JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

A COMPREHENSIVE REVIEW ON LIVER CIRRHOSIS:PATHOGENESIS,DIAGNOSIS,AN D **MANAGEMENT**

Names of authors: Ms. Pranali V Chavan, Mrs. Snehal Dhananjay Jadhav, Ms. Pranjali U Gosavi.

Designation: final year of B Pharmacy, assistant professor in pharmacology, final year of B Pharmacy. Name of department: Final year B Pharm.

Name of organization: PRES's College of Pharmacy, Chincholi, Nashik, India.

Abstract

Liver cirrhosis is a chronic, progressive liver disease due to the replacement of normal liver architecture with regenerative nodules and widespread hepatic fibrosis, which eventually results in liver failure. It is caused by chronic hepatic inflammation secondary to viral hepatitis, alcohol use-related liver disease, metabolic derangement, autoimmune disease, or drug-induced liver injury. Cirrhosis comes in two phases: compensated and decompensated, the latter with complications of ascites, variceal hemorrhage, hepatic encephalopathy, and hepatorenal syndrome. Cirrhosis is still a major health issue worldwide and remains a cause of high morbidity and mortality rates despite improvement in antiviral therapy, better diagnostics, and transplantation. Early detection by noninvasive tests and treatment of underlying causes are crucial in delaying disease progression. Prevention through vaccination, lifestyle change, and alcohol abstinence are key in preventing incidence. Novel therapies like antifibrotic agents, gene editing technologies, stem cell therapy, and artificial liver assist systems hold promise for the reversal of disease and enhanced survival, marking the turn toward regenerative and personalized medicine in the management of cirrhosis.

Introduction

Liver cirrhosis is very common in both middle-income and low-income countries, as well as in high- income countries, and has very high morbidity and mortality. Cirrhosis is a result of chronic inflammation of the liver, which is succeeded by diffuse hepatic fibrosis, where the normal hepatic architecture is replaced by regenerative hepatic nodules, leading ultimately to liver failure. Liver inflammation that is chronic does not develop into cirrhosis in every patient, but if it does progress, the speed with which it occurs ranges from weeks (in those with total biliary obstruction) to decades (in patients with longer-standing causes, for example, iral hepatitis C). The asymptomatic (initial) phase of cirrhosis may be followed by a relatively brief symptomatic phase of months to years .The symptomatic phase, generally referred to as decompensated cirrhosis, is linked with several complications that cause repeated hospitalization, compromised quality of life for patients and caregivers, and patient mortality in the absence of liver transplantation.3-6 Patients with cirrhosis that have no symptoms are said to have compensated cirrhosis

.Complications like ascites, variceal bleeding, hepatic encephalopathy, or non-obstructive jaundice, which can occur with cirrhosis of any etiology, signal the arrival of decompensated cirrhosis. With the presence of cirrhosis, superimposed hepatic injury (from viral, drug-induced, or alcohol-related hepatitis) or other complications, such as bacterial infections, in the presence of cirrhosis may result in hepatic and extrahepatic organ failure a condition referred to as acute-on-chronic liver failure that is characterized by high shortterm mortality.7 Hepatic and extrahepatic organ failure causes most deaths among patients with decompensated cirrhosis. Deaths in the compensated phase are predominantly due to cardiovascular disease, malignancy, and renal disease. Cirrhosis seems to attract lesser public awareness than other chronic illnesses, including congestive heart failure, chronic obstructive lung disease, and chronic kidney disease.

EPIDEMIOLOGY

Global Mortality

Liver disease is a leading cause of mortality worldwide.

1.26 million deaths (2019) from cirrhosis/chronic liver diseases — ↑ 13% since 1990. Liver

cancer: $\sim 830,000$ deaths (2020) $\rightarrow 8.3\%$ of all cancer deaths.

Viral hepatitis (HBV + HCV): accounts for ~1.3 million deaths/year.

Alcohol-related liver disease (ALD): ~3.3 million new cases/year, 5.9% of global death. MASLD:

~280,000 deaths (2019).

Regional variations: Mongolia has highest liver cancer deaths (71/100,000).

USA: lower (6.6/100,000) owing to improved immunization and treatment.

Since 2013, U.S. mortality decreased 3.2%/year because of better healthcare.

Incidence of liver disease is increasing globally, with the majority of causes attributed to lifestyle-related etiologies (MASLD,

MASLD: most prevalent chronic liver disease, 38% of adults (2016–2019). ALD: rising with alcohol use worldwide.

USA: ALD death \ \ 34\% (2009 - 2016).

U.K.: ALD admissions † 43% (2002 - 2019).

China: ALD incidence doubled (2000–2015).

HBV/HCV new infections trending down with vaccination and screening. Nevertheless, 1.5 million new HBV/HCV infections annually (WHO). HAV: ~10 million infections/year; HEV: ~20 million infections/year. Prevalence of cirrhosis ↑ from 20.7 → 23.4/100,000 (2000–2015). Incidence of liver cancer increasing, ~20 million new cases (2022). Acute Liver Diseases A. Acute Viral Hepatitis HAV: ~159 million cases (2019); 10 million new infections annually. Prevalent in low-income countries (Africa, South Asia). Uncommon in developed countries (mainly travel-related). HEV: ~3.3 million symptomatic cases/year. Endemic in developing nations (Asia, Africa, Latin America). Europe: increasing seropositivity (20-30%). High-risk groups: immunocompromised, pregnant women. B. Drug-Induced Liver Injury (DILI) Incidence ranges 1 in 10,000–1,000,000. Europe: 2.3–13.9/100,000/year; U.S.: 2.7/100,000 (43% from herbal/dietary supplements). Asia: higher (China 23.8/100,000; South Korea 12/100,000). Herbal supplement-associated DILI rising globally. Chronic Liver Disorders A. Chronic Hepatitis B / D CHB prevalence: ~3.8–4.1% worldwide → ~300 million individuals. Dropped 31% (1990–2019) with vaccination. Peak prevalence: Africa (8.8%), Western Pacific (5.3%). Most-affected countries: China (74M), India (17M), Nigeria (15M). HDV co-infection: 15-20 million globally; highest in Mongolia (36.9%). B. Chronic Hepatitis C 57 million infected (2020); 0.7% prevalence. Highburden countries: China, India, Pakistan, Russia, U.S. High prevalence areas: Central Asia, East Asia, North Africa-Middle East (>3.5%). Low prevalence: Western Europe (Increasing worldwide with alcohol consumption, and frequently with MASLD. Autoimmune Liver Diseases A. Primary Biliary Cholangitis (PBC) Global prevalence: 14.6/100,000, predominantly middle-aged women. Highest: North America (21.8), Europe: 14.6, Asia-Pacific: 9.8. B. Primary Sclerosing Cholangitis (PSC) Mainly young males (2:1 ratio). High prevalence: Sweden (10.3), Low: Spain (0.6). Associated with inflammatory bowel disease (IBD). C. Autoimmune Hepatitis (AIH) Global prevalence: 17.4/100,000. Asia: 13, Europe: 19, Americas: 23 per 100,000. Increasing in Japan, U.K., and Sweden. Precipitated by genetic + environmental influences.

Pathophysiology of Liver Cirrhosis

Normal Liver Functions

Synthesizes proteins: albumin, clotting and complement factors.

Detoxifies substances and stores vitamin A.

Regulates lipid and carbohydrate metabolism.

Initial Changes

Cirrhosis is usually preceded by hepatitis or fatty liver (steatosis).

If treated early, these changes are reversible.

Progression to Cirrhosis

Continued injury → inflammation of hepatic parenchyma.

Stellate cells (vitamin A-storing cells) become activated by inflammation. Activated stellate cells secrete fibrous tissue → fibrosis.

Normal liver parenchyma is substituted by scar tissue, obstructing blood flow.

Kev Cellular Events

Kupffer cells, platelets, and hepatocytes secrete cytokines (TGF-β1, PDGF).

Stellate cells lose retinoids and are converted into fibrogenic cells.

Collagen types I and III and fibronectin substitute normal extracellular matrix.

TIMPs block collagen degradation → fibrosis accumulation.

Structural Consequences

Fibrous bands separate hepatocytes into nodules.

Loss of lobular architecture and reduced blood flow.

Leads to portal hypertension and hypersplenism.

Early fibrosis can be reversed if inflammation is minimized.

Advanced cirrhosis → permanent architectural distortion.

Macroscopic Types

Type	Nodule Size
Micro-nodular (< 3 mm)	Alcohol or biliary disease
Macro-nodular (> 3 mm)	Chronic viral hepatitis
Mixed	Combination of both

Microscopic/Pathologic Features

Regenerating hepatocyte nodules with fibrous septa.

Sinusoidal, space of Disse, and vascular destruction.

Leads to resistance to blood flow \rightarrow portal hypertension.

Etiology-Specific Patterns

Chronic hepatitis $B \rightarrow lymphocytic infiltration$.

Cardiac cirrhosis → hepatic vein fibrosis.

Primary biliary cirrhosis \rightarrow bile ductal fibrosis.

Alcoholic cirrhosis → neutrophilic infiltration and granulomas.

Dynamic Nature of Fibrosis

Fibrosis occurs in two phases:

Initiation (pre-inflammatory): oxidative stress, platelet and Kupffer cell activation.

Perpetuation: cell growth, inflammation, and fibrogenesis.

Matrix metalloproteinases (MMPs) break down collagen, but imbalance leads to accumulation.

Early matrix reabsorption reverses injury — a target for novel therapies.

Clinical Features

Early Stage (Mild or Asymptomatic Stage)

The majority of early liver disorders (e.g., acute viral hepatitis, MASLD, ALD, mild DILI) manifest nonspecific or mild signs such as:

Fatigue, right upper quadrant pain, loss of appetite.

Mild jaundice, nausea, fever in viral hepatitis.

MASLD: associated with metabolic syndrome (obesity, dyslipidemia, hypertension).

ALD: indigestion and abdominal pain.

Most patients are asymptomatic and found incidentally.

Intermediate Stage (Progressive Disease)

Symptoms worsen: fatigue, fluctuating jaundice, persistent pain.

Chronic hepatitis: hepatomegaly and systemic complications (e.g., cryoglobulinemia).

Autoimmune Hepatitis (AIH): fatigue, jaundice, arthralgia, skin rashes, thyroiditis.

Primary Biliary Cirrhosis (PBC): pruritus, fatigue, usually asymptomatic initially.

Primary Sclerosing Cholangitis (PSC): pruritus, jaundice, fatigue, RUQ pain; associated with ulcerative colitis and ↑ risk of cholangiocarcinoma.

Progressive MASLD and ALD → liver function abnormalities and mild coagulopathy.

Advanced/Decompensated Stage

Features of portal hypertension: splenomegaly, ascites, palmar erythema.

Wilson's Disease (WD): neuropsychiatric symptoms, movement disorders.

Alpha-1 Antitrypsin Deficiency (AATD): respiratory symptoms (dyspnea).

Coagulopathy and hepatic encephalopathy (sleep disturbance, confusion).

End-stage manifestations

Decompensated cirrhosis. Variceal bleeding, refractory ascites, severe encephalopathy.

Hepatocellular carcinoma (HCC): cachexia, abdominal mass, weight loss.

Cholangiocarcinoma (CCA): painless jaundice, abdominal pain.

Systemic complications: hepatorenal and hepatopulmonary syndromes.

Pathological Findings

Early Stage

Acute viral hepatitis: mononuclear & lymphocytic infiltration.

DILI: mild hepatocellular swelling.

MASLD/ALD: simple steatosis (fatty change), minimal inflammation.

Reversible with early treatment.

Moderate Stage

Chronic viral hepatitis: interface hepatitis and fibrosis.

Severe MASLD/ALD: ballooning degeneration, inflammation, fibrosis.

PBC: bile duct destruction with chronic inflammation.

PSC: "onion-skin" periductal fibrosis.

AIH: plasma cell-rich interface hepatitis.

Advanced Stage

Bridging fibrosis and nodule formation \rightarrow early cirrhosis.

WD: copper accumulation, Mallory bodies.

AATD: PAS-positive, diastase-resistant globules.

Severe distortion of lobular architecture → irreversible damage.

End-Stage Liver Disease

Cirrhosis: regenerative nodules + fibrous septa \rightarrow loss of function and structure.

HCC: malignant hepatocytes, vascular invasion, pseudoglandular pattern.

CCA: adenocarcinoma with desmoplastic stroma.

Other findings: hepatocellular necrosis, bile duct proliferation, cellular atypia.

Diagnostic Significance

Liver biopsy = gold standard for diagnosis.

But because of invasiveness, non-invasive markers & imaging are now used for safety and comfort of the patient.

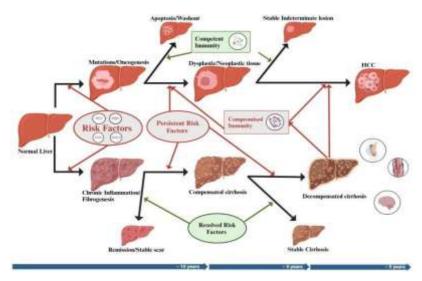


Figure.1 pathophysiology of liver cirrhosis

The pathogenesis of cirrhosis

Cirrhosis can develop as a consequence of an exogenous/toxic, infectious, toxic/allergic, immunopathological/autoimmune, or vascular process or a congenital metabolic fault. The most common aetiologies of cirrhotic disease in Germany are alcoholic and non-alcoholic steatohepatitis and viral hepatitis (B or C). Of all these causes, the most common of all is alcoholic fatty liver disease, which contributed to the deaths of 8619 Germans (8.9 per 100 000 population) in 2009 and is thus one of the country's top 20 causes of death (3). Cirrhosis is on the rise as an emerging public health problem: deaths from cirrhosis per 100 000 population doubled, from 1980 to 5 and 9.9 in 2005, respectively (3). Autopsy analyses have revealed fatty liver disease in 70% of the overweight and in 35% of the normal-weight individuals. They have revealed cirrhosis in 18.5% of the overweight diabetic (4). 0.5% of the population in Germany are permanently infected with the hepatitis B virus and 0.5% with the hepatitis C virus (5). Cirrhosis and HCC due to chronic hepatitis C are among the major indications for liver transplantation in Western industrialized nations. Viral hepatitis was the cause of liver disease in 39% of liver recipients between 1988–2010—three parts in one were due to hepatitis B, and two-thirds were due to hepatitis C.

• Alcohol-induced hepatitis:

This is liver damage due to long-term heavy drinking. Alcohol is the most famous cause of liver cirrhosis, but nonalcoholic causes are as common.

• Metabolic dysfunction-associated steatohepatitis (MASH):

This is chronic harm due to over-stored fat in your liver. It's linked to metabolic causes like high blood lipid levels, blood sugar, and blood pressure.

Chronic hepatitis C infection: Hepatitis C is a viral disease that, once contracted, often stays in the body for a long time and develops into a long-term (chronic) infection in most individuals.

Chronic hepatitis B infection:

Hepatitis B is a viral infection that, in some individuals, can persist in the body and develop into a long-term (chronic) condition. If it does, you'll have it for life. It's treatable, but not curable. Less common causes include:

• Autoimmune disease:

Certain autoimmune diseases can cause recurring inflammation of your liver, like autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis.

• Genetic disorders:

Certain inherited diseases can cause the buildup of poisonous substances in your liver and damage it. These are glycogen storage disease, cystic fibrosis and Wilson disease.

Toxic hepatitis:

Exposure to certain environmental toxins or medications over a period of time may cause your liver chronic harm, including common painkillers like NSAIDs and acetaminophen.

• Cardiovascular disease:

Cardiovascular diseases that cause blood to build up in your liver (congestive heart failure) or be unable to get to your liver (chronic ischemia) damage your liver.

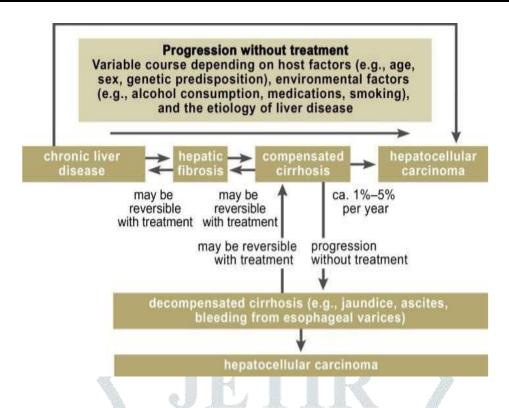


Figure.2 pathogenesis of liver cirrhosis

Diagnosing Cirrhosis

Medical history and physical examination may detect patients with or at risk for cirrhosis. Patients with cirrhosis often have muscle cramps (64% of cases), and pruritus (39%),26 poor sleep quality (63%),60 and sexual dysfunction (53%). Risk factors, including diabetes or alcohol consumption, and symptoms, like muscle cramps, pruritus, sleep disorder, and sexual dysfunction, are not sensitive or specific for the detection of cirrhosis. The majority of findings on physical examination are not sensitive for cirrhosis but the following provide greater than 90% specificity: Terry nails (white coloration, absent lunule, dark pink at tip), gynecomastia, caput medusa, telangiectasia of the face, palmar erythema, reduced body hair, testicular atrophy, and jaundice. Screening for cirrhosis within the general population is not at present recommended.63 Nevertheless, patients with established chronic liver disease and abnormal liver enzymes, hepatic steatosis on imaging, or viral hepatitis ought to be assessed for cirrhosis. Liver biopsy is the criterion standard to make a diagnosis of cirrhosis, but it is increasingly being replaced by noninvasive tests for assessing fibrosis. Biopsy is limited to patients with noninvasive testing which is indeterminate or technically suboptimal or where the chronic underlying liver disease remains uncertain. Serologic markers and imaging-based scores are employed for the diagnosis of cirrhosis.

In comparison to biopsy, these interventions are cheaper, safer, and easier to adhere to longitudinally. The most frequently used serologic tests detect indirect markers of liver fibrosis and dysfunction (eg, thrombocytopenia, an indicator of decreased platelet production and splenic sequestration and an increased ratio of aspartate aminotransferase to alanine aminotransferase).62 The FIB-4 (age, alanine aminotransferase, aspartate aminotransferase, platelet count) is a commonly used risk-stratification measure that, for individuals with NAFLD or alcohol-associated liver disease, stratifies scores as low (<1.30), intermediate (1.30-2.67), and high (>2.67). It raises the FIB-4; in patients aged over 65 years, the lower risk cut-off is 2.0 or below (with high-risk cut-offs unchanged).64 Cutoffs of less than 1.45 and more than 3.25 have been calculated for hepatitis C. FIB-4 has high negative predictive value (96%) but low positive predictive value (63%) for cirrhosis.65 FIB-4 risk stratification, for which a result less than 1.3 provides a negative likelihood ratio of 0.4 for advanced fibrosis, is supported by the societal guidelines in patients with established NAFLD (or risk factors like diabetes or obesity).

COMPLICATIONS

Portal Hypertension-Related Complications Esophageal, Gastric, and Rectal Varices

Enlarged venous channels as a result of elevated pressure in the portal vein. In excessive portal hypertonicity, venous channels can develop and lead to upper GI hemorrhage that can be fatal. Portal hypertension is a major consequence of cirrhosis and can lead to variceal bleeding. Nonselective β -blockers such as *carvedilol* or *propranolol* are the mainstay of therapy as they reduce portal pressure by lowering splanchnic blood flow. Carvedilol additionally decreases intrahepatic resistance due to its α -blocking effect.

According to the Baveno VII consensus, carvedilol (12.5 mg daily) is preferred for patients with large varices or prior variceal bleeding (grade B evidence). In a randomized controlled trial (RCT) involving 152 patients, carvedilol therapy resulted in fewer bleeding episodes (10% vs 23%) compared with band ligation alone.

During acute variceal bleeding, urgent endoscopic band ligation within 24 hours, combined with vasoactive drugs (e.g., octreotide) and prophylactic antibiotics, significantly improves hemostasis and short-term survival. In one meta-analysis, octreotide achieved 5-day hemostasis rates of 77% compared with 58% for placebo. Antibiotic prophylaxis also reduced 30-day mortality (18.5% vs 22.2%).

For patients with persistent bleeding despite optimal therapy, early transjugular intrahepatic portosystemic shunt (TIPS) placement within 72 hours has shown improved 1-year survival (86% vs 61%).

Ascites

The most prevalent complication.

There is an increased hydrostatic pressure with a concomitant decompensated ascites due to low oncotic pressure (low albumin). Ascites is the most common decompensating event in cirrhosis. Management includes sodium restriction (<2 g/day) and combination diuretic therapy with spironolactone and furosemide. In a randomized trial of 100 patients, combination therapy achieved better ascites resolution (76% vs 56%) with fewer cases of hyperkalemia.

While sodium restriction is standard, excessive limitation may lead to malnutrition without additional benefits, highlighting the importance of dietitian-guided care.

Large-volume paracentesis offers symptomatic relief for tense ascites, with albumin infusion to prevent circulatory dysfunction. For refractory ascites, TIPS can be considered. Meta-analyses show TIPS reduces recurrence (42% vs 89%) and 2year mortality (51% vs 65%), though it increases risk of hepatic encephalopathy

Spontaneous Bacterial Peritonitis (SBP)

The infection of the ascitic fluid in the absence of clinically apparent infection.

Usually, there is an abundant growth of E. coli, Klebsiella pneumoniae. Splenomegaly and Hypersplenism

Splenomegaly can lead to hypersplenism and pancytopenia, which can consist of one or more of the following: anemia, leukopenia, thrombocytopenia.

SBP is a serious infection of ascitic fluid without an obvious intra-abdominal source. First-line treatment includes thirdgeneration cephalosporins (e.g., ceftriaxone 2 g/day) plus intravenous albumin.

In an RCT with 126 patients, albumin infusions reduced 3-month mortality from 41% to 22%. After an initial episode, secondary prophylaxis with oral trimethoprim-sulfamethoxazole or ciprofloxacin is recommended. However, primary prophylaxis is controversial due to emerging antibiotic resistance and associated side effects such as hyperkalemia and Clostridioides difficile infection.

Portosystemic Encephalopathy (Hepatic Encephalopathy)

There is an accumulation of ammonia and other neurotoxins that affect the brain. Symptoms can consist of confusion, asterixis, and coma. Hepatopulmonary Syndrome (HPS) Pulmonary vasodilation causes hypoxemia in a cirrhotic patient. Portopulmonary Hypertension (PoPH)

The development of pulmonary arterial hypertension in the setting of portal hypertension. HE manifests as neuropsychiatric changes due to ammonia accumulation and liver failure. Management includes identifying triggers such as infections, GI bleeding, electrolyte imbalance, or sedative use.

First-line therapy is lactulose, given orally or via enema to achieve 2-3 soft stools daily. In meta-analyses of over 1,400 patients, lactulose reduced recurrence of HE (25.5% vs 46.8%) and lowered mortality (8.5% vs 14%). Rifaximin (550 mg twice daily), added to lactulose, further decreases hospitalization rates and improves quality of life. Nutritional therapy includes adequate calorie intake (30-40 kcal/kg/day), 1 g protein/kg body weight, and a bedtime snack to prevent overnight catabolism.

A. Hepatocellular Dysfunction-Related Complications Jaundice

The impaired metabolism of bilirubin leads to jaundice. Coagulopathy and Bleeding Diathesis The synthesis of clotting factors II, VII, IX, and X is decreased, which causes bleeding diathesis arising from coagulopathy.

Hypoalbuminemia and Edema

A decrease in making albumin leads to low oncotic pressure, leading to edema. Low serum albumin (<3.5 g/dL) is common in advanced cirrhosis and contributes to ascites and edema. Evidence for albumin infusion remains mixed.In one RCT of 431 patients with refractory ascites and hypoalbuminemia, weekly 40 g albumin infusions improved 18-month survival (77% vs 66%). However, another large open-label trial with 777 hospitalized patients found no improvement in clinical outcomes and a higher risk of pulmonary edema (4% vs 1%).Routine albumin infusion is therefore not currently recommended outside specific indications.

Endocrine Disturbances

There can be manifestations of endocrine disturbances as a result of hormone inhibition, such as gynecomastia, testicular atrophy, amenorrhea, and loss of libido.

Hepatorenal Syndrome (HRS)

A functional renal failure that occurs as a result of renal vessel constriction.

Hepatocellular Carcinoma (HCC)

Cirrhosis is considered a premalignant state; chronic HBV/HCV infections have a predisposition to hepatocellular carcinoma. HRS results from severe vasoconstriction of renal arteries due to portal hypertension and systemic circulatory dysfunction. Treatment includes albumin infusion with vasoconstrictors such as terlipressin or norepinephrine to improve renal perfusion. In an RCT of 300 patients, terlipressin increased the rate of renal recovery (39% vs 18%) but was linked to higher mortality from respiratory failure (11% vs 2%). Meta-analyses show norepinephrine (0.5-3 mg/h) is equally effective and may be safer in some patients.

Hepatic Osteodystrophy

Bone disease, addressed specifically as osteoporosis and osteomalacia, can develop due to impaired metabolism of vitamin D. Malnutrition and Sarcopenia Protein-calorie malnutrition occurs

Management and Treatment of Liver Cirrhosis

Treatment of the Underlying Cause

Viral hepatitis

HBV: Start nucleos(t)ide analogues (e.g. entecavir, tenofovir) in cirrhotic patients irrespective of ALT or HBV DNA if there is active viral replication to slow disease progression, decrease decompensation, increase survival.

HCV: Direct-acting antivirals (DAAs) to provide sustained virologic response, even in compensated cirrhosis.

Alcohol-related liver disease: Abstinence is mandatory; treatment of withdrawal; nutritional support.

NAFLD / **NASH:** Lifestyle modification (weight reduction, diet, exercise); treatment of metabolic comorbidities (diabetes, dyslipidemia, hypertension).

Autoimmune, cholestatic liver diseases, etc.: Immunosuppressive therapy (e.g. steroids, azathioprine) or ursodeoxycholic acid as appropriate.

1. General Measures and Surveillance

Endoscopic screening of varices in portal hypertension to enable prophylaxis.

Surveillance for hepatocellular carcinoma (HCC): ultrasound ± alpha-fetoprotein every 6 months in at-risk patients.

Vaccinations: Hepatitis A & B; influenza; pneumococcal; others as needed.

Evading hepatic insults: avoid hepatotoxic medications, reduce alcohol, manage obesity, insulin resistance, control comorbidities.

Diet: maintain adequate protein, frequent small meals, late-night snack, supplementation if necessary; treat sarcopenia.

3. Treatment of Complications

3.1 Ascites and Refractory Ascites

Restriction of sodium (usually \sim -5-7 g/day of salt) and diuretics (spironolactone \pm furosemide) for first-line treatment.

Large-volume paracentesis for tense ascites with albumin infusion to avoid paracentesis-induced circulatory dysfunction.

Refractory ascites: referral for TIPS or peritoneovenous shunts

3.2 Spontaneous Bacterial Peritonitis (SBP)

Diagnostic paracentesis if ascites is present and new abdominal symptoms / worsening ascites. Culture + neutrophil count (\geq 250 cells/ μ L).

Empirical antibiotic therapy according to local resistance; albumin infusion reduces renal impairment and mortality.

3.3 Variceal Bleeding

Primary prophylaxis: nonselective β -blockers (NSBBs) or endoscopic variceal ligation based on variceal size, risk factors.

Acute bleeding: vasoactive agents, endoscopic treatment, rescue TIPS possibly if bleeding uncontrolled.

Secondary prophylaxis: combination therapy.

3.4 Hepatic Encephalopathy

Identify and treat precipitants (e.g. GI bleed, infection, hypokalemia, constipation).

First-line treatment: lactulose; rifaximin added in recurrent or persistent HE.

Nutritional support: appropriate protein (traditionally ≥1.2-1.5 g/kg/day), small frequent meals.

3.5 Hepatorenal Syndrome / Acute Kidney Injury

Albumin with vasoconstrictors (e.g., terlipressin if available) for type 1 HRS (or current classification) in suitable patients. Resolving hypovolemia, withdrawing nephrotoxic substances, treating infections.

Renal support as appropriate; consider transplantation.

3.6 Other Complications

Coagulopathy and portal vein thrombosis: Evaluate bleeding vs thrombotic risk; anticoagulation can be considered in worsening portal vein thrombosis.

Hepatocellular carcinoma: surveillance (ultrasound ± AFP), and treatment (resection, ablation, transplantation) staged.

Pulmonary/cardiac: hepatopulmonary syndrome management, portopulmonary hypertension; maximize transplant candidacy.

Nutrition / sarcopenia / frailty: frequent nutritional evaluation; high protein diet; resistance training.

2. Liver Transplantation

Indications: decompensated cirrhosis (e.g. refractory ascites, recurrent variceal hemorrhage, HRS, hepatic encephalopathy), high MELD scores, poor quality of life.

Pre-transplant evaluation includes comorbidities, functional status, psychosocial assessment.

Post-transplant care involves immunosuppression, prevention of infection, surveillance of graft function.

3. Prognosis & Follow-Up

Utilize scoring systems (Child-Pugh, MELD/MELD-Na) in prognostication and planning transplant urgency.

Follow-up regular monitoring for decompensation signs.

Patient education regarding signs/symptoms warranting medical intervention.

Prevention and Prognosis of Liver Cirrhosis

1. Prevention a. Primary Prevention (Prevention of Liver Damage) Vaccination:

Vaccination of all unvaccinated persons with hepatitis B vaccine. Vaccination with hepatitis A vaccine in patients with chronic liver disease.

Avoidance of Alcohol: Abstinence leads to reduction of alcoholic cirrhosis risk and deceleration of liver disease progression.

Safe Practices to Prevent Viral Hepatitis: Blood product screening, safe injection practices, safe sexual practices, and antiviral treatment in infected persons to lower transmission.

Lifestyle Modification Healthy diet, regular physical exercise, and weight management to avoid NAFLD/NASH.

Avoid Hepatotoxic Drugs and Toxins: Use drugs judiciously, particularly in individuals with known liver disease; avoid undue herbal preparations or toxic substances.

Control of Metabolic Diseases: Well-controlled diabetes, obesity, dyslipidemia, and hypertension slow fatty liver progression.

b. Secondary Prevention (Preventing Disease Progression)

Early Diagnosis and Treatment: Early treatment of HBV and HCV infections with antivirals.

Regular Monitoring: Surveillance for complications (varices, ascites, HCC). Avoid Re-exposure: Abstinence from alcohol and avoidance of hepatotoxic drugs. Nutritional Support: Sufficient calorie and protein supply to avoid malnutrition and sarcopenia.

2. Prognosis

Prognosis of cirrhosis is stage (compensated vs. decompensated) and underlying etiology dependent.

Compensated cirrhosis can remain quiescent for years with good management and prevention of hepatic insults.

Decompensated cirrhosis (with ascites, variceal hemorrhage, hepatic encephalopathy, or jaundice) has worse prognosis and increased risk of mortality.

Prognostic scoring systems:

Child-Pugh Score: predicts severity and survival.

MELD / MELD-Na Score: utilized to prioritize liver transplantation; the higher score represents a worse prognosis.

Liver Transplantation: Provides long-term survival (>70% 5-year survival) in decompensated disease patients.

Favorable Prognostic Factors: Early diagnosis, viral suppression, maintaining abstinence, controlled comorbidities, nutrition, and no complications.

Future Directions of Liver Cirrhosis

Liver cirrhosis, the long-held irreversible end stage of chronic liver disease, is now perceived as a dynamic, potentially reversible condition with early treatment. Current research emphasizes the regression of fibrosis, better diagnostics, new therapeutics, and regenerative medicine.

1. Early Detection and Noninvasive Diagnostics Advanced Imaging and Biomarkers: Methods such as transient elastography (FibroScan), magnetic resonance elastography (MRE), and serum fibrosis panels (e.g., ELF, FibroTest) are applied more frequently to screen for fibrosis and monitor disease progression in a noninvasive manner. AI and Machine Learning Models: Artificial intelligence-based tools are under development to predict cirrhosis progression, risk of decompensation, and response to treatment from imaging and lab results.

Liquid Biopsies: MicroRNAs in the circulation, extracellular vesicles, and methylated DNA markers have the potential for early cirrhosis and hepatocellular carcinoma detection.

2. Antifibrotic and Regenerative Therapies Antifibrotic Agents: Emerging drugs against fibrogenesis (e.g., FXR agonists such as obeticholic acid, PPAR agonists, ASK1 inhibitors, TGF-β blockers) are under clinical trials to stop or reverse fibrosis.

Stem Cell Therapy: Therapies based on mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPSC) hold promise to normalize hepatocyte function and induce regeneration.

Gene Editing: CRISPR-Cas9 and RNA-based therapies are explored to edit out mutations and silence fibrosis-promoting genes.

- 3. **Microbiome and Immune Modulation Gut-liver axis** is important in cirrhosis development. Modulating the gut microbiota with probiotics, prebiotics, and fecal microbiota transplantation (FMT) could decrease inflammation and portal pressure. Immunomodulatory therapies directed at inflammatory and fibrogenic mechanisms (e.g., IL-22, CCR2/CCR5 antagonists) are being investigated.
- **4. Personalized and Precision Medicine Managements** will more and more rely on genomic, metabolomic, and proteomic information to personalize treatment according to individual disease pathways. Predictive algorithms that combine clinical, genetic, and environmental information are directed toward the identification of most likely responders to given treatments.
- **5.** Progress in Liver Transplantation and Alternatives Bioengineered Organs: Development of 3D bioprinting and decellularized scaffolds for functional replacement of liver tissue continues. Xenotransplantation (utilizing genetically altered pig livers) and artificial bioartificial liver support systems offer promising alternatives for end-stage disease. Improving Transplant Success: New immunosuppressants, tolerance induction, and enhanced organ preservation are enhancing long-term success.
- **6. Public Health and Global Perspective Scaling up** hepatitis B vaccine and hepatitis C elimination initiatives across the globe may significantly decrease cirrhosis disease burden. Increased focus on prevention of NAFLD/NASH, promotion of healthy living, and alcohol control measures will be necessary in the next few decades.

References

- 1. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. The Lancet. 2021 Oct 9;398(10308):1359-76.
 - 2. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. The Lancet. 2014 May 17;383(9930):1749-61.
- 3. Pinzani M, Rosselli M, Zuckermann M. Liver cirrhosis. Best practice & research Clinical gastroenterology. 2011 Apr 1;25(2):281-90.
- 4. Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduction and Targeted Therapy. 2025 Feb 5;10(1):33.
- 5. Suva M. A Brief Review on Liver Cirrhosis: Epidemiology, Etiology, Pathophysiology, Symptoms, Diagnosis and Its Management.
- 6. Geong, G. Y., Kang, S. H., & Lee, C. M. (2019). An Updated Review on the Epidemiology, Pathophysiology, Etiology and Diagnosis of Liver Cirrhosis. Preprints. https://doi.org/10.20944/preprints201903.0128.v1

- 7. Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduction and Targeted Therapy. 2025 Feb 5;10(1):33.
- 8. Wiegand J, Berg T. The etiology, diagnosis and prevention of liver cirrhosis: part 1 of a series on liver cirrhosis. Deutsches Ärzteblatt International. 2013 Feb 8;110(6):85.
- 9. Tapper EB, Parikh ND. Diagnosis and Management of Cirrhosis and Its Complications: A Review. *JAMA*. 2023;329(18):1589–1602. doi:10.1001/jama.2023.5997
- 10. Tapper EB, Parikh ND. Diagnosis and Management of Cirrhosis and Its Complications: A Review. *JAMA*. 2023;329(18):1589–1602. doi:10.1001/jama.2023.5997
- 11. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal Hypertension and Variceal Bleeding—Unresolved Issues. *Hepatology*. 2020;71(1):222–231. doi:10.1002/hep.30829
- 12. European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines for the Management of Patients with Decompensated Cirrhosis. *J Hepatol*. 2018;69(2):406–460. doi:10.1016/j.jhep.2018.03.024
- 13. Jalan R, Williams R. Acute-on-Chronic Liver Failure: Pathophysiological Basis of Therapeutic Options. *Nat Rev Gastroenterol Hepatol*. 2012;9(9):522–528. doi:10.1038/nrgastro.2012.131
- 14. Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of Decompensation and Organ Failure in Cirrhosis: From Peripheral Arterial Vasodilation to Systemic Inflammation Hypothesis. *J Hepatol.* 2015;63(5):1272–1284. doi:10.1016/j.jhep.2015.07.004
 - 15. Schuppan D, Afdhal NH. Liver Cirrhosis. Lancet. 2008;371(9615):838–851. doi:10.1016/S0140-6736(08)60383-9
- 16. Bosch J, Groszmann RJ. Portal Hypertension: Pathophysiology and Clinical Consequences. *J Hepatol.* 2010;53(4):634–647. doi:10.1016/j.jhep.2010.04.004
- 17. Wong F, Blendis LM. New Challenge of Hepatorenal Syndrome: Prevention and Treatment. *Hepatology*. 2015;62(1):439–451. doi:10.1002/hep.27876
- 18. Tapper EB, Parikh ND. Diagnosis and management of cirrhosis and its complications: A review. *JAMA*. 2023;329(18):1589-1602. doi:10.1001/jama.2023.5997
- 19. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. *Lancet*. 2021;398(10308):1359-1376. doi:10.1016/S0140-6736(21)01374-X
- 20. European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines: Management of decompensated cirrhosis. *J Hepatol*. 2018;69(2):406-460. doi:10.1016/j.jhep.2018.03.024
- 21. Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation. *J Hepatol*. 2015;63(5):1272-1284.
- 22. Garcia-Tsao G, Bosch J, Abraldes JG, Berzigotti A, Ferro C, Reiberger T, et al. Portal hypertensive bleeding in cirrhosis: 2022 Practice Guidance. *Hepatology*. 2022;76(3):1084-1107. doi:10.1002/hep.32504
- 23. Runyon BA. Management of adult patients with ascites due to cirrhosis: An update. *Hepatology*. 2013;57(4):1651-1657. doi:10.1002/hep.26359
- 24. Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline. *J Hepatol.* 2014;61(3):642-659. doi:10.1016/j.jhep.2014.05.042
- 25. Angeli P, Gines P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: Revised consensus recommendations. *J Hepatol*. 2015;62(4):968-974. doi:10.1016/j.jhep.2014.12.029
- 26. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology*. 2018;67(1):358-380. doi:10.1002/hep.29086
- 27. Terra C, Guevara M, Torre A, et al. Renal failure in cirrhosis: Role of bacterial infection and the protective effect of albumin infusion. *Hepatology*. 2005;42(1):39-46. doi:10.1002/hep.20726
- 28. Tapper EB, Parikh ND. Diagnosis and management of cirrhosis and its complications: A review. *JAMA*. 2023;329(18):1589–1602. doi:10.1001/jama.2023.5997
- 29. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. *Lancet*. 2021;398(10308):1359–1376. doi:10.1016/S0140-6736(21)01374-X
- 30. European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines: Management of decompensated cirrhosis. *J Hepatol.* 2018;69(2):406–460. doi:10.1016/j.jhep.2018.03.024
- 31. Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 Hepatitis B guidance. *Hepatology*. 2018;67(4):1560–1599. doi:10.1002/hep.29800
- 32. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*. 2016;64(1):73–84. doi:10.1002/hep.28431
- 33. Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. *J Hepatol.* 2013;59(1):160–168. doi:10.1016/j.jhep.2013.03.007
- 34. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology*. 2018;67(1):358–380. doi:10.1002/hep.29086
- 35. D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. *J Hepatol*. 2006;44(1):217–231. doi:10.1016/j.jhep.2005.10.013
- 36. Jalan R, Moreau R, Kamath PS, Arroyo V. Acute-on-chronic liver failure: Pathophysiological basis of prognosis and management. *J Hepatol*. 2020;72(2):220–235. doi:10.1016/j.jhep.2019.11.020
- 37. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. *N Engl J Med*. 2008;359(10):1018–1026. doi:10.1056/NEJMoa0801209

- 38. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet. 2021;398(10308):1359–1376. doi:10.1016/S0140-6736(21)01374-X
- 39. Tapper EB, Parikh ND. Diagnosis and management of cirrhosis and its complications: A review. JAMA. 2023;329(18):1589-1602. doi:10.1001/jama.2023.5997
- 40. Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: Concept to treatment. J Hepatol. 2015;62(1 Suppl):S15-S24. doi:10.1016/j.jhep.2015.02.039
 - 41. Kisseleva T, Brenner DA. Mechanisms of fibrogenesis. Exp Biol Med. 2008;233(2):109–122. doi:10.3181/0707-MR-190
- 42. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–922. doi:10.1038/s41591-018-0104-9
- 43. D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review. J Hepatol. 2006;44(1):217–231. doi:10.1016/j.jhep.2005.10.013
- 44. Jalan R, Moreau R, Kamath PS, Arroyo V. Acute-on-chronic liver failure: Pathophysiological basis of prognosis and management. J Hepatol. 2020;72(2):220–235. doi:10.1016/j.jhep.2019.11.020
- 45. Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018;38(S1):2-6. doi:10.1111/liv.13682
- 46. Fabregat I, Caballero-Díaz D. Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front Oncol. 2018;8:357. doi:10.3389/fonc.2018.00357
- 47. Ebrahimkhani MR, Neiman JS, Ramasamy TS. The promise of regenerative medicine in liver disease. Nat Rev Gastroenterol Hepatol. 2024;21(3):180–195. doi:10.1038/s41575-024-00956-8

