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Abstract

The future of aviation transitioning to net-zero depends on a credible, rapid scale-up of sustainable aviation fuels
(SAF) within increasingly stringent chemical and process requirements, as well as unrelenting fuel specifications
and safety standards. The growing policy focus in the EU, UK, and the US has made incentives and obligations
more acute. Nonetheless, producers continue to face feedstock limitations, excessive expenses, and complex
compliance interfaces between fuel standards and chemical regulatory frameworks. The following paper suggests
and evaluates a combined, policy-regulatory analysis-techno-economic and lifecycle assessment (TEA/LCA) and
machine learning (ML) framework involving property prediction, reactor surrogates, and integration with a digital-
twin, which can be called an integrated, regulation-aware ML. According to the report, EU/UK/US is a
stringency/alignment index, 122-SF pathways, and the ML models are trained on ASTM conformance gates, which
are empirical design codes. Findings have revealed that aligned requirements and precise sustainability
requirements will minimize scale risk. Physics-based surrogates will result in fewer experiments and faster
compliance with specifications.
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Abbreviations

SAF - Sustainable Aviation Fuels

EU - European Union

UK - United Kingdom

US - United States

TEA - Techno-Economic Assessment

LCA - Lifecycle Assessment

ML - Machine Learning

ASTM - American Society for Testing and Materials (referring to fuel standards)
HEFA - Hydroprocessed Esters and Fatty Acids
FT - Fischer-Tropsch
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CO2e - Carbon Dioxide Equivalent

OSHA - Occupational Safety and Health Administration
EPA - Environmental Protection Agency

TSCA - Toxic Substances Control Act

REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals
APC - Advanced Process Control

DCS - Distributed Control System

QC - Quality Control

PSM - Process Safety Management

HTL - Hydrothermal Liquefaction

SIMDIS - Simulated Distillation

PSA - Pressure Swing Adsorption

Al - Artificial Intelligence

QA - Quality Assurance
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Introduction

Commercial aviation has invested in profound decarbonization despite traffic recovery and the increased use of
wide-body fleets on long-haul routes that cannot be electrified in the near future. Sustainable aviation fuels,
consequently, become the most scalable lever, and the policy momentum for this category of fuels has been
increasing with measures that combine mandates, incentives, and sustainability criteria in the EU, the UK, and the
US. Whether SAF is necessary is less a strategic issue than how to grow production with plausible scale, and at no
cost to fuel quality and safety, through heterogeneous feedstocks and conversion pathways.

At the interface of aviation fuel standards and chemical/process regulations that govern catalysts, hydrogen
systems, and hazardous substances, these substances are also found in producers, both in the lab and at the plant.
Unless design and data governance consider compliance requirements during the first design, fragmentation at that
interface can introduce delay, paperwork, and uncertainty. This paper presents a unified model that aligns SAF
pathway decisions with regulatory demands and incorporates machine learning throughout the value chain to
enhance the likelihood of first-time-right specifications and improve learning curves. The analysis will yield
research questions regarding which regulatory levers are most important and where the ML is likely to generate
maximum near-term returns on investment.

Background and Literature Review.
SAF Technology Landscape

The approved and developing routes of the SAF landscape include HEFA, Fischer-Tropsch, alcohol-to-jet/ethanol-
to-jet, hydrothermal liquefaction, and power-to-liquids e-fuels. Each of these types has its typical yields,
contaminants, upgrading necessities, and authorization status. Competitive analyses indicate that, despite the initial
success of HEFA due to its familiarity with feedstock and maturity in the hydrotreatment process, its feedstock
limitation compels it to explore waste-based and e-fuel avenues, which may become increasingly sustainable over
time [1]. Analysts also focus on the centrality of the satisfying ASTM property windows, including freezing point,
content of aromatics, sulfur/nitrogen, and distillation profiles, when blending into Jet A/A-1 pools in various
climates and fleets, as these properties translate operability and warranty issues into practical considerations [2].
According to lifecycle assessment work, there are definite pathways that can materially reduce well-to-wake CO2e.
However, ranges are contingent on feedstock logistics, hydrogen source, and energy mixes at upgrading units,
rather than process claims alone [3]. The implication here is that the comparisons of technology should be made
on a shared system boundary.

An example of the potential and difficulty of contextualizing oxygen- and nitrogen-containing biocrudes into jet-
range molecules with reasonable stability and cold flow is the hydrothermal liquefaction of wet wastes. Current
research is being conducted in the area of catalyst strategies and hydrotreating sequences to achieve jet
specifications with viable carbon intensity arguments when hydrogen is low-carbon, and utilities are optimized [4].
Additional reviews of methanol pathways and FT routes have suggested the contribution of synthesis,
isomerization, and hydrocracking reactions in directing distillation and aromatics products, and e-fuels add the
upstream complication of affordable green hydrogen and CO 2 capture preceding conversion [5,6]. Technology
choice, however, is similarly related to site energy and hydrogen integration choices as to reactor design on paper.

Regulation Environment (fuels + chemicals)

The regulatory frameworks are shifting towards voluntary roadmaps, which are being replaced by binding
instruments that incorporate volume requirements, sustainability, and traceability requirements. The ReFuelEU
Aviation initiative of the EU provides graduated SAF requirements and greenhouse-gas intensity requirements,
along with a book-and-claim framework. The SAF Mandate in the UK is proceeding with evidence-based cost-
benefit guardrails, and the SAF Grand Challenge in the US succeeds in stating the objectives of production and
examining credit frameworks that balance the compensable improvements in carbon intensity [7]. According to
policy studies, the consistency of these regimes will reduce transaction costs and increase bankability. At the same
time, inconsistencies in sustainability criteria and feedstock qualification will disrupt markets and hinder
investment decisions [8]. Legal commentaries also note that the administrative burden on mid-sized producers will
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be determined by the clarity of the chain of custody and audit regulations, rather than relying solely on nominal
mandate percentages [9]. The policy crosswalk, in this sense, is equally important as the headline ambition
language in predicting financing circumstances.

Chemical and process safety requirements that are not covered in aviation-fuel texts but have a significant impact
on design decisions must also be followed by SAF producers. The Process Safety Management of the US OSHA,
EPA risk regulations, and TSCA reporting can inform catalyst handling, hydrogen networks, and other data
retention requirements. Concurrentlyy, EU REACH and other chemical polic30ies are leading to substance
registration, exposure limits, and substitution pressure, which is spreading into plant activities [29]. As noted by
practitioners, the development of REACH and the UK divergence create parallel compliance paths in Europe,
where a data pipeline that meets both the digital twin of the plant and regulatory reporting requirements is valuable
[11]. These are not administrative footnotes; they modify capex, opex, and project timelines, and therefore should
be internalized in techno-economic comparisons and not regarded as an appendix.

Machine Learning in Chemical/Process Industries

The process systems engineering community has charted a surge of ML methods, such as property prediction,
surrogate modelling, and design-oriented reinforcement learning and online learning. According to the reviews,
physics-informed neural networks, grey-box surrogates, and active learning with design of experiments are said to
offer the necessary speedups and interpretability, which are sufficiently good to enable engineering signoff and
safety analyses [30]. Data-science surveys in industry also list applications of data science, including fault
detection, soft sensors, and the need to consider data quality, quantify uncertainty, and integrate with existing
APC/DCS layers instead of isolated prototypes [12]. In the case of reactor and flow system design, ML-assisted
discovery has begun to propose non-obvious channel architectures and operating envelopes that could not have
been identified by conventional intuition in high-dimensional spaces [13]. The general idea is that the returns are
derived through integrating ML within the engineering processes that are already held accountable.

ML models have been utilized to achieve successful predictive capabilities for critical jet properties and blend
behavior in fuels, leveraging simulated distillation fingerprints and chromatography. Recent research has shown
that assembled ensembles conditioned to experimental assays can significantly reduce the number of candidate
blends to be experimentally tested by orders of magnitude, effectively achieved through virtual pre-screening
before ASTM gate checks, thereby reducing time and material waste [14]. Learning descriptors and catalysis
modelling. The methodological improvements indicate that the kinetics-awareness property and Bayesian
methods-based design strategy can rank families of catalysts, disregarding pilot matrices and experimentation
cycles without undermining the training discipline [15,16]. The results serve as a guide to SAF operation, which
implies that the intensity of hydrotreating, the amount of hydrogen utilised, and product cuts required as needed
should be continuously varied to achieve specifications using the lowest energy and consumption.

Conceptual Integration: A regulation-conscious ML Framework of SAF

The suggested framework aligns three layers: policy and regulatory constraints, the pathway-specific technology
stack, and ML levers, in a way that compliance requirements help shape features, targets, and data governance
early in the project. At the policy level, the requirements and mandates related to sustainability are transformed
into a set of measurable targets, including minimum blend requirements, maximum carbon intensity limits,
feedstock eligibility criteria, ASTM D7566 product specifications, and process safety requirements that
characterize the allowable operating windows [28]. The technology layer provides a map of unit processes for the
selected pathway, including pretreatment, conversion reactors, hydrotreating, isomerization, fractionation, and
quality control, by relating each step to measurable intermediates and ultimate properties. These bounds are then
reflected in the methods chosen by the ML layer, including physics-informed reactors and hydrotreaters surrogates,
property-prediction ensembles, a real-time spec drift anomaly detector, and digital twins for hydrogen and heat
integration decisions [17]. This three-layer map does not enable modelers to account for abstract loss functions
that do not consider certification and safety considerations.

Several implications arise on the topic of feature engineering and data pipeline that are commonly ignored when
ML is added as an afterthought. Imagine the ASTM freezing point, aromatics, sulfur, nitrogen, and SIMDIS curves
controlling acceptability. At that, features should be used to record the histories of hydrogen partial pressure,

JETIR2511022 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org |a178


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

catalyst ageing indicators, and detect trace heteroatoms, but not generic process tags only. The relationship with
hydrogen networks is of special importance to digital-twin models since the intensity of hydrogen dictates both the
cost and the carbon intensity, and the operating point can be suggested by twin-informed ML, ensuring that cold-
flow properties are not exceeded [18]. Chain-of-custody and auditability must also be ensured by data governance,
which requires versioned datasets, traceable models, and explainable artefacts, which regulators and customers
may discuss during conformity tests [19]. The framework is then a less dashboard-like method of ensuring that
compliance informs the questions that ML asks and the evidence it holds.

Methods

The empirical design pairs a policy/regulatory crosswalk with TEA/LCA and ML modules on a restricted, yet
representative, group of SAF pathways. The policy analysis codes existing measures in the EU, UK, and the US
into a regulatory stringency and alignment index, with dimensions including mandate trajectory, clear
harmonization of metrics on sustainability, chain-of-custody policies, and incentives such as financing. Policy
documents and comparative assessments inform the coding scheme, and the index is stress-tested against case
material on the effects of the market, where possible, to reduce subjective bias in scoring [20]. The compliance
burden perspective is also enhanced by legal and advisory studies, especially in cases where REACH, TSCA, PSM,
and national divergences apply to the plant's work and documentation requirements, rather than merely defining
abstract guidelines [10,22]. The net effect is a scenario set that can be combined with techno-economic assumptions
to investigate the joint impacts on cost and bankability, and this is how producers feel the policy.

The module of TEA/LCA selects two different routes: hydrothermal liquefaction of wet wastes and a variant of
alcohol-to-jet, utilizing recent peer-reviewed process data to determine yields, utilities, hydrogen intensity, and
upgrading severities. Lifecycle limits are based on well-to-wake norms and sensitivity tests of electricity mixes,
including probes and green hydrogen assumptions, which often underpin carbon intensity claims [4,23]. The ML
module utilizes three data families: past assays and SIMDIS profiles, the catalyst and operating condition matrices
of pilots, and product property/QC records aligned to ASTM checkpoints. Ensembles of property prediction models
based on early QA, physics-informed surrogates derived from hydrotreaters and reactors, and flowsheet
optimization with the aid of learned surrogates are all models verified by holdouts, ASTM conformance tests, and
not solely statistical analysis [14,24]. Uncertainty is measured using Bayesian ensembles, and practicality is
assessed by whether the recommendations will reduce experiments and energy without compromising specification
margins.

Results

The policy/regulatory crosswalk reveals that jurisdictions with accurate mandate tracks, clear sustainability
standards, and realistic book and claim designs reduce perceived policy risk and enhance the financing
prerequisites of first movers. Comparative analysis indicates that harmonization between fuel policy and
chemical/process compliance minimizes the number of audits and data lists that meet duplication, which is
particularly useful in mid-scale plants that may consider modular replication instead of custom mega-sites [15].
Evidence related to the case also indicates that the redefinition of sustainability and a lack of chain-of-custody
verification slow off-take contracting, despite headline percentages showing ambition towards targets, which
highlights the importance of the alignment dimension as a first-order variable and not a secondary detail [8].
According to legal commentary, transparency on reporting and audit trails can be equivalent to credit levels when
developers and supporters of their projects consider execution risk and schedule float in project plans [22]. The
quality of policy is therefore realized as a lever on the cost of capital through direct subsidies.

TEA/LCA comparisons reveal significant differences in pathways and policy conditions, and the integration of
hydrogen sources and plant energy leads to a substantial portion of lifecycle dispersion, aside from the selection
of conversion chemistry. To achieve a freezing-point and aromatics window of lower hydrogen intensity in the
HTL case, tuned severity and selective upgrading must be implemented, which ML surrogates determine in a short
time, resulting in a saving in the short run before any policy credit is billed [26]. Prediction ensembles of property
prediction perform screening in the arrangement of non-vesicle individuals at the initial phase, and surrogate-
assisted flowsheet optimization provides a speedup over first-principles simulations, while still incorporating
sufficient physics to pass an engineering audit [14,17]. Learning curves indicate that even moderate data sizes,
when properly curated and tracked to unit processes, can achieve prediction errors below specification limits on
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critical properties. Hence, the results of ML can be used in day-to-day decisions and are no longer viewed as
scholarly fads. The overall effect is that there is accelerated iteration and reduced operational risk in the ramp-up.

Discussion

ML offers immediate benefits in three areas of operation: hydrotreating window selection, hydrogen and heat
integration, and pre-blend property screening to prevent dead-end experiments. Physics-informed surrogates
simulate the most critical sensitivities of heteroatom removal and aromatic management, providing engineers with
a rapid method to explore the severity and recycling approaches to maintain cold flow and stability within the
ASTM range, using less hydrogen and reducing the risk of coking [24]. These model insights are also translated
into operational setpoint recommendations by hydrogen network digital twins that reflect compressor constraints,
PSA operation, and utility prices instead of space optimization [17]. Prediction assists in property prediction.
Prediction helps the QC lab to filter blends of interest trial, freeing up the available limited time for confirmations,
which in many cases is usually the hidden bottleneck in the first production runs [14]. These gains are feasible and
can be accomplished with the help of existing DCS and lab setups.

The data and ML can also be used to mitigate specific regulatory bottlenecks experienced by producers because of
increasingly more-stringent and multi-jurisdictional compliance requirements. When data catalogues are designed
to be regulation-aware, variables, units, and provenance are implemented in a manner that directly translates to an
audit template and digital submission portal, chain-of-custody, and sustainability documentation are significantly
simplified [11]. The explainability artefacts, including feature importance, reactor surrogate sensitivity maps, and
uncertainty envelopes, empower quality managers to justify their decisions to both internal and external reviewers
without relying on ad hoc spreadsheets. The advantages of chemical/process safety integration, such as anomaly
detection and soft sensors, which identify deviations before cascades and generate a reviewable record of PSM
compliance, should be supported [21]. The further the compliance systems are integrated with the digital twins of
the plants, the less overhead load each new rule would create for already lean teams.

Nonetheless, the caution on risks associated with ML during certification and scale-up is not altogether misplaced,
for it can also come as a spur rather than a punch. Surrogates may be confused by a lack of data, bias, or distribution
shift, which invalidate assumptions that cumulate with one of the ages of the catalysts or with a change in the
feedstock distribution. It is not an event in paper form but takes place in real life, like that of a plant, where a
campaign becomes increasingly dirty over time. Thus, online supervision and re-training are not merely a nuisance
but form part of the process. Users and auditors will require clear justification of the model recommendations that
come into conflict with specification compliance, in presenting hybrid models, explicit uncertainty over black-box
prediction, which is difficult to contest in a dispute scenario [19]. Ethics regarding land and social impact do not
change much when new models are constructed and policies invoked to embed in the principles of sustainability
to avoid perverse feedstock corrections in the name of accounting for carbon.

The binding suture that transforms pockets of excellence into a coherent system that will not collapse due to
changes in regulations and market shocks is interoperability. Plant digital twins exchanging data and semantics
with compliance reporting stacks can absorb configuration changes with requirements updates, but not re-
engineering. The same integration enables the benchmarking of one site against another or one pathway against
another at an enterprise level, allowing the lessons learned from hydrogen intensity or spec failures to be passed
on as tribal knowledge within a single location. With time, policy alignment, structured compliance data, and
internalized ML are likely to decrease variance in operating results, which is just what lenders and airlines want
when making decisions about offtake reliability. Increasing absolute performance is no less a part of the path to
scale than is decreasing uncertainty.

Policy / Managerial Recommendations

The crosswalk policy designers should pay attention to three policy levers: the book and claim systems reduce
administrative drag with minimal effect on the pathway, which lowers risk, and production credits as incentives
for sustainable improvements in carbon intensity that are verifiable, as opposed to nominal pathway labels. The
hierarchy of the criteria of sustainability and the lists of the significant markets arranged accordingly will minimize
the stranded compliance costs and off-take contracting shutdown, which, respectively, will translate into the
reduction of the financing cost with no additional subsidy [20]. Execution risk is also minimized with legal
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certainty about chain-of-custody verification and auditability in digital form, enabling producers to write data
pipelines once and reuse them in certifications multiple times. The outcome will be a more policy-focused
environment that encourages genuine decarbonization and operational excellence, as opposed to volume alone,
which is more consistent with the culture of reliability in aviation.

At the enterprise level, managers are advised to develop regulation-conscientious data catalogs that reflect
provenance, units, and audit trails in data structures that are translatable to both ASTM checkpoints and
chemical/process reporting requirements. The most practical sequencing of ML investments focuses on use cases
that have direct specifications and cost leverage, pre-blend property screening, hydrotreating surrogate guidance
to hydrogen savings, and anomaly detection regarding spec drift, before undertaking broader flowsheet re-
optimizations, which require more change management [14,17]. Interactions with customers and regulators
compensate for explainable Al artefacts at development time, as engineers can demonstrate why a recommendation
is resilient and what the uncertainties of the recommendation mean in terms of safety margins [19]. Incentive
structures should also be harmonized in a way that data quality and model maintenance are viewed as production
enablers, rather than back-office tasks, since unattended data pipelines can silently erode the value of all models
constructed on top of them.

Limitations and Future Work

Policy coding of the study necessarily converts complex regulations into an index that can be handled, which runs
the risk of condensing nuances and settings that are essential in particular jurisdictions that practice permitting.
Although this risk is mitigated by cross-checking with case material and legal commentary, future work should
incorporate dynamic updates and structured expert panels to ensure the index remains aligned with the rapidly
evolving rules and interpretations [22]. The TEA/LCA ranges are also sensitive to site-specific energy mixes, the
sourcing of hydrogen, and the potential of waste heat, for which general scenarios can only be approximate; thus,
results cannot be taken as site-specific. In addition to the avenues explored, further investigation should be
conducted to look at the generality of the regulation-conscious ML framework in other upgrading issues and supply
chains.

The external validity of the ML side is limited to historical assays, catalyst campaigns, and QC datasets, which are
typically not readily available, and proprietary issues often restrict the sharing of data as needed to accelerate
collective learning [27]. The production of future work must involve in-the-loop piloting of ML at demonstration
plants, with clear ASTM conformity checkpoints and participation by an independent audit team, such that it
becomes not only internal dashboards for customers and regulatory communities, but also external dashboards for
stakeholders. The digital-twin integration mentioned in this case also raises the issues of cybersecurity, version
control, and fail-safe design, which can be explored in more depth as the models gain more operational functions
than advisory functions. Any advancement in these areas would enable society to move beyond promising
prototypes and rely on a reliable infrastructure that is scalable with confidence.

Conclusion

Decarbonization of aviation requires that SAF be scaled quickly and prove to be of high quality and safety under
increased scrutiny, which emphasizes the importance of aligning policy design, chemical/process regulation, and
machine learning at the earliest level. A regulation-sensitive ML framework directly links certification properties,
safety requirements, and sustainability requirements to features, targets, and data governance, enabling the model
to answer questions of interest and provide evidence to meet audit needs. A combination of these factors has created
a faster iteration, reduced hydrogen and energy intensity, and more transparent investment signals that reduce the
cost and risk difference, making it impossible to deploy today. By aligning sustainability metrics and auditing, and
by businesses executing explainable and digitally twin-linked ML on explainable specifications and hydrogen
utilization, the sector can translate the cumulative gains of incremental improvement into the cumulative gains of
the next wave of build-out. The physics of flight will not change, but the integration of rules, reactors, and learning
systems may alter the rate and predictability at which cleaner fuel is loaded into tanks in large quantities.
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