

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

SMART AND STIMULI-RESPONSIVE PLATFORMS FOR CONTROLLED ANTICANCER DRUG RELEASE: DESIGN PRINCIPLES, THERAPEUTIC OUTCOMES, AND FUTURE DIRECTIONS

Deblina Halder, Soumen Dey*, Suman Dan

Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Maulana Abul Kalam Azad University of Technology, West Bengal, India

Corresponding authors E-mail: soumenriju99@gmail.com

Abstract: Cancer treatment has changed as a result of the creation of intelligent and stimuli-responsive drug delivery systems, which allow for precise, regulated, and site-specific medication release while reducing systemic toxicity. These sophisticated systems can react to external stimuli like light, temperature, ultrasound, and magnetic fields, or to intrinsic tumour cues like pH, redox potential, enzyme activity, and hypoxia. Stimuli-responsive platforms use these triggers to improve treatment efficacy, overcome obstacles such tumour heterogeneity and multidrug resistance, and establish spatiotemporal control over drug release. Recent developments combine several cues, enabling on-demand therapeutic action and dynamic adaptation to intricate tumour microenvironments. Additionally, the integration of these platforms with biosensors and imaging agents has opened the door for theranostic systems that can monitor treatment and diagnose patients at the same time. Barriers pertaining to clinical translation, manufacturing scalability, and biological compatibility still exist despite tremendous advancements. With an emphasis on current developments and new trends, this review critically analyses the design concepts, workings, and therapeutic results of intelligent stimuliresponsive drug delivery systems. It also looks at potential future paths that could redefine precision oncology and enhance patient outcomes, such as programmable and customised delivery platforms.

Index Terms: Stimuli-responsive drug delivery, Controlled release, Tumor microenvironment, Theranostics, Precision oncology, Nanomedicine.

1. INTRODUCTION

Nearly 10 million people die from cancer each year, making it one of the world's major causes of morbidity and mortality [1]. Conventional cancer treatments like chemotherapy, radiation, and surgery frequently fail because of systemic toxicity, lack of selectivity, and the development of multidrug resistance, even though there has been tremendous progress in early diagnosis and treatment. Because of their limited absorption and quick elimination, chemotherapy medications in particular require high systemic doses, which can have serious side effects and reduce patient compliance [2,3]. Furthermore, dynamic tumour microenvironments (TMEs) and tumour heterogeneity make treatment more difficult and result in less than ideal results [4].

New optimism for increasing therapeutic efficacy and reducing adverse effects has been raised by the development of sophisticated drug delivery systems [5]. A paradigm shift among these is represented by intelligent and stimuli-responsive medication delivery systems [6]. These platforms are designed to react to particular internal or external stimuli, releasing therapeutic payloads exactly at the tumour site, in contrast to traditional carriers that depend on passive diffusion [7]. Exogenous stimuli like light, temperature, ultrasound, and magnetic fields provide extra layers of spatiotemporal control, while endogenous triggers like pH gradients, redox potential, enzyme expression, and hypoxia take advantage of the special biochemical characteristics of tumours [8,9,10].

Stimuli-responsive systems improve pharmacokinetic profiles, overcome drug resistance, and provide multimodal therapy in addition to improving drug accumulation and release precision [11]. They are developing into theranostic systems that enable adaptive therapy and real-time treatment monitoring by including diagnostic features [12]. However, before clinical translation is widely used, issues like immunological clearance, biological compatibility, manufacturing scalability, and regulatory complexity need to be resolved [13,14].

The design tenets, mechanical underpinnings, and therapeutic results of intelligent stimuli-responsive drug delivery devices are examined in this paper [15]. It talks about translational obstacles, highlights recent advancements, and looks ahead to future directions, such as patient-specific and programmable platforms that have the potential to revolutionise precision oncology [16, 17, 18].

2.1 Exploiting the Tumor Microenvironment

The pH, redox balance, oxygenation, and enzymatic content of the tumour microenvironment (TME) are all very different from those of normal tissues. The best triggers for selective drug release are these physiological variations. Tumours frequently have regions of hypoxia, high glutathione and reactive oxygen species levels, overexpressed proteolytic enzymes, and an acidic extracellular pH (~6.5-6.8) in comparison to normal tissues (~7.4). By taking use of these characteristics, stimuli-responsive carriers can activate drug release at targeted sites, reducing systemic toxicity and enhancing therapeutic indices [19,20,21].

2.2 Endogenous Stimuli: Internal Biological Cues

One of the most extensively researched platforms is pH-responsive systems. They make use of substances that break down or change their structure in acidic conditions but stay stable at physiological pH. For instance, when cleaved in the acidic TME or endosomal compartments, pH-sensitive polymers with hydrazone or imine linkages release their payload [22].

The high intracellular glutathione concentrations present in cancer cells are exploited by redox-responsive mechanisms. Nanocarriers having disulfide connections breakdown in reductive conditions, releasing medicines intracellularly while staying stable in circulation [23].

Tumor-overexpressed enzymes including cathepsins, hyaluronidases, and matrix metalloproteinases (MMPs) are used by enzymeresponsive systems. Enzyme-cleavable linkers enable site-specific medication release in areas with high concentrations of these enzymes [24].

Bioreducible compounds like as nitroimidazoles, which activate in low oxygen environments, are used in hypoxia-responsive platforms. By focussing on hypoxic tumour locations, which are frequently unresponsive to traditional treatments, these devices improve the overall effectiveness of treatment [25].

3. Exogenous Stimuli: External Control Over Drug Release

By overcoming variations in endogenous circumstances, external stimuli allow for non-invasive, controlled medication release at specific places [26].

Light-responsive systems use photothermal/photodynamic effects or photo-cleavable linkers to precisely time and place medication release. Deep tissues can be penetrated by near-infrared (NIR) light, which also reduces collateral damage [27].

Superparamagnetic iron oxide nanoparticles (SPIONs) are incorporated into magnetic field-responsive carriers, which enable drug release in response to alternating magnetic fields. These devices can provide localised heat for synergistic therapeutic benefits or be magnetically steered to tumours [28].

In order to enable on-demand drug release, ultrasound-responsive systems use sonic cavitation to break up carrier structures. Additionally, ultrasound increases tissue permeability, which facilitates the entry of nanoparticles into tumours [29].

Temperature-sensitive polymers that experience phase transitions during mild hyperthermia (~42 °C) are exploited by thermoresponsive platforms. These devices release medications in heated tumour areas, which are frequently accomplished via magnetic hyperthermia or external heat sources [30].

4. Design Principles and Materials for Stimuli-Responsive Platforms

The design architecture, materials, and functionalisation tactics of smart delivery systems all affect how well they work.

- Polymeric systems provide flexible designs with adjustable mechanical strength, stimuli reactivity, and degradation rates. Common polymers include poly(ethylene glycol), poly(N-isopropylacrylamide), and polylactic-co-glycolic acid [31].
- · Lipid-based carriers, such as solid lipid nanoparticles and liposomes, offer effective medication encapsulation and biocompatibility. Triggered release is made possible by the addition of stimuli-sensitive lipids [32].
- Inorganic carriers that can be functionalised with responsive linkers, such gold nanoparticles, mesoporous silica, and SPIONs, offer special optical, magnetic, or structural characteristics [33].
- To enhance targeting, circulation, and immune evasion, hybrid and biomimetic systems use extracellular vesicles and cell membranes, or integrate organic and inorganic materials [34].
- Selectivity is further improved by surface modification using targeted ligands (antibodies, peptides, and aptamers), and theranostic capabilities are made possible by the addition of imaging agents [35].

5. Dual and Multi-Responsive Systems: Enhancing Precision and Adaptability

Despite their effectiveness, single-stimulus platforms may have drawbacks because of tumour heterogeneity and shifting microenvironments [36,37]. Multiple triggers are integrated into dual- and multi-responsive systems, providing increased control and specificity. A nanoparticle may, for example, be stable in circulation, release medications when exposed to an acidic pH, and speed up release even more in reaction to intracellular redox conditions. Combining external and internal cues, such light and pH, allows for highly precise spatiotemporal on-demand activation. By guaranteeing that drugs are released only under ideal circumstances, these intricate systems enhance treatment results and reflect the dynamic character of tumours [38,39].

6. Therapeutic Outcomes and Clinical Applications

In preclinical and early clinical trials, stimuli-responsive systems have shown notable increases in treatment efficacy. They prolong drug concentrations inside therapeutic windows, promote tumour accumulation, lessen off-target effects, and enable controlled release. Additionally, they circumvent efflux pumps to deliver combination medicines intracellularly, hence overcoming multidrug resistance (MDR) [40,41].

Redox-sensitive polymeric nanoparticles that boost paclitaxel administration to resistant tumours and pH-responsive liposomal doxorubicin formulations that maximise cytotoxicity while reducing cardiotoxicity are two examples. In photothermal and photodynamic therapy, light-activated devices have demonstrated encouraging outcomes, enabling synergistic tumour ablation. Hyperthermia and magnetic-responsive platforms work together to improve medicine absorption and treatment effectiveness

Real-time tracking of medication distribution, tumour response, and treatment effectiveness is made possible by theranostic systems, which combine imaging and therapeutic capabilities. A crucial step towards precision oncology, this capability supports adaptive therapy and tailored treatment plans [44].

7. Translational Challenges and Barriers

Despite its potential, a number of obstacles stand in the way of the therapeutic application of stimuli-responsive platforms:

- Safety and biocompatibility: Certain responsive materials have the potential to accumulate over time in tissues or to be poisonous or immunogenic. To reduce these dangers, biodegradable and biocompatible materials are crucial [45].
- Biological complexity: Variability in tumour types and patient TME features can impact therapy efficacy and trigger reliability
- Scalability and manufacturing: It is still difficult to produce complicated nanocarriers on a wide scale in a way that is both economical and reproducible. To guarantee batch uniformity, stringent quality control is necessary [47].
- Regulatory obstacles: Obtaining regulatory approval is made more difficult by the multifunctional character of stimuli-responsive systems. There is an urgent need for standardised safety, effectiveness, and quality guidelines [48].
- Clinical validation: These sophisticated systems have little clinical data, and a full assessment of their long-term safety and effectiveness is still pending [49].

It will take interdisciplinary cooperation between material scientists, biologists, medics, and regulatory specialists to overcome these obstacles [50].

8. Future Directions and Opportunities

Platforms that are patient-specific, programmable, and adaptable hold the key to the future of stimuli-responsive medication delivery. Carriers that can recognise and react to intricate tumour signals on their own will be made possible by developments in synthetic biology and materials science. Dynamically reconfigurable self-assembling nanocarriers will improve functionality and streamline production [51,52].

Drug delivery system design can be customised to fit the unique needs of each patient through data-driven optimisation made possible by integration with artificial intelligence (AI) and machine learning. Through the correlation of tumour imaging and histology data with delivery outcomes, radiomics and pathomics can further inform the design of nanocarriers [53,54].

In precision oncology, new ideas like biohybrid nanorobots—which can both actively navigate and release targets—represent the future. Furthermore, there is a great deal of promise for synergistic cancer treatments when stimuli-responsive systems are combined with immunotherapy, gene therapy, and CRISPR-based gene editing [55,56].

In the end, these developments will move cancer treatment in the direction of adaptive nanomedicine, in which therapeutic approaches change on the fly in response to patient data collected in real time. In addition to increasing therapeutic efficacy, these strategies will increase the accessibility and worldwide relevance of advanced cancer treatments [57].

Anticancer medication delivery has undergone a revolution thanks to smart and stimuli-responsive systems that provide precise, regulated, and site-specific therapeutic release. These approaches overcome the basic drawbacks of traditional treatments, such as systemic toxicity, low bioavailability, and multidrug resistance, by utilising both intrinsic tumour cues and external stimuli. Their therapeutic potential is further enhanced by theranostic platforms, dual- and multi-responsive systems, and integration with personalised medicine techniques.

Although there are still many obstacles to overcome, namely in the areas of safety, scalability, and regulatory approval, the combination of artificial intelligence, synthetic biology, and nanotechnology holds promise. The next phase of precision oncology, where treatments are not only effective and targeted but also flexible and patient-specific, will be made possible by the ongoing development of stimuli-responsive drug delivery. This paradigm change will drastically alter the way cancer is treated and give patients all across the world new hope for better results and a higher quality of life.

ACKNOWLEDGEMENT

We would like to acknowledge Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Maulana Abul Kalam Azad University of Technology, West Bengal, India for encouragement and support.

COMPETING INTERESTS: NIL

REFERENCES

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 Nov;68(6):394-424.
- 2. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International journal of oncology. 2019 Feb 1;54(2):407-19.
- 3. Carr C, Ng J, Wigmore T. The side effects of chemotherapeutic agents. Current Anaesthesia & Critical Care. 2008 Apr 1;19(2):70-9.
- 4. Junttila MR, De Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013 Sep 19;501(7467):346-54.
- 5. Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023 Jun 1;9(6).
- Chakraborty T, Gupta S, Saini V. In vivo Study of Insulin-loaded Microemulsion Topical gel with Aloe vera for the Treatment of Dermatologic Manifestation of Diabetes. Research J. Pharm. and Tech. 2020;13(9):4115-4124
- Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers. 2021 Feb 7:13(4):670.
- 8. Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. InExploration 2025 Feb (Vol. 5, No. 1, p. 20230133).

- 9. Teixeira do Nascimento A, Stoddart PR, Goris T, Kael M, Manasseh R, Alt K, Tashkandi J, Kim BC, Moulton SE. Stimuli-Responsive Materials for Biomedical Applications. Advanced Materials. 2025 Sep;37(36):e07559.
- 10. Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SM, Mirshekari H, Amiri M, Pishabad ZS, Aslani A, Bozorgomid M, Ghosh D. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical society reviews. 2016;45(5):1457-501.
- 11. Sharma A, Chakraborty T, Gupta S, Sharma A, Pahari PK, Biomarkers: An Important Tool for Diagnosing and Treating Breast Cancer, Journal of Pharmaceutical Research International, 2020, 32(12): 46-54.
- 12. Singh V. Theranostics: integrated diagnostics and therapy using nanomedicine. InNanomedicine: Innovations, Applications, and Breakthroughs in the Quest for Health and Medicine's Future 2024 Dec 10 (pp. 505-530). Cham: Springer Nature Switzerland.
- 13. Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today. 2018 May 1;23(5):974-91.
- 14. Zheng C, Li M, Ding J. Challenges and opportunities of nanomedicines in clinical translation. Bio Integration. 2021 Jul 1;2(2):57.
- 15. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2019 Jan;11(1):e1527.
- 16. Bawa S, Yasmin S, Saini V, Chakraborty T, Chaudhaery SS, Ansari MY, "Treatment and Management of Hypertension by Targeting ACE Inhibitors: in silico Approach" International Journal of Bioautomation, 2019, 23(1): 13-28.
- 17. Rituraj, Pal RS, Wahlang J, Pal Y, Chaitanya MV, Saxena S. Precision oncology: transforming cancer care through personalized medicine. Medical Oncology. 2025 Jun 9;42(7):246.
- 18. Jena R, Samal HB, Sharma J, Suresh P, Mishra AP, Nigam M. Biotechnology in Drug Discovery and Development for Cancer. InBiotechnology and Cancer Therapeutics 2025 May 14 (pp. 447-478). Singapore: Springer Nature Singapore.
- 19. Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert opinion on drug delivery. 2021 Feb 1;18(2):205-27.
- 20. Ding C, Tong L, Feng J, Fu J. Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules. 2016 Dec 20;21(12):1715.
- 21. Chakraborty T, Saini V, Govila D and Singh G "Four most life threatening urogenital cancer and its management" International Journal of Pharmaceutical Sciences and Research, 2018, 9(8): 3166-3174.
- 22. Pandey V, Pandey T. Mechanistic understanding of pH as a driving force in cancer therapeutics. Journal of Materials Chemistry B. 2025;13(8):2640-57.
- 23. Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. Journal of Controlled Release. 2014 Dec 10;195:147-54.
- 24. Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chemical Society Reviews. 2021;50(8):4872-931.
- 25. Singleton DC, Macann A, Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nature reviews Clinical oncology. 2021 Dec;18(12):751-72.
- 26. Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. Recent advances in micro-electromechanical devices for controlled drug release applications. Frontiers in Bioengineering and Biotechnology. 2020 Jul
- 27. Chakraborty T, Saini V, Narwal P, Gupta S "Formulation and evaluation of both stomach and Intestine drug delivery system from unit solid dosage tablet formulation" World Journal of Pharmaceutical Research, 2015:4(10): 1377-1392.
- 28. Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews. 2021;50(20):11614-67.
- 29. Larina IV, Evers BM, Ashitkov TV, Bartels C, Larin KV, Esenaliev RO. Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technology in cancer research & treatment. 2005 Apr;4(2):217-26.
- 30. Soares PI, Ferreira IM, Borges JP. Application of hyperthermia for cancer treatment: recent patents review. Topics in Anti-Cancer Research: Volume 3. 2014 Oct 2:342-83.
- 31. Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, Du Toit LC, Pillay V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules. 2016 Nov 21;21(11):1580.
- 32. Mallick MA, Chakraborty T et.al "Schematic diagrammatic preparation methods of polymeric nanoparticles for biomedical applications in recent and future prospects" European Chemical Bulletin, 2023,12(10):1721-1733
- 33. Cruz JC, Reyes LH. Inorganic Nanocarriers: Gold Nanoparticles, Iron Nanoparticles, Silica Nanoparticles, Quantum Dots. InNanocarriers for Nucleic Acids and Proteins (pp. 105-140). CRC Press.
- 34. Sundaram V, Aryal S. Emerging Biomimetic Drug Delivery Nanoparticles Inspired by Extracellular Vesicles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2025 Jul;17(4):e70025.
- 35. Ahmad IZ, Kuddus M, Tabassum H, Ahmad A, Mabood A. Advancements in applications of surface modified nanomaterials for cancer theranostics. Current drug metabolism. 2017 Nov 1;18(11):983-99.
- 36. Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, Bi Y. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. International journal of nanomedicine. 2021 Feb 25:1525-51.
- 37. Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. Small. 2024 Aug;20(35):2400353.
- 38. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal transduction and targeted therapy. 2018 Mar 16;3(1):7.
- Chakraborty T, Natasha, Saini V, Ruby "Formulation and evaluation of controlled release floating tablets of cefixime using hydrophilic polymers" International Research Journal of Pharmacy, 2019, 10 (1): 171-175.

- 40. Khan IU, Khan RU, Asif H, Khalid SH, Asghar S, Saleem M, Shah KU, Shah SU, Rizvi SA, Shahzad Y. Co-delivery strategies to overcome multidrug resistance in ovarian cancer. International Journal of Pharmaceutics. 2017 Nov 25:533(1):111-24.
- 41. Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Hao H, Wang X, Cheng G. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: an overview. Antibiotics. 2022 Apr 13;11(4):520.
- 42. Wang X, Qi Y, Hu Z, Jiang L, Pan F, Xiang Z, Xiong Z, Jia W, Hu J, Lu W. Fe3O4@ PVP@ DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers. Advanced Composites and Hybrid Materials. 2022 Sep;5(3):1786-98.
- 43. Chakraborty T, Saini V, Singh G, Govila D and Pandurangan A "Causes and Management of Major Microbial Infections in Upper Sensory Organs of the Body" International Journal of Pharmaceutical Sciences Review and Research, 2018, 48(1):43-51.
- 44. Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nature Reviews Cancer. 2016 Apr;16(4):234-49.
- 45. Arif U, Haider S, Haider A, Khan N, Alghyamah AA, Jamila N, Khan MI, Almasry WA, Kang IK. Biocompatible polymers and their potential biomedical applications: A review. Current pharmaceutical design. 2019 Sep 1;25(34):3608-19.
- 46. Du W, Elemento O. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene. 2015 Jun;34(25):3215-25.
- 47. Sammasagi SS, Sutar KP, Hooli S. Scale-up and quality control challenges in the industrial manufacturing of nanoformulations: current trends and future perspectives. IJSAT-International Journal on Science and Technology. 2025 Jun 21;16(2).
- 48. Chakraborty T, Gupta S, Saini V, Talukdar A. Biomarkers: An Important Tool for Diagnosing and Treating Diabetes Mellitus. Int. J. Life Sci. Pharma Res. 2021;11(2):123-129
- 49. Davis KD, Aghaeepour N, Ahn AH, Angst MS, Borsook D, Brenton A, Burczynski ME, Crean C, Edwards R, Gaudilliere B, Hergenroeder GW. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nature Reviews Neurology. 2020 Jul 15;16(7):381-400.
- 50. Bensaude-Vincent B. Building multidisciplinary research fields: The cases of materials science, nanotechnology and synthetic biology. In The Local Configuration of New Research Fields: On Regional and National Diversity 2016 (pp. 45-60). Cham: Springer International Publishing.
- 51. Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nature Reviews Materials. 2021 Sep;6(9):766-83.
- 52. Iravani S, Varma RS. MXenes for bioinspired soft actuators: advancements in angle-independent structural colors and beyond. Nano-Micro Letters. 2024 Dec;16(1):142.
- 53. Parua S, Chakraborty T et.al "Integrative Approaches to Vitiligo: A Mechanistic Review of Modern Therapies and Traditional Herbal Interventions" Studies in Science of Science, 2025, 43(3): 250-261.
- 54. Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nature reviews Clinical oncology. 2022 Feb;19(2):132-46.
- 55. Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Letters. 2023 Dec;15(1):44.
- 56. Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WA, Aljamaan AN, Rahmani AH, Khan AA. Recent advances in genome-editing technology with CRISPR/Cas9 variants and stimuli-responsive targeting approaches within tumor cells: a future perspective of cancer management. International Journal of Molecular Sciences. 2023 Apr 11;24(8):7052.
- 57. Cortes J, Perez-García JM, Llombart-Cussac A, Curigliano G, El Saghir NS, Cardoso F, Barrios CH, Wagle S, Roman J, Harbeck N, Eniu A. Enhancing global access to cancer medicines. CA: a cancer journal for clinicians. 2020 Mar;70(2):105-24.