JETIR.ORG

JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

PHARMACEUTICAL MANUFACTURING TOWARDS SUSTAINABLE PHARMACEUTICS USING GREEN EXCIPIENTS

D Pavitra¹, M Gayatri Devi², B Nagamani³, P Uma Devi⁴

¹Assistant Professor, Viswanadha Institute of Pharmaceutical Sciences. Visakhapatnam 531173, Andhra Pradesh

²Associate Professor, Viswanadha Institute of Pharmaceutical Sciences. Visakhapatnam 531173, Andhra Pradesh

³Professor, Viswanadha Institute of Pharmaceutical Sciences. Visakhapatnam 531173, Andhra Pradesh, India

⁴Principal, Viswanadha Institute of Pharmaceutical Sciences. Visakhapatnam 531173, Andhra Pradesh, India

Abstract

Generally the pharmaceutical industry will focus on the active pharmaceutical ingredient (API) and its therapeutic action, but increasingly the attention is turning towards the "inactive" part of formulations: excipients and carriers. Excipients are the non-active ingredients in pharmaceutical formulations, such as binders, fillers, coatings, stabilisers, carriers, etc. These components may constitute a substantial portion of the product mass and life-cycle footprint. The drive for sustainability will reduce resource use, lower environmental impact, travel towards safer life disposal and will give rise to new approaches in formulation science. This can be achieved by using green excipients (i.e., excipients derived from renewable resources and/or processed by more sustainable routes) and biodegradable carriers (delivery systems engineered to degrade into benign end-products rather than persisting). This article explores materials, benefits, challenges, and directions in this evolving field.

Introduction

The term *green excipients* refers to excipients chosen or manufactured with sustainability criteria in mind: derived from renewable resources (plant, marine, waste-biomass), produced with lower environmental burden (reduced waste, lower energy, benign solvents), and ideally biodegradable or having minimal toxic by-products. Biodegradable carriers are delivery vehicles (e.g., polymeric microspheres, nanoparticles, hydrogels, implants) designed to degrade in the body or in the environment into harmless end-products (e.g., CO₂, water, biomass) rather than persist indefinitely. These carriers support controlled or targeted release of APIs.

Drivers of Change

Several forces are pushing the pharmaceutical sector towards greener excipients and biodegradable carriers:

Environmental footprint of pharmaceutical manufacturing — Conventional excipients often derive from petrochemical feed-stocks, involve energy-intensive processing, generate waste, and may be non-biodegradable with accumulation in the environment.

Regulatory, consumer and corporate sustainability pressures – Increasingly companies are held accountable for the ecological impact of their manufacturing, packaging and waste. Consumers and regulators demand more ecofriendly materials.

Functional advantages – Natural, renewable materials can offer improved biocompatibility, lower toxicity, and in some cases improved performance (e.g., degradable carriers leaving minimal residual material). Moreover, biodegradable carriers reduce long-term accumulation of inert materials in the body and environment.

Alignment with green chemistry and circular economy principles – Incorporating materials that are renewable, degradable, processed with fewer hazardous reagents/solvents and with potential for reuse or recovery fits broader sustainability goals. For example, one review states that eco-compatible excipients derived from renewable resources showed carbon foot-print reductions (40-60%) compared to synthetic alternatives.

Categories of Different Green Excipients.

Natural-polymer based excipients

Polysaccharides (modified starches, cellulose derivatives, alginate, chitosan), gums/mucilages from plants, and proteins (zein, silk fibroin, plant proteins) are receiving increasing attention. These materials are renewable, biodegradable, and often well-tolerated biologically. For example, natural gums and mucilages are recognised for "biodegradable" status and usability in pharmaceuticals.

Waste-derived or biomass-derived excipients

Materials derived from waste-streams like agricultural residues, marine biomass (e.g., seaweed) are now being explored. For instance, seaweed is being evaluated as a sustainable resource for drug-manufacturing, including as excipients, biodegradable packaging, or carriers.

Green processing & formulation technologies

Selection of green excipients goes in hand with sustainable processing: using water or supercritical CO₂ as solvents instead of organic solvents, mechanochemical or low-energy modifications, continuous manufacturing, enzymatic modification, etc. The eco-compatible excipient review reports such technologies reduce energy by ~30-60% compared to conventional methods.

Categories of Different Biodegradable Carriers

Synthetic biodegradable polymers

Classic biodegradable carriers include polymers such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactide-co-glycolide) (PLGA), polycaprolactone (PCL). These degrade in the body into metabolised by-products, offering controlled release and reduced inert material accumulation. For example, the review of green and biodegradable nanocarriers highlights these as promising "green" platforms.

Natural-polymer carriers

Natural polymer-based carriers such as chitosan, alginate, gelatin, dextran are increasingly used. They combine biodegradability, biocompatibility and renewable sourcing. The article "Natural Food Components as Biocompatible Carriers" discusses many of these.

Smart and nano-carriers

Next generation carriers exploit nanotechnology (nanoparticles, micelles, dendrimers) and stimuli responsivity (pH, temperature, enzymes) to deliver drugs more precisely. These systems are now being developed with biodegradability and sustainability built in. The preprint on "Sustainable and Green Drug Delivery Systems" emphasises this trend.

Applications in Pharmaceutical Manufacturing & Formulations

Conventional Dosage Forms

Green excipients are being incorporated into tablets, capsules, liquids and topical systems. For example, modified starches, cellulose derivatives and natural gums have been used as binders, diluents, film-coatings, and sustainedrelease matrix formers. According to the eco-compatible excipient review, natural polymer excipients achieved functional parameter ratios (e.g., binding strength, flow index, dissolution rate) of 0.90-0.97 compared to conventional excipients.

Advanced Drug Delivery Systems

Biodegradable carriers are especially applicable in controlled release, targeted delivery, implantable systems. For instance, microspheres (PLA/PLGA) allow sustained release; natural-polymer nanoparticles support encapsulation of poorly-soluble drugs; and smart carriers enable triggered or site-specific release. The review by Ashutosh et al. notes that biodegradable carriers reduce long-term inert body matter and allow fine-tuned kinetics.

Manufacturing & Life-Cycle Considerations

Sustainable pharmaceutics implies attention not only to materials but to manufacturing processes (energy/water usage, solvent waste, emissions), supply-chain (renewable sourcing), packaging, and end-of-life waste. For example, seaweed-derived excipients and carriers reduce reliance on arable land/freshwater, capture CO2, require fewer synthetic inputs. Life Cycle Assessment (LCA) is increasingly used to compare environmental impact of green vs conventional excipients: e.g., the eco-compatible excipient review reports reductions of 50-60% in CO₂ emissions, water usage and waste generation in some green processes.

Benefits and Advantages

The adoption of green excipients and biodegradable carriers offers multiple benefits:

- **Lower environmental impact**: renewable sourcing, less persistent waste, better end-of-life biodegradation.
- Improved biocompatibility and safety: natural materials often have lower toxicity, fewer residues, and degrade in vivo without long-term accumulation.
- Competitive advantage and regulatory alignment: as pharmaceutical companies move to meet sustainability goals and regulatory/consumer demands, having greener formulations provides market differentiation.
- Performance potential: biodegradable carriers allow better release-control, targeted delivery, reduced dosing frequency and patient-friendly modalities.
- Support for circular economy: waste-derived materials, renewable polymer sources, less waste generation contribute to circularity.

Challenges and Limitations

Despite the promise, several obstacles must be addressed:

- Variability and quality control: Natural or biomass-derived materials often have batch-to-batch variation (molecular weight, impurity, moisture), complicating standardisation.
- Regulatory hurdles and safety dossiers: Novel excipients and carriers require full toxicology, stability, compatibility, which can prolong development timelines and costs.
- Scale-up and cost: Some green processes, such as enzymatic modifications or supercritical fluid extraction, may be more expensive or technically challenging to scale compared to established synthetic platforms.
- Performance trade-offs: Some green materials may not yet fully match the mechanical/functional properties (flowability, compressibility, stability) of conventional excipients, or may require additional modification or hybridisation.
- Life-cycle analysis complexity: Simply using a natural material doesn't guarantee a lower footprint the full supply chain, processing energy, transport, end-of-life infrastructure must be considered.
- End-of-life infrastructure: Even biodegradable materials require appropriate waste-stream management (e.g., composting, industrial degradation). Without that, the environmental benefit may be compromised.

Future Directions and Trends

Looking forward, several research and industry trends appear significant:

- Novel biopolymers and sourcing from wastes/wild sources: For example, seaweed is emerging as a sustainable resource for drug manufacturing (excipients, carriers, packaging) due to its rapid growth, minimal land/freshwater use and positive environmental footprint.
- Advanced manufacturing and formulation technologies: Solvent-free processes, continuous manufacturing, 3D-printing of biodegradable implants, mechanochemistry, AI/ML for excipient design. The ecocompatible excipient review highlights AI/ML in designing intelligent excipients.
- Smart, biodegradable carriers: Integration of nanotechnology, stimuli-responsive materials, biodegradable polymers, and targeted delivery systems to move toward personalized medicine with minimal ecological cost.
- Lifecycle and sustainability metrics embedded in formulation development: Use of LCA, process metrics (energy, water, waste), circular economy thinking will become mainstream.
- Regulatory frameworks and industry standards for green excipients/carriers: As more materials enter development, regulators may issue guidance specific to sustainable excipients, biodegradable carriers and their environmental/safety evaluation.
- **Packaging and circular supply chain**: Beyond the formulation itself, sustainable materials for packaging (biodegradable films, seaweed-derived packaging) and reuse/recycle of materials in the supply chain.
- Localization and regional sustainability: For regions like India, Brazil, Southeast Asia with rich biomass resources, local sourcing of renewable materials and regional manufacturing of green excipients may reduce transport carbon, support local economies, and align with national sustainability strategies.

Conclusion

The shift toward sustainable pharmaceutics is essential extending beyond the active ingredient to encompass excipients, carriers, manufacturing, and end-of-life disposal. By adopting renewable, biodegradable materials and integrating lifecycle thinking, green excipients and delivery systems offer meaningful benefits: reduced environmental footprint, improved biocompatibility, and potentially enhanced performance. However, success will require overcoming significant challenges like material standardisation, regulatory frameworks, cost and manufacturing scale. Over the next decade, as technologies mature and sustainability becomes embedded in regulation and supply chains, sustainable formulation practices are likely to become standard rather than optional.

References

[1] Nammas, M. (2024, November 12). Systematic review of plant-based excipients in topical drug delivery. Ibnosina Journal of Medicine and Biomedical Sciences. https://doi.org/10.1055/s-0044-1791500.

- [2] Silvério, L. A. L., Coco, J. C., de Macedo, L. M., dos Santos, É. M., Sueiro, A. C., Ataíde, J. A., ... Mazzola, P. G. (2023). Natural product-based excipients for topical green formulations. *Sustainable Chemistry & Pharmacy*, 33, 101111. https://doi.org/10.1016/j.scp.2023.101111
- [3] Kurdi, M. I., & Alnassar, H. (2019). A review of biodegradable natural polymer-based nanoparticles and their drug delivery systems. *Journal of Biomaterials Science, Polymer Edition*, 30(14), 1307–1347. https://doi.org/10.1080/09205063.2019.1654205 (See PMC central version: PMC7600772)
- [4] Lee, S.-Y., & Kim, J. Y. (2020). Recent advances in polymeric drug delivery systems biodegradable and bioreducible polymers. *Biomaterials Research*, 24, 12. https://doi.org/10.1186/s40824-020-00190-7
- [5] Nair, L., & Venkatraman, S. (2023). Natural polymers as drug delivery vehicles: Biodegradable and biocompatible platforms. *Polymer Reviews*, 63(4), 495-529. https://doi.org/10.1080/15583724.2023.2201654 (See related review: Biodegradable Polymers in Biomedical Applications
- [6] Zhang, Y., Gao, H., & Zhao, M. (2022). Recent advances in biodegradable polymers for sustainable applications life-cycle thinking, challenges and prospects. *Nature Reviews Materials*, 7, 123-144. https://doi.org/10.1038/s41578-022-00413-0 (See "Recent advances in biodegradable polymers for sustainable...")
- [7] Gulati, S., Amar, A., Chhabra, L., Katiyar, R., Meenakshi, & Varma, R. S. (2024). Greener nanobiopolymers and nanoencapsulation: environmental implications and future prospects. *RSC Sustainability*, 2, 2805-2832. https://doi.org/10.1039/D4SU00411F
- [8] Tiwari, N., Rai, V., & Singh, S. (2024). A review on herbal excipients in pharmaceutical formulations. *IASR Journal of Medical and Pharmaceutical Science*, 4(4), 18-23.
- [9] Gangadi, J. R., Kokkula, P. K., & Kannadasan, M. (2024). Biodegradable polymers: A sustainable approach to colon drug delivery. *International Journal of Pharmaceutical Chemistry and Analysis*, 11(4), 288-294. https://doi.org/10.18231/j.ijpca.2024.042
- [10] Shah, K., Singh, D., Agrawal, R., & Garg, A. (2025). Eco-friendly pharmaceutical packaging. *Current Green Chemistry*, 12(1). https://doi.org/10.2174/0122133461339499240826080506