

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

GestuRobotics – Combines Gesture + Robotics, clear and modern

Swarnab Talukdar, Madhumita Halder, Sneha Mukherjee, Satyaki Kumar Biswas*

Department of Electronics and Telecommunication Engineering JIS School of Polytechnic, Kalyani - 741235, West Bengal, India *Corresponding Author: Email: hod.etce@jissp.ac.in

Abstract: This project focuses on the design and implementation of a hand gesture recognition-based robot using Arduino, providing a seamless and intuitive human-machine interaction interface. The system employs an accelerometer sensor embedded in a wearable glove to accurately capture hand movements across multiple axes. Each gesture is mapped to a specific robot command, which is then wirelessly transmitted to the robotic vehicle via RF or Bluetooth communication modules. The Arduino microcontroller receives these signals, processes the data, and controls the robot's movements in real time, ensuring immediate responsiveness to user commands. By removing the need for physical controllers, this approach offers a natural, contactless, and efficient method of controlling robotic systems. The design is highly versatile, suitable for applications ranging from assistive devices for differently-able individuals to operations in hazardous environments and smart automation tasks. Its costeffectiveness, simplicity, and reliable performance make it a practical solution for advancing gesture-based robotic control technologies.

Keywords: Gesture controlled robot, Hand gesture recognition, Gesture interface, Microcontroller-based robot, MEMS accelerometer, Bluetooth communication, Wireless data transmission, Embedded systems, Robotics and automation, Real-time control, Assistive robotics.

I. INTRODUCTION

Robotics has emerged as one of the most transformative technologies in modern science, offering immense potential to impact various aspects of human life. Among the recent advancements, wireless robots have gained significant attention due to their versatility and broad range of applications, including industrial automation, healthcare, defense, and rescue operations. A critical challenge in expanding the role of robots in daily life is establishing an effective and intuitive method of communication between humans and machines. Human-robot interaction has therefore become a central focus, with gesture-based communication emerging as a natural and efficient interface. Unlike traditional input devices, gestures—particularly hand gestures—provide a nonverbal, intuitive way to convey commands, enabling operators to instruct robots even in complex or hazardous environments. This capability is especially valuable in uncertain or dangerous conditions, such as disaster zones, where robots can follow real-time human instructions to perform tasks safely and accurately. This paper proposes an integrated approach for hand tracking and gesture recognition to serve as a robust human-robot interaction interface. The primary objective is to design a system where robots respond immediately to user gestures, eliminating the need for complex programming or robot-specific commands. By abstracting control to a higher level, this method enhances usability, making robots more accessible, responsive, and practical for a wide range of applications.

II. HMI (HUMAN-MACHINE INTERFACE) AND HCI (HUMAN COMPUTER INTERFACE)

Human-Machine Interface (HMI) and Human-Computer Interaction (HCI) are related concepts that both deal with the interaction between humans and machines, but they differ in scope, objectives, and application domains. HMI primarily focuses on industrial, commercial, and engineering systems, aiming to optimize operational performance, efficiency, and safety. It is commonly used in settings such as manufacturing plants, process control systems, and robotics, where the interface must provide clear, real-time information and facilitate precise control of complex machinery. In contrast, HCI is centered around enhancing usability, accessibility, and user satisfaction in personal computing, software applications, and consumer electronics. HCI emphasizes intuitive design, ease of navigation, and effective communication between the user and digital systems. While both HMI and HCI involve the design of interactive interfaces and the study of user behavior, HMI prioritizes operational effectiveness, whereas HCI prioritizes the overall user experience. Their differing goals dictate the technologies, design principles, and evaluation methods used in each field.

III. CHARACTERISTICS

User-centered: The design of the interface is focused on the needs, preferences, and abilities of the user. The interface should be easy to use and understand, and should minimize the cognitive load on the user.

- Multiple Modalities: HMI interfaces often incorporate multiple modalities, such as touch, voice, and gesture, to provide a more natural and intuitive user experience.
- Feedback and Response: HMI interfaces provide feedback and response to the user, so that they can see the results of their actions and adjust their behaviour accordingly.
- > Context awareness: HMI interfaces should be context-aware, meaning that they are able to adapt to the user's environment and situation.
- > Personalization: HMI interfaces can be personalized to the individual user, so that the interface is tailored to their preferences and needs.
- > Safety: HMI interfaces in safety-critical applications, such as industrial automation or medical devices, must be designed to ensure safe and reliable operation.
- > Scalability: HMI interfaces must be scalable to handle large and complex systems, and should be able to adapt to changing needs and requirements overtime.
- Integration: HMI interfaces must be able to integrate with other systems and devices, both within and outside the organization.
- Security: HMI interfaces must be designed with security in mind, to protect against unauthorized access and malicious attacks.

Overall, the features of HMI are designed to create interfaces that are more natural, intuitive, and effective for humans, while also improving the functionality and performance of the machines themselves. By incorporating principles of user-centered design, multiple modalities, feedback and response, context awareness, and personalization, HMI interfaces can create a more seamless and integrated interface between humans and machines.

IV. ADVANTAGES

- ➤ **Higher Worker Satisfaction:** It has been demonstrated that using HMIs can significantly increase employee satisfaction in a given industry. Employees are observed to be more content when completing tasks that call for the use of HMIs than when they do not. Online shoppers are more satisfied when using touch screens instead of conventional monitors, according to some research.
- Operation Control Becomes More Flexible: One can modify the interface using HMI technology to meet particular needs or preferences. In order to track, monitor and support various systems, HMI systems are helpful. Although it takes a few steps to operate either of the systems, the technology is effective for both simple and complex systems. While a single employee can operate multiple screens at once, it is nearly impossible to operate multiple machines at once. Making the HMI more unique facilitates the execution of various production steps and, as a result, boosts output. You can easily remote control particular operations when you use HMI technology in your sector. By doing this, youcan easily track information for various processes. However, this technology makes it simpler to manage operations as a result of a worker
- User-Friendliness: Although using Human Machine Interface technology has a many benefits; user friendliness is the most alluring. This is due to the fact that they feature basic graphical user interfaces that facilitate identification and problem-solving through instantaneous recognition and automatic color coding. The use of a human interface eliminates the need for some tools, which call for moving around to check different processes. You will be able to control various machines or devices in the industrial setup from one location using a single HMI. This makes carrying it simpler and more affordable.
- Cost-effectiveness: It is one of the soundest argument to be made for the case of industrial robots. Robots will reduce production costs by eliminating internal costs to compensate human salaries. Businesses are forecasting that their profitability will increase once they implement robots into production, or that they will have more financial mobility to invest in new products or technologies.
- Quality assurance: It is expected with the use of machinery in production. Industrial robots will be able to ensure consistency with mass production of manufactured products. The possible human error that assembly line workers pose the threat of will be removed.

V. WORKING OF HAND GESTURE CONTROLLED ROBOT

A mobile robot that is controlled by gestures is made. The brain of this project is the Atmel Atmega328P microcontroller. The gesture controlled robot is a wireless operated robot and has two parts: Transmitter and Receiver when the robot is powered on, the transmitter part, which consists of Arduino Nano R3, MPU6050 and nRF24L01+ transmitter. The Arduino continuously reads the orientation data from the MPU6050 sensor. The data received are passed on to the nRF24L01+ transmitter which further transmits the data to the receiver unit.

At the receiver section, the other nRF24L01+receives the data passes on to the Arduino. The Arduino then implements the pre-uploaded algorithm to determine the signals to be passed onto the L298N motor driver. The signal passed onto the motor driver consists of 2 PWM signals and 4 Binary signals. Based on the PWM signals the speed of the motors is defined and the binary signals define the rotation direction of the motors.

VI. BLOCK DIAGRAM

The architecture of HMI can vary depending on the application and the technology involved. However, in general, HMI architecture includes the following components

- User Interface: The user interface is the part of the system that enables communication between the human and the machine. This can include displays, touch screens, voice recognition systems, and other input/output devices.
- Application Software: The application software is the software that drives the functionality of the HMI system. This software can range from simple applications that control a single device to complex systems that control multiple devices and integrate with other software systems.
- Middleware: Middleware is the software that connects the application software to the hardware and other components of the HMI system. Middleware can provide communication services, security, and other critical functions.
- Hardware/Machine: The hardware components of an HMI system can include sensors, actuators, control systems, and other devices that enable communication and control.
- Communication Protocols: Communication protocols are the standards and rules that enable communication between different components of the HMI system. This can include standards such as Ethernet, USB, and Bluetooth.
- Data Management: Data management involves the collection, storage, processing, and analysis of data generated by the HMI system. This can include data about user behavior, system performance, and other metrics that can be used to optimize the system.

VII. APPLICATIONS

Wireless-controlled robots have become increasingly valuable across a wide range of applications due to their ability to operate remotely and perform tasks in environments that may be unsafe or difficult for humans to access. In areas such as remote surveillance and military operations, these robots can monitor sensitive locations, detect threats, and perform reconnaissance without putting human lives at risk. Hand gesture-controlled industrial-grade robotic arms represent another significant application, allowing operators to control complex machinery intuitively and efficiently, improving productivity and reducing the likelihood of human error in manufacturing processes. Beyond industrial and security applications, such robots are also finding use in entertainment, where gesture-based control can create interactive experiences in gaming, theme parks, and virtual reality setups. Additionally, these systems can be integrated into automation solutions for smart homes, warehouses, and healthcare, streamlining tasks and enabling contactless control. Overall, wireless and gesture-controlled robots combine flexibility, safety, and efficiency, making them increasingly indispensable in modern technology-driven environments.

VIII. LIMITATIONS AND FUTURE SCOPE

One of the significant challenges in the current design of the hand gesture-controlled robot is the use of onboard batteries, which occupy considerable space and add substantial weight. This can negatively affect the robot's maneuverability, speed, and overall efficiency, particularly in applications requiring rapid movement or extended operation. To mitigate this issue, alternative power sources, such as compact lithium-ion batteries or lightweight rechargeable cells, can be considered. Another approach is to replace the existing DC motors with low-power, energy-efficient variants that maintain performance while reducing power consumption. The proposed system is highly applicable in hazardous environments, such as disaster zones or areas unsafe for direct human intervention. By mounting a camera on the robot, the operator can receive real-time visual feedback from a safe distance, allowing precise control over the robot's movements. Gesture recognition can be further enhanced by setting threshold values to improve accuracy and prevent misinterpretation of unintended motions. Advanced features, such as counting individual fingers to assign different commands, can significantly expand the functionality and versatility of the system. Additionally, the current RF module restricts wireless communication to a range of 10–15 meters, limiting operational flexibility. This limitation can be overcome by integrating a GSM module, enabling extended range and reliable control over larger areas or complex environments, making the system more practical for real-world applications.

CONCLUSION

In this paper, we present the development of an automated robot that responds directly to human hand gestures, offering a practical and intuitive approach to human-robot interaction. The robot is designed to interpret palm gestures and move wirelessly according to the commands of the operator. Communication between the robot and the operator is facilitated through an RF (Radio Frequency) module operating at 2.4 GHz, providing a reliable range of 10-15 meters, which ensures smooth and responsive control within a reasonable distance. The system's modular design allows for future enhancements to expand its functionality for diverse real-world applications. For instance, by integrating appropriate sensors, the robot can be upgraded to detect human presence in disaster scenarios such as earthquakes or landslides, making it a valuable tool for search and rescue operations. Additionally, it has the potential to be modified into a bomb detection robot, enhancing safety in critical security environments. Furthermore, the inclusion of a GPS module can enable real-time location tracking, improving operational efficiency and coordination during complex missions. The combination of gesture-based control, wireless communication, and modular upgrades positions this robot as a versatile and adaptable platform, demonstrating significant potential for both civilian and industrial applications. This approach highlights the growing role of intelligent, responsive robots in enhancing safety, efficiency, and convenience in various fields.

REFERENCES

- Donald A. Norman, Stages and levels in human-machine interaction, Volume21, Issue4, October 2020, Pages 365-375, [1] International Man-Machine Studies https://www.sciencedirect.com/science/article/abs/pii/S0020737384800541
- Qiuhong Ke, Farid Boussaid, Computer Vision for Human-Machine Interaction, Science Direct Journalin Computer [2] Vision for Assistive Healthcare, 2018 https://www.sciencedirect.com/science/article/abs/pii/B9780128134450000058
- Gunnar Johannsen, HUMAN-MACHINEINTERACTIONCONTROLSYSTEMS, ROBOTICS, AND AUTOMATION [3] - Vol.XXI, 2018. https://www.eolss.net/sample-chapters/C18/E6-43-37-06.pdf

- S Bharadwaj Reddy, Article on Top5 Advantages of Human-Machine Interface (HMI) 2023,PLC SCADA Courses -Engineers Community. https://instrumentationtools.com/top-5-advantages-of-human-machine-interface-hmi/
- [5] Chamoli Samragyi, paper on The Future of Human-Machine Interactions: How technology is becoming more immersive, accessible, and empathetic, September 6, 2022, Research Briefs, https://www.cbinsights.com/research/futureof-human-machine-interactions/
- [6] Machine Learning in Internet of Things (IoT) - The next big IT revolution in the making, 30 March 2023. https://www.openxcell.com/blog/machine-learning-in-iot/
- [7] Nishu Gupta, Srinivasa Kiran Gottapu, Rakesh Nayak, Anil Kumar Gupta, Mohammad Derawi, Jayden Khakurel, Book on Human-Machine Interaction and IoT Applications for a Smarter World, 2022. https://www.amazon.in/Human-Machine-Interaction-Applications-Smarter-World-ebook/dp/B0B3Z1DCNC
- Joseph Nuamah USA and Younho Seong, North Carolina A&T State University, Human machine interface in the [8] Internet of Things (IoT), June 2017, DOI:10.1109/SYSOSE.2017.7994979, 12th System of Systems Engineering Conference (SoSE), Department of Industrial and Systems Engineering, North Carolina A&T State University.
- [9] John Klaess, The Future Human Machine Interfaces (HMI) In An IoT World, Sept 09,2021. https://www.researchgate.net/publication/318810459_Human_machine_interface_in_the_Internet_of_Things_IoT

