𝑟𝑖𝑗+𝑑𝑖+𝑑𝑗
,   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖  

0                 ,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 .  

where 𝑑𝑖 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑖 and 𝑟𝑖𝑗 = {
1 , 𝑖 ≠ 𝑗
0 , 𝑖 = 𝑗

. 

Energy and Estrada index of a graph based on the matrices discussed above are as follows, 

𝐹𝑜𝑟 1 ≤ 𝑎 ≤ 4, 𝐸𝑎(𝐺) = ∑|𝜇𝑖
(𝑎)|

𝑝

𝑖=1

   𝑎𝑛𝑑   𝐸𝐸𝑎(𝐺) = ∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

,  

where 𝜇1
(𝑎) ≥ 𝜇2

(𝑎) ≥ ⋯ ≥ 𝜇𝑝
(𝑎) are the eigenvalues of  𝑀𝑎(𝐺) 

The open neighbourhood degree-based reachability energies and indices of a graph was discussed in 2025 [19]. 

2. PROPOSED CONCEPT: 

 In this section, we propose some closed neighbourhood degree-based reachability matrices and their 

corresponding Energy and Estrada index for a graph along with the notations Also, we present several lemmas 

based on these matrices, which form the foundation for the results discussed in the following sections. 

Let 𝐺 be a finite, simple, undirected, connected graph with 𝑝 vertices. Let 𝑀𝑎(𝐺) denote the matrix of a graph 𝐺.  

Since the matrix 𝑀𝑎(𝐺) under consideration are real and symmetric, its eigenvalues are real numbers and is 

denoted by 𝜇1
(𝑎), 𝜇2

(𝑎), … , 𝜇𝑝
(𝑎) , we label them in non- increasing order 𝜇1

(𝑎) ≥ 𝜇2
(𝑎) ≥ ⋯ ≥ 𝜇𝑝

(𝑎). (i.e.,) For 

1 ≤ 𝑖 ≤ 𝑝, 𝜇i
(𝑎) be the eigenvalues for 𝑀𝑎(𝐺). Also, we denote upper triangular part of a matrix 𝑀𝑎(𝐺)  as 

𝑅𝑎 = ∑ (𝑏𝑖𝑗)
2

1≤𝑖<𝑗≤𝑝 . Now we denote 𝐸𝑎(𝐺) 𝑎𝑛𝑑 𝐸𝐸𝑎(𝐺) as Energy and Estrada index of a graph based on a 

matrix 𝑀𝑎(𝐺) respectively. 

In a graph 𝐺 = (𝑇,𝑊), the neighbourhood of a vertex 𝑡 ∈ 𝑇(𝐺) is the set of all vertices that are adjacent to 𝑡. 

For a vertex 𝑡 ∈ 𝑇(𝐺) in a graph 𝐺 = (𝑇,𝑊), the Closed Neighbourhood of 𝑡 is the set of all vertices adjacent 

to 𝑡, including 𝑡. The Closed Neighbourhood Degree of 𝑡 is defined as the sum of the degrees of all vertices 

in the closed neighbourhood of 𝑡. It is denoted by 𝑁𝑐[𝑡]. 

Closed Neighbourhood Reachability sum matrix: 

 𝑀10(𝐺)   = (𝑏𝑖𝑗) = {
𝑁𝑐[𝑡𝑖] + 𝑁𝑐[𝑡𝑗],   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖  

0                           ,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Closed Neighbourhood Reachability sum energy: 𝐸10(𝐺)   = ∑ |𝜇𝑖
(10)|𝑝

𝑖=1  

Closed Neighbourhood Reachability sum Estrada index: 𝐸𝐸10(𝐺)   = ∑ 𝑒𝜇𝑖
(10)𝑝

𝑖=1 , where 𝜇1
(10) ≥ 𝜇2

(10) ≥

⋯ ≥ 𝜇𝑝
(10) are the eigenvalues of 𝑀10(𝐺). 

 

 

http://www.jetir.org/


© 2025 JETIR October, Volume 12, Issue 10                                                                    www.jetir.org (ISSN-2349-5162) 
 

 

JETIR2510284 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c670 
 

Closed Neighbourhood Reachability degree sum matrix: 

𝑀11(𝐺)   = (𝑏𝑖𝑗) = {
𝑟𝑖𝑗 + 𝑁𝑐[𝑡𝑖] + 𝑁𝑐[𝑡𝑗],   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖  

0                                     ,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   

where 𝑟𝑖𝑗 = {
1 , 𝑖 ≠ 𝑗
0 , 𝑖 = 𝑗

.   

Closed Neighbourhood Reachability degree sum energy: 𝐸11(𝐺)   = ∑ |𝜇𝑖
(11)|𝑝

𝑖=1  

Closed Neighbourhood Reachability degree sum Estrada index: 𝐸𝐸11(𝐺)   = ∑ 𝑒𝜇𝑖
(11)𝑝

𝑖=1 , where 𝜇1
(11) ≥

𝜇2
(11) ≥ ⋯ ≥ 𝜇𝑝

(11) are the eigenvalues of 𝑀11(𝐺). 

Inverse Closed Neighbourhood Reachability sum matrix: 

𝑀12(𝐺)   = (𝑏𝑖𝑗) = {

1

𝑁𝑐[𝑡𝑖]+𝑁𝑐[𝑡𝑗]
,   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖 

0                    ,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
   

Inverse Closed Neighbourhood Reachability sum energy: 𝐸12(𝐺)   = ∑ |𝜇𝑖
(12)|𝑝

𝑖=1  

Inverse Closed Neighbourhood Reachability sum Estrada index: 𝐸𝐸12(𝐺)   = ∑ 𝑒𝜇𝑖
(12)𝑝

𝑖=1 , where 𝜇1
(12) ≥

𝜇2
(12) ≥ ⋯ ≥ 𝜇𝑝

(12) are the eigenvalues of 𝑀12(𝐺). 

Inverse Closed Neighbourhood Reachability degree sum matrix: 

𝑀13(𝐺)   = (𝑏𝑖𝑗) = {

1

𝑟𝑖𝑗+𝑁𝑐[𝑡𝑖]+𝑁𝑐[𝑡𝑗]
,   𝑡𝑗  𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖  

0                          ,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 ,  

where 𝑟𝑖𝑗 = {
1 , 𝑖 ≠ 𝑗
0 , 𝑖 = 𝑗

.  

Inverse Closed Neighbourhood Reachability degree sum energy: 𝐸13(𝐺)   = ∑ |𝜇𝑖
(13)|𝑝

𝑖=1  

Inverse Closed Neighbourhood Reachability degree sum Estrada index: 𝐸𝐸13(𝐺)   = ∑ 𝑒𝜇𝑖
(13)𝑝

𝑖=1 , where 

𝜇1
(13) ≥ 𝜇2

(13) ≥ ⋯ ≥ 𝜇𝑝
(13) are the eigenvalues of 𝑀13(𝐺). 

Closed Neighbourhood Reachability average LH matrix: 

𝑀14(𝐺)   = (𝑏𝑖𝑗) = {
1

2
(𝑙𝑐𝑚(𝑁𝑐[𝑡𝑖], 𝑁𝑐[𝑡𝑗]) + ℎ𝑐𝑓(𝑁𝑐[𝑡𝑖], 𝑁𝑐[𝑡𝑗])),   𝑡𝑗 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡𝑖 

0                                                                                       ,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Closed Neighbourhood Reachability average LH energy: 𝐸14(𝐺)   = ∑ |𝜇𝑖
(14)|𝑝

𝑖=1  

Closed Neighbourhood Reachability average LH Estrada index: 𝐸𝐸14(𝐺)   = ∑ 𝑒𝜇𝑖
(14)𝑝

𝑖=1 , where 𝜇1
(14) ≥

𝜇2
(14) ≥ ⋯ ≥ 𝜇𝑝

(14) are the eigenvalues of 𝑀14(𝐺). 

2.1 AUXILARY LEMMAS 

 In this subsection, we discuss some lemmas that are used to establish the bounds for largest eigenvalue for our 

proposed closed neighbourhood degree-based reachability matrices. 

Lemma 2.1.1:  

 Let 𝐺 be a connected graph of order 𝑝. For 10 ≤ 𝑎 ≤ 14 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑝 , 𝜇i
(𝑎)  be the eigenvalues for 𝑀𝑎 then 
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𝑡𝑟 (𝑀𝑎(𝐺)) = ∑𝜇𝑖
(𝑎)

𝑝

𝑖=1

= 0    

 𝑡𝑟 (𝑀𝑎(𝐺)2) =  ∑(𝜇𝑖
(𝑎)

)2

𝑝

𝑖=1

= 2 𝑅𝑎, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑎 = ∑ (𝑏𝑖𝑗)
2

1≤𝑖<𝑗≤𝑝

  

Proof: 

 By usual notation, we have ∑ 𝜇i
(𝑎)𝑝

𝑖=1  is equal to the trace of a matrix.  

 Now, ∑ 𝜇i
(𝑎)𝑝

𝑖=1 = 𝑡𝑟𝑎𝑐𝑒 (𝑀𝑎(𝐺)) = ∑ 𝑅𝑎
𝑝
𝑖=𝑗=1 = 0. 

Moreover, for 𝑖 = 1,2, … , 𝑝, the (𝑖, 𝑖)𝑡ℎ entry of (𝑀𝑎(𝐺))2 is equal to ∑ (𝑏𝑖𝑗)
𝑝
𝑗=1 (𝑏𝑗𝑖) = ∑ (𝑏𝑖𝑗)

2𝑝
𝑖=1  

∑(𝜇i
(𝑎)

)2

𝑝

𝑖=1

= 𝑡𝑟𝑎𝑐𝑒 (𝑀𝑎(𝐺))2 = ∑∑(𝑏𝑖𝑗)
2

𝑝

𝑗=1

= 2 𝑅𝑎

𝑝

𝑖=1

. 

Hence the result. 

Lemma 2.1.2:  

Let 𝐺 represents a connected graph with 𝑝 vertices which satisfies the inequality  

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))| ≤ (2 𝑅𝑎)
𝑝
2 , for10 ≤ 𝑎 ≤ 14. 

Proof: 

We know that,  |𝐷𝑒𝑡 (𝑀𝑎(𝐺))| = ∏ |(𝜇𝑖
(𝑎)

)|
𝑝
𝑖=1  

= |(𝜇1
(𝑎)

)||(𝜇2
(𝑎)

)|… |(𝜇𝑝
(𝑎)

)| ≤  |(𝜇1
(𝑎)

)||(𝜇1
(𝑎)

)|… |(𝜇1
(𝑎)

)| ≤ |(𝜇1
(𝑎)

)|
𝑝

≤ (√2 ∑ (𝑏𝑖𝑗)
2

1≤𝑖<𝑗≤𝑝

)

𝑝

≤ (2 𝑅𝑎)
𝑝
2 

∴ |𝐷𝑒𝑡 (𝑀𝑎(𝐺))| ≤ (2 𝑅𝑎)
𝑝
2 . 

Lemma 2.1.3: 

If 𝐺 is a connected graph with 𝑝 vertices then 𝜇1
(𝑎) ≤ √

2 (𝑝−1)𝑅𝑎

𝑝
 for 10 ≤ 𝑎 ≤ 14 . 

Proof: 

 Using Cauchy Schwartz inequality, by setting 𝑥𝑖 = 1 and 𝑦𝑖 = 𝜇𝑖
(𝑎) for 𝑖 = 2,3, … , 𝑝 then we get, 

(∑|𝜇𝑖
(𝑎)|

𝑝

𝑖=2

)

2

≤ (𝑝 − 1)(∑𝜇𝑖
(𝑎)2

𝑝

𝑖=1

) 

(−𝜇1
(𝑎))

2
≤ (𝑝 − 1)(2 ∑ (𝑏𝑖𝑗)

2

1≤𝑖<𝑗≤𝑝

− 𝜇1
(𝑎)2) 
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⇒ 𝜇1
(𝑎) ≤ √

2 (𝑝 − 1)𝑅𝑎

𝑝
. 

Lemma 2.1.4: 

 Consider a connected graph 𝐺 with 𝑝 vertices. The largest eigenvalue 𝜇1
(𝑎) of 𝐺 satisfies the inequality  

|𝜇1
(𝑎)| ≥  |𝐷𝑒𝑡  (𝑀𝑎(𝐺))|

1

𝑝  𝑓𝑜𝑟 10 ≤ 𝑎 ≤ 14 . 

Proof: 

 Using Arithmetic- Geometric Mean Inequality for the values |𝜇1
(𝑎)|, |𝜇2

(𝑎)|, … , |𝜇𝑝
(𝑎)|, we get, 

|𝜇1
(𝑎) + 𝜇2

(𝑎) + ⋯+ 𝜇𝑝
(𝑎)|

𝑝
≥ |𝜇1

(𝑎)𝜇2
(𝑎) … 𝜇𝑝

(𝑎)|
1
𝑝 

⇒
|𝜇1

(𝑎)| + |𝜇1
(𝑎)| + ⋯+ |𝜇1

(𝑎)|

𝑝
 ≥  |𝐷𝑒𝑡 𝑀𝑎(𝐺)|

1
𝑝 

|𝜇1
(𝑎)| ≥  |𝐷𝑒𝑡 (𝑀𝑎(𝐺))|

1
𝑝. 

 

 

Lemma 2.1.5:  

 Let 𝐺 be a connected graph with 𝑝 vertices, the largest eigenvalue 𝜇1
(𝑎) of 𝐺 satisfies the inequality  |𝜇1

(𝑎)| ≥

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝

√𝑝
 𝑓𝑜𝑟 10 ≤ 𝑎 ≤ 14 . 

Proof: 

Using Arithmetic- Geometric Mean Inequality for the values |𝜇1
(𝑎)|, |𝜇2

(𝑎)|, … , |𝜇𝑝
(𝑎)|, we get, 

|𝜇1
(𝑎) + 𝜇2

(𝑎) + ⋯+ 𝜇𝑝
(𝑎)|

𝑝
≥ |𝜇1

(𝑎)𝜇2
(𝑎) … 𝜇𝑝

(𝑎)|
1
𝑝 

|𝜇1
(𝑎)| + |𝜇1

(𝑎)| + ⋯+ |𝜇1
(𝑎)|

√𝑝
 ≥

|𝜇1
(𝑎)| + |𝜇1

(𝑎)| + ⋯+ |𝜇1
(𝑎)|

𝑝
 ≥ |𝜇1

(𝑎)𝜇2
(𝑎) … 𝜇𝑝

(𝑎)|
1
𝑝 

⇒ |𝜇1
(𝑎)| ≥

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝

√𝑝
. 

3. CLOSED NEIGHBOURHOOD DEGREE BASED REACHABILITY ENERGY AND ITS BOUNDS 

A regular graph is a graph in which all vertices have the same degree. If every vertex in a graph has degree k, 

then the graph is called a k-regular graph. In this section, we obtain some closed neighbourhood degree-

based reachability energy of regular graph and calculate its bounds. 

3.1. CLOSED NEIGHBOURHOOD DEGREE BASED REACHABILITY ENERGY OF REGULAR 

GRAPH 

In this subsection, we find some closed neighbourhood degree-based reachability energies 𝐸𝑎(𝐺), 10 ≤ 𝑎 ≤ 14  

for a regular graph. 
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Theorem 3.1.1: 

 Let 𝐺 be a k- regular graph of order 𝑝 then 

(i) 𝐸10(𝐺) = 4(𝑘2 + 𝑘)(𝑝 − 1) 

(ii) 𝐸11(𝐺) = 2 (2(𝑘2 + 𝑘) + 1)(𝑝 − 1) 

(iii) 𝐸12(𝐺) =
𝑝−1

𝑘2+𝑘
 

(iv) 𝐸13(𝐺) =
2(𝑝−1)

2(𝑘2+𝑘)+1
 

(v) 𝐸14(𝐺) = 2(𝑘2 + 𝑘)(𝑝 − 1) 

Proof: 

Consider k- Regular graph G with 𝑝 vertices.  

(i) The closed neighbourhood reachability sum matrix M10(𝐺 ) is  

M10(𝐺) =

(

 
 
 
 

0 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) ⋯ 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘)

2(𝑘2 + 𝑘) 0 2(𝑘2 + 𝑘) ⋯ 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘)

2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) 0 ⋯ 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) ⋯ 0 2(𝑘2 + 𝑘)

2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) ⋯ 2(𝑘2 + 𝑘) 0 )

 
 
 
 

 

Let us find the spectrum of M10(𝐺) using the relation,  

𝜙(𝐺, 𝜇) = det(M10(𝐺) − 𝜇𝐼) , 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑑𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝜙(𝐺, 𝜇) =

|

|

−𝜇 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) ⋯ 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘)

2(𝑘2 + 𝑘) −𝜇 2(𝑘2 + 𝑘) ⋯ 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘)

2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) −𝜇 ⋯ 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) ⋯ −𝜇 2(𝑘2 + 𝑘)

2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) 2(𝑘2 + 𝑘) ⋯ 2(𝑘2 + 𝑘) −𝜇

|

|

= 0 

Hence, the spectrum of M10(𝐺) is 

 (
−2(𝑘2 + 𝑘)

𝑝 − 1
       

2(𝑘2 + 𝑘)(𝑝 − 1)

1
     ). 

The closed neighbourhood reachability sum energy E10(𝐺) can be determined as follows: 

E10(𝐺) = ∑|𝜇i
(10)|

𝑝

𝑖=1

 

= (|−2(𝑘2 + 𝑘)| × (𝑝 − 1)) + (|2(𝑘2 + 𝑘)(𝑝 − 1)| × 1)  

E10(𝐺) = 4(𝑘2 + 𝑘)(𝑝 − 1). 

(ii) The closed neighbourhood reachability degree sum matrix M11(𝐺 ) is  

M11(𝐺) =

(

 
 
 
 

0 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 ⋯ 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1

2(𝑘2 + 𝑘) + 1 0 2(𝑘2 + 𝑘) + 1 ⋯ 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1

2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 0 ⋯ 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 ⋯ 0 2(𝑘2 + 𝑘) + 1

2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 ⋯ 2(𝑘2 + 𝑘) + 1 0 )

 
 
 
 

 

http://www.jetir.org/


© 2025 JETIR October, Volume 12, Issue 10                                                                    www.jetir.org (ISSN-2349-5162) 
 

 

JETIR2510284 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org c674 
 

Let us find the spectrum of M11(𝐺) using the relation,  

𝜙(𝐺, 𝜇) = det(M11(𝐺) − 𝜇𝐼) , 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑑𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝜙(𝐺, 𝜇) =

|

|

−𝜇 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 ⋯ 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1

2(𝑘2 + 𝑘) + 1 −𝜇 2(𝑘2 + 𝑘) + 1 ⋯ 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1

2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 −𝜇 ⋯ 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 ⋯ −𝜇 2(𝑘2 + 𝑘) + 1

2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 2(𝑘2 + 𝑘) + 1 ⋯ 2(𝑘2 + 𝑘) + 1 −𝜇

|

|

= 0 

Hence, the spectrum of M11(𝐺) is 

 (
−(2(𝑘2 + 𝑘) + 1)

𝑝 − 1
       

(2(𝑘2 + 𝑘) + 1)(𝑝 − 1)

1
     ). 

The closed neighbourhood reachability degree sum energy E11(𝐺) can be determined as follows: 

E11(𝐺) = ∑|𝜇i
(11)|

𝑝

𝑖=1

 

= (|−(2(𝑘2 + 𝑘) + 1)| × (𝑝 − 1)) + (|(2(𝑘2 + 𝑘) + 1)(𝑝 − 1)| × 1)  

E11(𝐺) = 2(2(𝑘2 + 𝑘) + 1)(𝑝 − 1). 

(iii) The inverse closed neighbourhood reachability sum matrix M12(𝐺 ) is  

M12(𝐺) =

(

 
 
 
 
 
 
 
 
 

0
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋯

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
1

2(𝑘2 + 𝑘)
0

1

2(𝑘2 + 𝑘)
⋯

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
0 ⋯

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋯ 0

1

2(𝑘2 + 𝑘)
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋯

1

2(𝑘2 + 𝑘)
0

)

 
 
 
 
 
 
 
 
 

 

Let us find the spectrum of M12(𝐺) using the relation,  

𝜙(𝐺, 𝜇) = det(M12(𝐺) − 𝜇𝐼) , 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑑𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝜙(𝐺, 𝜇) =

|

|

|

|
−𝜇

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋯

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
1

2(𝑘2 + 𝑘)
−𝜇

1

2(𝑘2 + 𝑘)
⋯

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
−𝜇 ⋯

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋯ −𝜇

1

2(𝑘2 + 𝑘)
1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)

1

2(𝑘2 + 𝑘)
⋯

1

2(𝑘2 + 𝑘)
−𝜇

|

|

|

|

= 0 

Hence, the spectrum of M12(𝐺) is 

 (

−1
2(𝑘2 + 𝑘)

𝑝 − 1
       

𝑝 − 1
2(𝑘2 + 𝑘)

1
     ). 

The inverse closed neighbourhood reachability sum energy E12(𝐺) can be determined as follows: 
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E12(𝐺) = ∑|𝜇i
(12)|

𝑝

𝑖=1

 

= (|
−1

2(𝑘2+𝑘)
| × (𝑝 − 1)) + (|

𝑝−1

2(𝑘2+𝑘)
| × 1)  

E12(𝐺) =
𝑝 − 1

(𝑘2 + 𝑘)
. 

(iv) The inverse closed neighbourhood reachability degree sum matrix M13(𝐺 ) is  

M13(𝐺) =

(

 
 
 
 
 
 
 
 
 

0
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋯

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
1

2(𝑘2 + 𝑘) + 1
0

1

2(𝑘2 + 𝑘) + 1
⋯

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
0 ⋯

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋯ 0

1

2(𝑘2 + 𝑘) + 1
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋯

1

2(𝑘2 + 𝑘) + 1
0

)

 
 
 
 
 
 
 
 
 

 

Let us find the spectrum of M13(𝐺) using the relation,  

𝜙(𝐺, 𝜇) = det(M13(𝐺) − 𝜇𝐼) , 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑑𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝜙(𝐺, 𝜇) =

|

|

|

|
−𝜇

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋯

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
1

2(𝑘2 + 𝑘) + 1
−𝜇

1

2(𝑘2 + 𝑘) + 1
⋯

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
−𝜇 ⋯

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋯ −𝜇

1

2(𝑘2 + 𝑘) + 1
1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1

1

2(𝑘2 + 𝑘) + 1
⋯

1

2(𝑘2 + 𝑘) + 1
−𝜇

|

|

|

|

= 0 

Hence, the spectrum of M13(𝐺) is 

 (

−1
2(𝑘2 + 𝑘) + 1

𝑝 − 1
       

𝑝 − 1
2(𝑘2 + 𝑘) + 1

1
     ). 

The inverse closed neighbourhood reachability degree sum energy E13(𝐺) can be determined as follows: 

E13(𝐺) = ∑|𝜇i
(13)|

𝑝

𝑖=1

 

= (|
−1

2(𝑘2+𝑘)+1
| × (𝑝 − 1)) + (|

𝑝−1

2(𝑘2+𝑘)+1
| × 1)  

E13(𝐺) =
2(𝑝 − 1)

2(𝑘2 + 𝑘) + 1
. 
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(v) The closed neighbourhood reachability average LH matrix M14(𝐺 ) is  

M14(𝐺) =

(

 
 
 

0 𝑘2 + 𝑘 𝑘2 + 𝑘 ⋯ 𝑘2 + 𝑘 𝑘2 + 𝑘
𝑘2 + 𝑘 0 𝑘2 + 𝑘 ⋯ 𝑘2 + 𝑘 𝑘2 + 𝑘
𝑘2 + 𝑘 𝑘2 + 𝑘 0 ⋯ 𝑘2 + 𝑘 𝑘2 + 𝑘

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑘2 + 𝑘 𝑘2 + 𝑘 𝑘2 + 𝑘 ⋯ 0 𝑘2 + 𝑘
𝑘2 + 𝑘 𝑘2 + 𝑘 𝑘2 + 𝑘 ⋯ 𝑘2 + 𝑘 0 )

 
 
 

 

Let us find the spectrum of M14(𝐺) using the relation,  

𝜙(𝐺, 𝜇) = det(M14(𝐺) − 𝜇𝐼) , 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑑𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥. 

𝜙(𝐺, 𝜇) =

|

|

−𝜇 𝑘2 + 𝑘 𝑘2 + 𝑘 ⋯ 𝑘2 + 𝑘 𝑘2 + 𝑘

𝑘2 + 𝑘 −𝜇 𝑘2 + 𝑘 ⋯ 𝑘2 + 𝑘 𝑘2 + 𝑘

𝑘2 + 𝑘 𝑘2 + 𝑘 −𝜇 ⋯ 𝑘2 + 𝑘 𝑘2 + 𝑘
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑘2 + 𝑘 𝑘2 + 𝑘 𝑘2 + 𝑘 ⋯ −𝜇 𝑘2 + 𝑘

𝑘2 + 𝑘 𝑘2 + 𝑘 𝑘2 + 𝑘 ⋯ 𝑘2 + 𝑘 −𝜇

|

|

= 0 

Hence, the spectrum of M14(𝐺) is 

 (
−(𝑘2 + 𝑘)

𝑝 − 1
       

(𝑘2 + 𝑘)(𝑝 − 1)

1
     ). 

The closed neighbourhood reachability average LH energy E14(𝐺) can be determined as follows: 

E14(𝐺) = ∑|𝜇i
(14)|

𝑝

𝑖=1

 

= (|−(𝑘2 + 𝑘)| × (𝑝 − 1)) + (|(𝑘2 + 𝑘)(𝑝 − 1)| × 1)  

E14(𝐺) = 2(𝑘2 + 𝑘)(𝑝 − 1). 

3.2 BOUNDS FOR CLOSED NEIGHBOURHOOD DEGREE BASED REACHABILITY ENERGY OF 

GRAPH 

In this subsection, we obtain bounds for closed neighbourhood degree-based reachability energy of regular graph. 

 

Theorem 3.2.1: 

 If 𝐺 be a connected graph, then  √2𝑅𝑎 ≤ 𝐸𝑎(𝐺) ≤ √2𝑝𝑅𝑎 for 10 ≤ 𝑎 ≤ 14. 

Proof: 

 By Cauchy-Schwartz inequality, 

(∑𝑥𝑖𝑦𝑖

𝑝

𝑖=1

)

2

≤ (∑𝑥𝑖
2

𝑝

𝑖=1

)(∑𝑦𝑖
2

𝑝

𝑖=1

) 

Consider, 𝑥𝑖 = 1 and 𝑦𝑖 = |𝜇𝑖
(𝑎)| , then 

(∑|𝜇𝑖
(𝑎)|

𝑝

𝑖=1

)

2

≤  𝑝 (∑(𝜇𝑖
(𝑎)

)2

𝑝

𝑖=1

) 

𝐸𝑎(𝐺)2 ≤ 2𝑝𝑅𝑎 
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𝐸𝑎(𝐺) ≤ √2𝑝𝑅𝑎. 

which gives the required upper bound for 𝐸𝑎(𝐺). 

Consider, (𝐸𝑎(𝐺))
2

= (∑ |𝜇𝑖
(𝑎)|𝑝

𝑖=1 )
2

≥ ∑ |𝜇𝑖
(𝑎)|

2𝑝
𝑖=1 = 2𝑅𝑎 

𝐸𝑎(𝐺) ≥ √2𝑅𝑎. 

which gives the required lower bound for 𝐸𝑎(𝐺). 

√2𝑅𝑎 ≤ 𝐸𝑎(𝐺) ≤ √2𝑝𝑅𝑎. 

Hence the result. 

Theorem 3.2.2: 

 Let 𝐺 be a connected graph and let |𝐷𝑒𝑡 (𝑀𝑎(𝐺))| be the absolute value of the determinant of the 𝑀𝑎(𝐺) of a 

graph then for 10 ≤ 𝑎 ≤ 14, 

√2𝑅𝑎 + 𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
2
𝑝   ≤ 𝐸𝑎(𝐺) ≤ √2𝑝𝑅𝑎. 

Proof: 

 By the theorem 3.2.1, we have the upper bound for 𝐸𝑎(𝐺) as 𝐸𝑎(𝐺) ≤ √2𝑝𝑅𝑎. 

Now, we obtain the lower bound for 𝐸𝑎(𝐺). 

Consider, 

(𝐸𝑎(𝐺))
2

= (∑|𝜇𝑖
(𝑎)|

𝑝

𝑖=1

)

2

= ∑|𝜇𝑖
(𝑎)|

2

𝑝

𝑖=1

+ 2 ∑ |𝜇𝑖
(𝑎)|

1≤𝑖<𝑗≤𝑝

|𝜇𝑗
(𝑎)| 

= 2𝑅𝑎 + ∑|𝜇𝑖
(𝑎)|

𝑖≠𝑗

|𝜇𝑗
(𝑎)| 

From Arithmetic – Geometric mean inequality, we have, 

1

𝑝(𝑝 − 1)
∑|𝜇𝑖

(𝑎)|

𝑖≠𝑗

|𝜇𝑗
(𝑎)| ≥ (∏|𝜇𝑖

(𝑎)||𝜇𝑗
(𝑎)|

𝑖≠𝑗

)

1
𝑝(𝑝−1)

 

= (∏|𝜇𝑖
(𝑎)|

2(𝑝−1)

𝑝

𝑖=1

)

1
𝑝(𝑝−1)

= |𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
2
𝑝. 

which implies that 

(𝐸𝑎(𝐺))
2

≥ 2𝑅𝑎 + 𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
2
𝑝 

𝐸𝑎(𝐺) ≥ √2𝑅𝑎 + 𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
2
𝑝  . 

which gives the required lower bound for 𝐸𝑎(𝐺). 
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√2𝑅𝑎 + 𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
2
𝑝   ≤ 𝐸𝑎(𝐺) ≤ √2𝑝𝑅𝑎. 

Hence the result. 

Theorem 3.2.3: 

 Let 𝐺 be a connected graph with 𝑝 vertices and 𝑀𝑎(𝐺) be a non-singular matrix then for 10 ≤ 𝑎 ≤ 14, 

𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝 ≤ 𝐸𝑎(𝐺) ≤

2𝑝𝑅𝑎

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝

. 

Proof:  

Using Arithmetic- Geometric Mean Inequality for the values |𝜇1
(𝑎)|, |𝜇2

(𝑎)|, … , |𝜇𝑝
(𝑎)|, we get, 

|𝜇1
(𝑎) + 𝜇2

(𝑎) + ⋯+ 𝜇𝑝
(𝑎)|

𝑝
≥ |𝜇1

(𝑎)𝜇2
(𝑎) … 𝜇𝑝

(𝑎)|
1
𝑝 

∑|𝜇𝑖
(𝑎)|

𝑝

𝑖=1

≥ 𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝 

𝐸𝑎(𝐺) ≥ 𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝 

which gives a lower bound for 𝐸𝑎(𝐺). 

By using lemma 2.1.4, we have |𝜇1
(𝑎)| ≥ |𝐷𝑒𝑡 (𝑀𝑎(𝐺))|

1

𝑝 

|𝜇1
(𝑎)|∑|𝜇𝑖

(𝑎)|

𝑝

𝑖=1

≥ |𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝  ∑|𝜇𝑖

(𝑎)|

𝑝

𝑖=1

 

⇒ 𝑝|𝜇1
(𝑎)|

2
 ≥ |𝐷𝑒𝑡 (𝑀𝑎(𝐺))|

1
𝑝 (𝐸𝑎(𝐺)) 

𝐸𝑎(𝐺)  ≤
𝑝|𝜇1

(𝑎)|
2

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝

 

Since |𝜇1
(𝑎)|

2
≤ 2𝑅𝑎, 

𝐸𝑎(𝐺)  ≤
2𝑝𝑅𝑎

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝

 

which gives an upper bound for 𝐸𝑎(𝐺).  

𝑝|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝 ≤ 𝐸𝑎(𝐺) ≤

2𝑝𝑅𝑎

|𝐷𝑒𝑡 (𝑀𝑎(𝐺))|
1
𝑝

. 

Hence the theorem. 

4. CLOSED NEIGHBOURHOOD DEGREE BASED REACHABILITY ESTRADA INDEX AND 

ITS BOUNDS 

In this section, we introduce and obtain some closed neighbourhood degree-based reachability Estrada index 

and its bounds. Additionally, we determine an upper bound for closed neighbourhood degree-based 
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reachability Estrada index in terms of closed neighbourhood degree-based reachability energy of graph in 

the following sections. 

 

4.1. CLOSED NEIGHBOURHOOD DEGREE BASED REACHABILITY ESTRADA INDEX OF 

GRAPH  

In this subsection, we introduce some closed neighbourhood degree-based reachability Estrada index of a 

graph and derive bounds for the same. 

Definition 4.1.1:  

If G be a connected graph with 𝑝 vertices, then the Estrada index 𝐸𝐸𝑎(𝐺) based on a matrix 𝑀𝑎(𝐺) for 10 ≤ 𝑎 ≤

14 is defined by 

𝐸𝐸𝑎(𝐺) = ∑ 𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

 

where 𝜇1
(𝑎) ≥ 𝜇2

(𝑎) ≥ ⋯ ≥ 𝜇𝑝
(𝑎) are the eigenvalues of 𝑀𝑎(𝐺). 

Denoting by 𝑉𝑘(𝐺) to the 𝑘-th moment of the graph 𝐺, 

We get 𝑉𝑘  = ∑ (𝜇𝑖
(𝑎))𝑘𝑝

𝑖=1 , For 𝑘 = 0,1,2  

𝑉0  = ∑(𝜇𝑖
(𝑎)

)0

𝑝

𝑖=1

= 𝑝; 𝑉1  = ∑(𝜇𝑖
(𝑎)

)1

𝑝

𝑖=1

= 0; 𝑉2  = ∑(𝜇𝑖
(𝑎)

)2

𝑝

𝑖=1

= 2 ∑ (𝑏𝑖𝑗)
2

1≤𝑖<𝑗≤𝑝

= 2𝑅𝑎 

Also, we have, 𝑉𝑘 = 𝑡𝑟 (𝑀𝑎(𝐺)𝑘). Then, 𝐸𝐸𝑎(𝐺) = ∑
𝑉𝑘

𝑘!

∞
𝑘=0 . 

4.2. BOUNDS FOR CLOSED NEIGHBOURHOOD DEGREE BASED REACHABILITY ESTRADA 

INDEX OF GRAPH  

In this subsection, we obtain the upper bound and lower bound for closed neighbourhood degree-based 

reachability Estrada index of graph. 

Theorem 4.2.1: 

Let 𝐺 be a connected graph with diameter less than or equal to 2 then for 10 ≤ 𝑎 ≤ 14, 

√𝑝2 + 4R𝑎  ≤ 𝐸𝐸𝑎(𝐺) ≤ 𝑝 − 1 + 𝑒√2R𝑎 . 

Proof: 

 From the definition 4.1.1, 𝐸𝐸𝑎(𝐺) = ∑ 𝑒𝜇𝑖
(𝑎)𝑝

𝑖=1  

𝐸𝐸𝑎
2(𝐺) = (∑𝑒𝜇𝑖

(𝑎)

𝑝

𝑖=1

)

2

= ∑𝑒2𝜇𝑖
(𝑎)

+ 2 ∑ 𝑒𝜇𝑖
(𝑎)

𝑒𝜇𝑗
(𝑎)

1≤𝑖<𝑗≤𝑝

𝑝

𝑖=1

 

Consider the 2nd term of the above equation, by using Arithmetic-Geometric Mean Inequality, we have 

2 ∑ 𝑒𝜇𝑖
(𝑎)

𝑒𝜇𝑗
(𝑎)

1≤𝑖<𝑗≤𝑝

≥ 𝑝(𝑝 − 1)( ∏ 𝑒𝜇𝑖
(𝑎)

𝑒𝜇𝑗
(𝑎)

1≤𝑖<𝑗≤𝑝

)

2
𝑝(𝑝−1)
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= 𝑝(𝑝 − 1)((∏𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

𝑝−1

)

2
𝑝(𝑝−1)

 

= 𝑝(𝑝 − 1)(𝑒𝑉1)
2
𝑝 = 𝑝(𝑝 − 1) 

2 ∑ 𝑒𝜇𝑖
(𝑎)

𝑒𝜇𝑗
(𝑎)

1≤𝑖<𝑗≤𝑝

≥ 𝑝(𝑝 − 1). 

Consider, 

∑𝑒2𝜇𝑖
(𝑎)

𝑝

𝑖=1

= ∑∑
(2𝜇𝑖

(𝑎))
𝑘

𝑘!
𝑘≥0

𝑝

𝑖=1

= 𝑝 + 4𝑅𝑎 + ∑∑
(2𝜇𝑖

(𝑎))
𝑘

𝑘!
𝑘≥3

𝑝

𝑖=1

 

Since we require lower bound as good as possible, it holds reasonable to replace ∑
(2𝜇𝑖

(𝑎))
𝑘

𝑘!𝑘≥3  by 4
(𝜇𝑖

(𝑎))
𝑘

𝑘!
. 

Further, we use a multiplier 𝑡 ∈ [0,4] instead of 4. We get, 

∑𝑒2𝜇𝑖
(𝑎)

𝑝

𝑖=1

≥ 𝑝 + 4𝑅𝑎 + 𝑡 ∑∑
(𝜇𝑖

(𝑎))
𝑘

𝑘!
𝑘≥3

𝑝

𝑖=1

 

∑𝑒2𝜇𝑖
(𝑎)

𝑝

𝑖=1

≥ 𝑝 + 4𝑅𝑎 − 𝑡𝑝 − 𝑡𝑅𝑎 + 𝑡 ∑∑
(𝜇𝑖

(𝑎))
𝑘

𝑘!
𝑘≥0

𝑝

𝑖=1

 

∑𝑒2𝜇𝑖
(𝑎)

𝑝

𝑖=1

≥ 𝑝(1 − 𝑡) + (4 − 𝑡)𝑅𝑎 + 𝑡. 𝐸𝐸𝑎(𝐺) 

Then solving for 𝐸𝐸𝑎(𝐺), 

𝐸𝐸𝑎
2(𝐺) ≥ 𝑝(1 − 𝑡) + (4 − 𝑡)𝑅𝑎 + 𝑡. 𝐸𝐸𝑎(𝐺) + 𝑝(𝑝 − 1) 

𝐸𝐸𝑎
2(𝐺) ≥ 𝑝2 + 4𝑅𝑎 + 𝑡 [𝐸𝐸𝑎(𝐺) − 𝑅𝑎 − 𝑝] 

For 𝑝 ≥ 2, the best lower bound for 𝐸𝐸𝑎(𝐺) is attained when 𝑡 = 0. 

𝐸𝐸𝑎
2(𝐺) ≥ 𝑝2 + 4𝑅𝑎 

𝐸𝐸𝑎(𝐺) ≥ √𝑝2 + 4𝑅𝑎. 

which gives the required lower bound for 𝐸𝐸𝑎(𝐺). 

From the definition 4.1.1,  

𝐸𝐸𝑎(𝐺) = ∑
𝑉𝑘

𝑘!

∞

𝑘=0

= 𝑝 + ∑
𝑉𝑘

𝑘!

∞

𝑘=1

 

𝐸𝐸𝑎(𝐺) ≤ 𝑝 + ∑∑
(𝜇𝑖

(𝑎))
𝑘

𝑘!
𝑘≥1

𝑝

𝑖=1

 

𝐸𝐸𝑎(𝐺) ≤ 𝑝 + ∑∑
|𝜇𝑖

(𝑎)|
𝑘

𝑘!
𝑘≥1

𝑝

𝑖=1
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≤ 𝑝 + ∑
1

𝑘!
𝑘≥1

∑((𝜇𝑖
(𝑎))

2
)

𝑘
2

𝑝

𝑖=1

= 𝑝 + ∑
1

𝑘!
𝑘≥1

(2𝑅𝑎)
𝑘
2 

= 𝑝 − 1 + ∑
(√2𝑅𝑎)

𝑘

𝑘!
𝑘≥0

= 𝑝 − 1 + 𝑒√2𝑅𝑎 

𝐸𝐸𝑎(𝐺) ≤ 𝑝 − 1 + 𝑒√2𝑅𝑎 . 

which gives required upper bound for 𝐸𝐸𝑎(𝐺).  

∴ √𝑝2 + 4R𝑎  ≤ 𝐸𝐸𝑎(𝐺) ≤ 𝑝 − 1 + 𝑒√2R𝑎 . 

Hence the theorem. 

Theorem 4.2.2: 

 Let 𝐺 be a connected graph of order 𝑝 then for 10 ≤ 𝑎 ≤ 14 

(∑ 𝑒
𝜇𝑖

(𝑎)

2
𝑝
𝑖=1 )

2

− 𝑝

𝑝 − 1
≤ 𝐸𝐸𝑎(𝐺) ≤ (∑𝑒

𝜇𝑖
(𝑎)

2

𝑝

𝑖=1

)

2

− 𝑝(𝑝 − 1). 

Proof: 

We know that, if 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑝 be any real numbers, then  

𝑝

[
 
 
 
 
1

𝑝
∑𝑥𝑖

𝑝

𝑖=1

− (∏𝑥𝑖

𝑝

𝑖=1

)

1
𝑝

]
 
 
 
 

≤ 𝑝∑𝑥𝑖

𝑝

𝑖=1

− (∑√𝑥𝑖

𝑝

𝑖=1

)

2

≤ 𝑝(𝑝 − 1)

[
 
 
 
 
1

𝑝
∑𝑥𝑖

𝑝

𝑖=1

− (∏𝑥𝑖

𝑝

𝑖=1

)

1
𝑝

]
 
 
 
 

 

By setting 𝑥𝑖 = 𝑒𝜇𝑖
(𝑎)

 for 𝑖 = 1,2, … , 𝑝, we have 

𝑝 [
1

𝑝
∑𝑒𝜇𝑖

(𝑎)

𝑝

𝑖=1

− (∏𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

1
𝑝

] ≤ 𝑝 ∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− (∑√𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

2

≤ 𝑝(𝑝 − 1) [
1

𝑝
∑ 𝑒𝜇𝑖

(𝑎)

𝑝

𝑖=1

− (∏𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

1
𝑝

] 

 

Consider, 

𝑝 [
1

𝑝
∑𝑒𝜇𝑖

(𝑎)

𝑝

𝑖=1

− (∏𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

1
𝑝

] ≤ 𝑝 ∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− (∑√𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

2

 

∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− 𝑝 (𝑒∑ 𝜇𝑖
(𝑎)𝑝

𝑖=1 )

1
𝑝

≤ 𝑝 ∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− (∑√𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

2

 

⇒ (∑𝑒
𝜇𝑖

(𝑎)

2

𝑝

𝑖=1

)

2

− 𝑝 ≤ (𝑝 − 1)∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1
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∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

≥

 (∑ 𝑒
𝜇𝑖

(𝑎)

2
𝑝
𝑖=1 )

2

− 𝑝

𝑝 − 1
 

𝐸𝐸𝑎(𝐺) ≥

 (∑ 𝑒
𝜇𝑖

(𝑎)

2
𝑝
𝑖=1 )

2

− 𝑝

𝑝 − 1
. 

which gives the lower bound for 𝐸𝐸𝑎(𝐺). 

Consider, 

𝑝 ∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− (∑√𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

2

≤ 𝑝(𝑝 − 1) [
1

𝑝
∑𝑒𝜇𝑖

(𝑎)

𝑝

𝑖=1

− (∏𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

1
𝑝

] 

𝑝 ∑𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− (∑√𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

)

2

≤ (𝑝 − 1)∑ 𝑒𝜇𝑖
(𝑎)

𝑝

𝑖=1

− 𝑝(𝑝 − 1) (𝑒∑ 𝜇𝑖
(𝑎)𝑝

𝑖=1 )

1
𝑝
 

⟹ 𝐸𝐸𝑎(𝐺) ≤ (∑𝑒
𝜇𝑖

(𝑎)

2

𝑝

𝑖=1

)

2

− 𝑝(𝑝 − 1). 

which gives an upper bound for 𝐸𝐸𝑎(𝐺). 

(∑ 𝑒
𝜇𝑖

(𝑎)

2
𝑝
𝑖=1 )

2

− 𝑝

𝑝 − 1
≤ 𝐸𝐸𝑎(𝐺) ≤ (∑𝑒

𝜇𝑖
(𝑎)

2

𝑝

𝑖=1

)

2

− 𝑝(𝑝 − 1). 

Hence the theorem. 

4.3. AN UPPER BOUND FOR THE CLOSED NEIGHBOURHOOD DEGREE BASED 

REACHABILITY ESTRADA INDEX IN TERMS OF THEIR CORRESPONDING ENERGY 

In this subsection, we find upper bounds for some closed neighbourhood degree-based reachability Estrada 

index based on the corresponding closed neighbourhood degree-based reachability Energy.  

Theorem 4.3.1: 

 Let 𝐺 be a connected graph of diameter not greater than 2 then for 10 ≤ 𝑎 ≤ 14, 

𝐸𝐸𝑎(𝐺) − 𝐸𝑎(𝐺) ≤ 𝑝 − 1 − √2𝑅𝑎 + 𝑒√2𝑅𝑎 

 and  

𝐸𝐸𝑎(𝐺) ≤ 𝑝 − 1 + 𝑒𝐸𝑎(𝐺). 

Proof: 

 From definition 4.1.1, we have, 

𝐸𝐸𝑎(𝐺) = 𝑝 + ∑∑
(𝜇𝑖

(𝑎))
𝑘

𝑘!
𝑘≥1

𝑝

𝑖=1

 

               ≤ 𝑝 + ∑ ∑
|𝜇𝑖

(𝑎)|
𝑘

𝑘!𝑘≥1
𝑝
𝑖=1   
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𝐸𝐸𝑎(𝐺) ≤ 𝑝 + 𝐸𝑎(𝐺) + ∑∑
|𝜇𝑖

(𝑎)|
𝑘

𝑘!
𝑘≥2

𝑝

𝑖=1

 

𝐸𝐸𝑎(𝐺) − 𝐸𝑎(𝐺) ≤ 𝑝 − 1 − √2𝑅𝑎 + 𝑒√2𝑅𝑎 

Another approximation to connect 𝐸𝐸𝑎(𝐺) and 𝐸𝑎(𝐺)can be seen as follows: 

𝐸𝐸𝑎(𝐺) ≤ 𝑝 + ∑ ∑
|𝜇𝑖

(𝑎)|
𝑘

𝑘!
𝑘≥1

𝑝

𝑖=1

 

≤ 𝑝 + ∑
1

𝑘!
𝑘≥1

(∑|𝜇𝑖
(𝑎)|

𝑘

𝑝

𝑖=1

) 

≤ 𝑝 − 1 + ∑
(𝐸𝑎(𝐺))

𝑘

𝑘!
𝑘≥0

 

𝐸𝐸𝑎(𝐺) ≤ 𝑝 − 1 + 𝑒𝐸𝑎(𝐺). 

Hence the result. 

CONCLUSION: 

In this paper, we have introduced some closed neighbourhood degree-based reachability matrices of a graph and 

obtained their corresponding Energy and Estrada index. We further computed some closed neighbourhood 

degree-based reachability energy for regular graphs. In addition, we have established bounds for both the Energy 

and the Estrada index for these matrices. 
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