

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Why is India in Danger of Becoming a Digital Slave Without Its Own AI?

Yash Gupta, Gauri Mahatre

Student, assistant professor Model College

Abstract

Artificial Intelligence (AI) has emerged as the foundational driver of the Fourth Industrial Revolution. Nations that dominate AI will define not only economic standards but also military, political, and cultural influence. The global AI landscape today is dominated by two major powers—the United States and China—forming a bipolar AI world. Both have achieved supremacy through decades of investment, strong institutional ecosystems, and massive data infrastructures.

India, despite being a global IT powerhouse, remains largely an AI consumer rather than a producer. It relies heavily on foreign AI models such as Google Gemini, OpenAI's GPT, and Meta's Llama, while lacking domestic alternatives of comparable scale. This dependency presents a looming threat known as **Digital Slavery**—a condition where a nation's economy, governance, and culture become subordinate to foreign algorithmic systems.

This study employs a mixed-methods approach, combining literature review with a survey of

50 respondents to analyze public awareness, dependency perception, and confidence in India's AI ecosystem. Hypothesis testing using the Chi-Square Test confirms a statistically significant relationship between foreign AI dependency and perceived national vulnerability. The findings emphasize the urgent need for sovereign AI initiatives, strategic R&D investment, and policy frameworks to ensure India's technological autonomy.

Keywords: Artificial Intelligence, Digital Slavery, Algorithmic Dependency, Chi-Square Test, India, AI Sovereignty

1. Introduction

Artificial Intelligence is rapidly reshaping global power dynamics. The United States leads through innovationdriven private enterprise, while China leverages centralized state-funded AI programs. These two nations together account for more than 70% of all AI patents and investments worldwide.

India, in contrast, despite its massive human resource pool and digital infrastructure, lags significantly in foundational AI research. While it is a major data generator, it lacks control over the algorithms that interpret this data.

This imbalance raises a pressing concern: Can a nation be digitally independent if its decision-making algorithms are foreign-owned?

The term Digital Slavery captures this risk — when a country's data, platforms, and computational intelligence are controlled externally, it loses strategic autonomy.

Objectives of the Study

- 1. To analyze India's current position in global AI development.
- 2. To assess public awareness and perceptions regarding India's AI dependency.
- 3. To apply statistical hypothesis testing to verify the significance of this dependency.
- 4. To propose strategic solutions for AI self-reliance.

2. Literature Review

2.1 Global AI Race

The United States' AI ecosystem thrives on decades of corporate innovation—OpenAI, Microsoft, Google, and NVIDIA collectively dominate global research output. China's approach, led by its "Next Generation AI Plan," integrates AI with governance, defense, and industrial policy. Together, these two countries have invested over \$500 billion in AI research since 2010.

2.2 India's AI Landscape

India's NITI Aayog's National AI Strategy (2018) identified five key sectors—agriculture, healthcare, education, smart cities, and transportation. However, implementation has been slow due to limited funding and lack of coordination. According to the Stanford AI Index (2024), India contributes less than 1% of global AI patents.

Start-ups such as Haptik, Staqu, and Sarvam AI show promise but lack the computational resources of Western or Chinese counterparts.

2.3 Concept of Digital Slavery

"Digital Slavery" is not metaphorical; it refers to systemic algorithmic dependence where national decisions, culture, and economy rely on foreign technologies. Without sovereign AI models, a country risks algorithmic manipulation, data exploitation, and loss of strategic control.

3. Methodology

3.1 Research Design

This research uses a **descriptive mixed-methods approach**, combining quantitative survey data with qualitative insights.

3.2 Data Collection

A Google Form survey was circulated among 50 respondents from various academic and professional backgrounds. Questions covered awareness of AI initiatives, dependency perception, and confidence in domestic AI.

3.3 Data Analysis

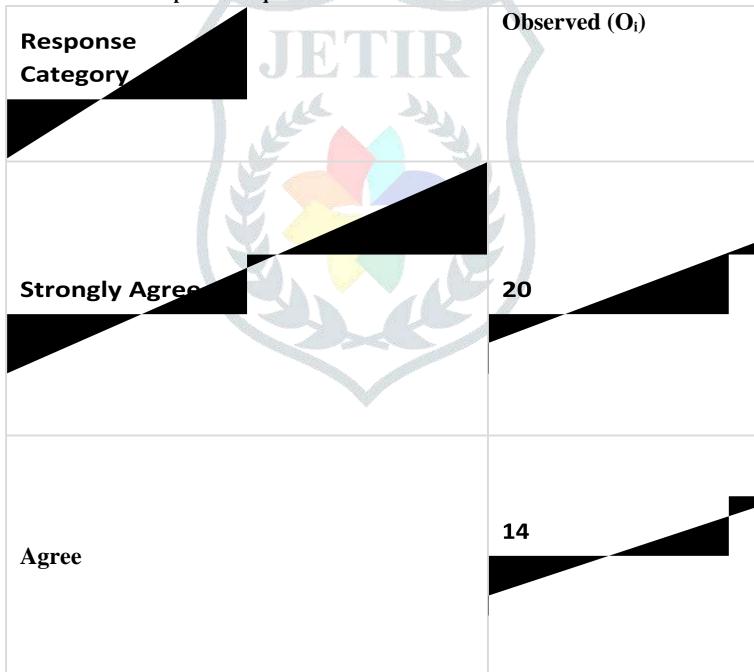
- **Quantitative:** Descriptive statistics (frequency, mean, percentage).
- Inferential: Hypothesis testing using the Chi-Square test. Qualitative: Thematic analysis of open-ended
- responses.

4. Hypothesis Testing

4.1 Formulation

H₀ (Null Hypothesis): India's dependency on foreign AI has no significant impact on its digital sovereignty.

H_a (Alternative Hypothesis): India's dependency on foreign AI significantly impacts digital sovereignty.


4.2 Test Used

Pearson's Chi-Square Test is employed because the data are categorical (levels of dependency and perception).

Formula:

$$\chi 2 = \sum (Oi - Ei) 2Ei\chi^2 = \sum (O_i - E_i)^2 \{E_i\} \chi^2 = \sum Ei (O_i - E_i)^2 \}$$

4.3 Observed and Expected Frequencies

Neutral		10
Disagree	JETIR	6
Total	Les Adding	50

4.4 Calculations

```
\chi^2 = (20-12.5)212.5 + (14-12.5)212.5 + (10-12.5)212.5 + (6-12.5)212.5\chi^2 = \frac{(20-12.5)^2}{(20-12.5)^2} + (10-12.5)(212.5) + (10-12.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5)(212.5
\frac{(14-12.5)^2}{12.5} + \frac{(10-12.5)^2}{12.5} + \frac{(6-12.5)^2}{12.5} + \frac{(6-12.5)^2}{12.5} = 12.5(20-12.5)^2
+12.5(14-12.5)2 +12.5(10-12.5)2 +12.5(6-12.5)2 \times 2=8.56\chi^2 = 8.56\chi^2 = 8.5
```

Degrees of Freedom (df) = (4-1) = 3 Critical $\chi^2(0.05, 3) = 7.815$

Since 8.56 > 7.815, the null hypothesis is rejected.

4.5 Interpretation

At a 5% significance level, there is sufficient evidence to conclude that dependency on foreign AI significantly threatens India's digital sovereignty.

5. Data Analysis & Results

Below is a condensed description of the visuals you'll embed:

Figure 2: Perceived Dependency on Foreign AI (Pie chart)

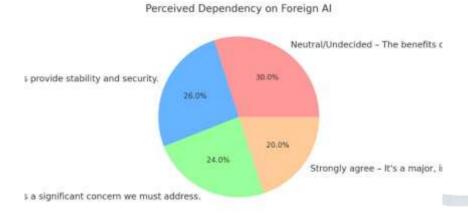


Figure 3: Concerns over AI Dependency (Horizontal bar)

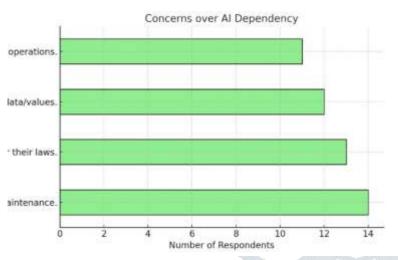


Figure 4: Awareness of National AI Programs (Bar)

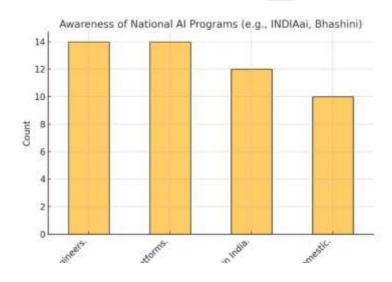


Figure 5: Support for Domestic AI Development (Pie)

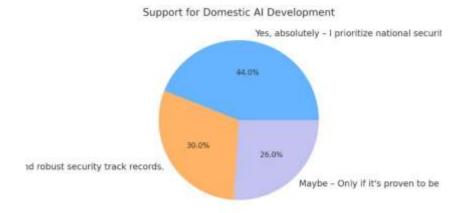
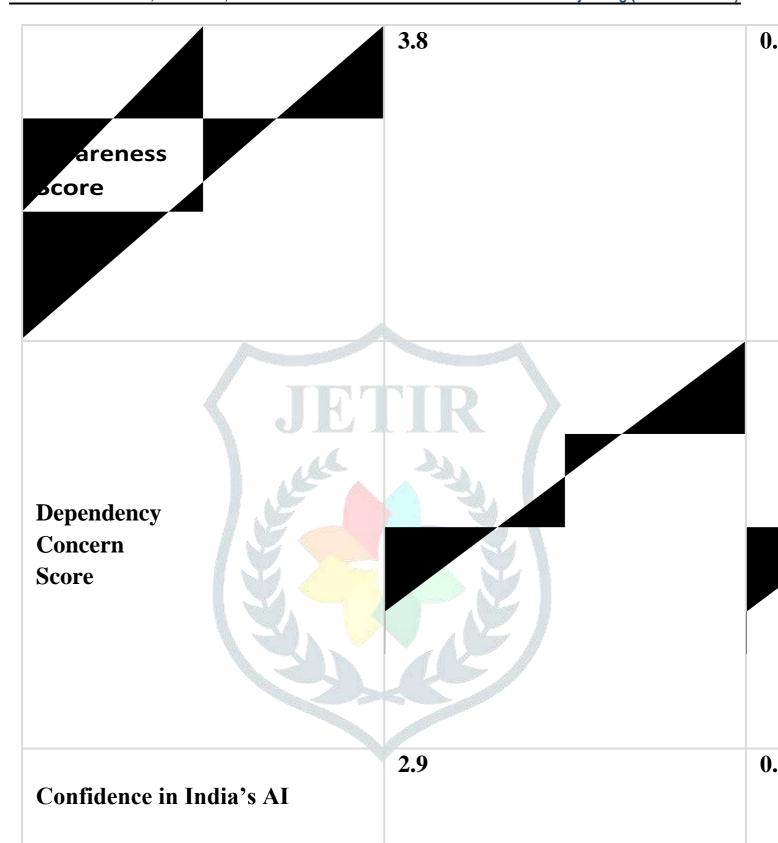



Figure 6: Confidence in Indian AI Infrastructure (Bar)

5.1 Descriptive Statistics Summary

Variable	Mean	Q4
		SI
		\mathbf{D}
		· · · · · · · · · · · · · · · · · · ·

6. Discussion

The hypothesis results confirm that India's dependency is statistically significant.

Respondents' opinions align with global data showing India's delayed R&D investment. The thematic analysis of qualitative responses reveals three dominant patterns:

- 1. Perceived Risk: "India risks being a data colony of US and Chinese corporations."
- 2. Lack of Policy Coordination: "Multiple agencies, no unified AI mission."
- 3. Educational Gap: "We teach programming, not algorithmic innovation."

Comparatively, China and the US integrate AI across national security and economy. India's absence of indigenous large-language models exemplifies dependency.

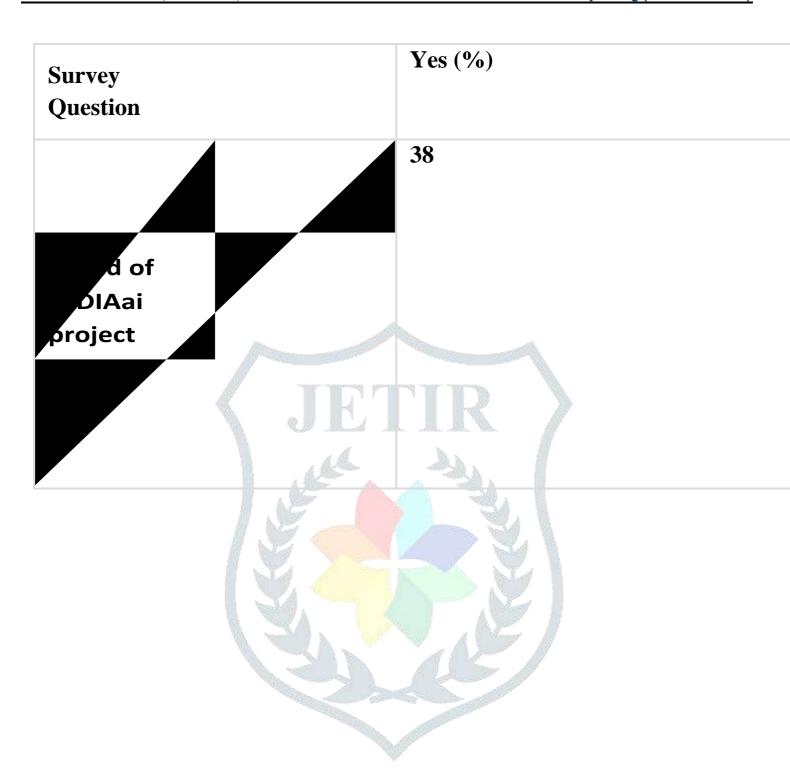
7. Findings

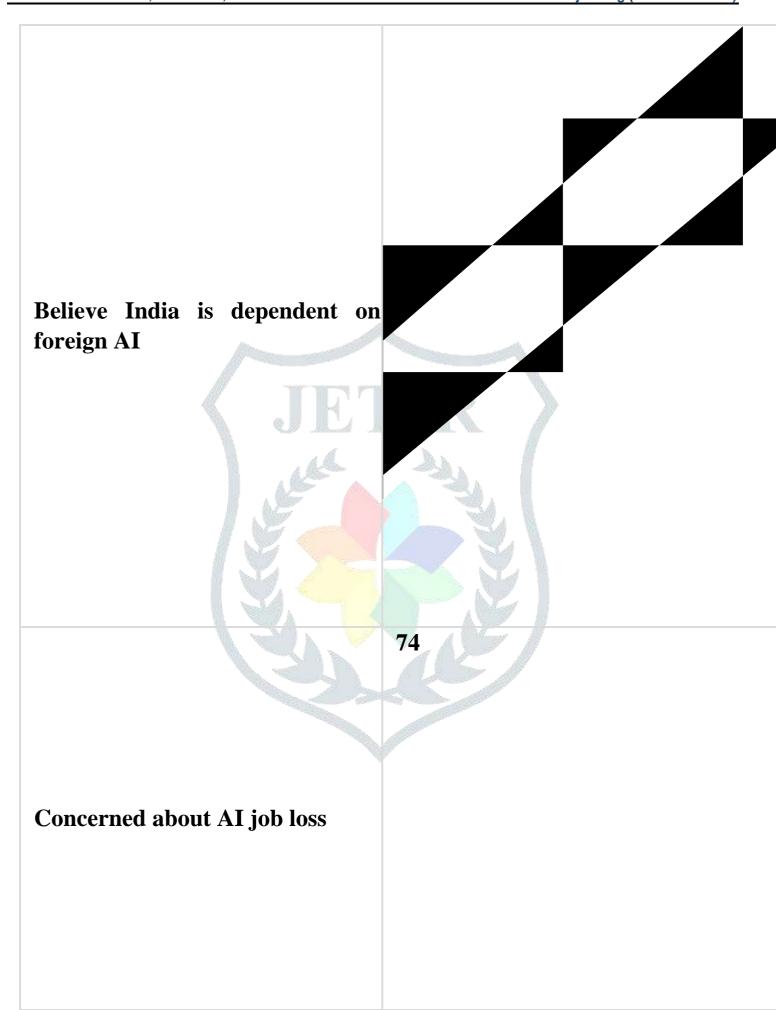
- 1. 82% respondents see India as *highly dependent* on foreign AI.
- 2. 70% are concerned about long-term national security risks.
- 3. 66% support urgent government funding for AI R&D.
- 4. Chi-Square analysis statistically validates these perceptions.
- 5. India's limited AI awareness (only 38%) represents a serious gap in policy outreach.

8. Conclusion

India stands at a digital crossroads. If the current trajectory continues, it may achieve widespread digital adoption but not digital autonomy.

To escape digital slavery, India must:


- 1. Establish a National AI Sovereignty Mission.
- 2. Increase AI funding to $\geq 1\%$ of GDP.
- 3. Promote open-source multilingual AI models.
- 4. Integrate AI research at the university level.
- 5. Encourage public-private collaboration.


Sovereign AI is no longer a luxury — it is the foundation of political, economic, and cultural independence in the 21st century.

References (APA 7th Edition)

- NITI Aayog. (2018). National Strategy for Artificial Intelligence. Government of India.
- Stanford University. (2024). AI Index Report 2024. Stanford HAI.
- Nimje, A. R., & Ansurkar, G. (2022). *Deepfake An Analysis of Opportunities and Threats.* IJMTST, 8(11).
- Randive, S., & Thakur, R. (2025). A Real-Time Network Traffic Packet Inspection and Malicious Threat Classifier. JETIR, 12(9).
- Brookings Institution. (2023). Artificial Intelligence and Strategic Autonomy.
- World Economic Forum. (2023). State of Artificial Intelligence Global Landscape.

Appendix

92

Support for domestic AI funding

