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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that impairs memory, cognition, and behavior.
Early diagnosis is vital for timely treatment, yet traditional clinical and neuroimaging methods are often costly and time-consuming.
This study proposes an explainable machine learning framework using the Extreme Gradient Boosting (XGBoost) algorithm for
accurate and interpretable AD prediction. The dataset includes demographic, lifestyle, medical, and cognitive features such as age,
gender, BMI, cholesterol, blood pressure, MMSE score, and behavioral symptoms. Exploratory data analysis and visualizations
were performed to identify key patterns and correlations. The XGBoost model achieved high accuracy, precision, recall, F1-score,
and ROC-AUC in distinguishing healthy and AD subjects. SHAP (SHapley Additive exPlanations) analysis provided
interpretability by identifying the most influential features. The proposed XGBoost-SHAP framework ensures reliable early AD
detection and supports personalized clinical decisions.

. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that causes memory loss, cognitive decline, and
behavioral impairment, primarily affecting older adults. It accounts for about 60—70% of dementia cases worldwide and poses a
major global health and economic challenge. According to the World Health Organization, over 55 million people live with
dementia, and this number may triple by 2050. AD is marked by amyloid plaques and neurofibrillary tangles in the brain, leading
to neuronal death and brain atrophy. Current treatments such as cholinesterase inhibitors and NMDA antagonists offer only
temporary relief without halting disease progression, making early detection crucial. The disease arises from multiple factors
including age, genetics (e.g., APOE &4), cardiovascular issues, diabetes, obesity, depression, and unhealthy lifestyles.

Traditional diagnostic methods—such as cognitive assessments (MMSE, MoCA), neuroimaging (MRI, PET), and CSF
biomarker tests—are effective but costly, invasive, and limited in accessibility. Additionally, overlapping symptoms with other
disorders make early diagnosis difficult. Machine Learning (ML) has emerged as a powerful tool in medical diagnosis, capable of
identifying hidden patterns in large, complex datasets. Algorithms like Random Forest, Support Vector Machine, and Gradient
Boosting have shown strong potential in predicting diseases, including AD. However, most ML models lack interpretability, which
is essential for clinical acceptance. To overcome this limitation, Explainable Artificial Intelligence (XAl) methods such as SHAP
(SHapley Additive exPlanations) provide transparency by showing how each feature influences model predictions.

This study proposes an interpretable Alzheimer’s prediction framework using the Extreme Gradient Boosting (XGBoost)
algorithm with SHAP analysis. The model uses demographic, clinical, and cognitive features to classify Healthy and AD subjects
accurately while ensuring transparency for clinical decision-making.

Il. LITERATURE SURVEY

Several studies have explored machine learning and deep learning techniques for Alzheimer’s disease (AD) detection and
diagnosis. N. Chedid et al. developed an automated EEG-based machine learning pipeline using logistic regression with an
accuracy of 81%, addressing challenges such as manual preprocessing, large data dependency, and lack of model transparency.
Their approach demonstrated the potential for scalable and automated AD diagnosis in clinical settings. O. A. Dara et al. conducted
a comprehensive survey of over 80 publications since 2017, highlighting the role of genetic, environmental, and nutritional factors
in AD development and emphasizing the value of machine learning and Al-based models in integrating neuroimaging and non-
imaging biomarkers for improved diagnosis. Similarly, Isra Malik et al. reviewed 116 research papers across multiple databases,
covering deep learning methods, datasets, and feature extraction techniques for AD prediction. The study emphasized the
importance of interpretability and explainability in Al-based diagnostic systems to enhance clinical trust. V. Adarsh et al. proposed
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a CNN-based multimodal framework integrated with a Multi-feature Kernel Supervised Discriminative Dictionary Learning
(MKSCDDL) technique, achieving a remarkable 98.27% accuracy in classifying AD, Mild Cognitive Impairment (MCI), and
cognitively normal subjects with transparent decision-making. Likewise, Ghassan Al Rahbani et al. combined ResNet and
EfficientNet architectures with post-processing heuristics for multiclass AD detection, enhancing model robustness,
interpretability, and diagnostic accuracy. Collectively, these studies demonstrate that explainable machine learning and hybrid
deep learning approaches significantly improve early Alzheimer’s detection, accuracy, and clinical applicability.

11l. PROPOSED METHODOLOGY

3.1 Problem Statement

Existing Alzheimer’s disease (AD) diagnostic systems primarily rely on clinical evaluations, neuropsychological tests, and

neuroimaging techniques such as MRI, PET, and CT scans. While effective, these methods are costly, time-consuming, and invasive,
making them unsuitable for large-scale or early screening. Cognitive tools like MMSE and CDR often fail to detect early pathological
changes, leading to delayed diagnosis. Machine learning models such as Logistic Regression, SVM, and Random Forest have been
applied to improve accuracy, but they struggle to capture complex nonlinear relationships and often rely on small datasets, limiting
generalization. Moreover, most deep learning-based models function as black boxes with limited interpretability, which restricts their
clinical trust. They also neglect behavioral and lifestyle factors, offering a fragmented view of AD progression. Hence, there is a need
for an interpretable, efficient, and holistic diagnostic model that integrates multi-domain data for early detection.

3.2 Proposed System

The proposed system introduces a hybrid, data-driven diagnostic framework based on the Extreme Gradient Boosting (XGBoost)
algorithm integrated with SHAP (SHapley Additive exPlanations) for transparency. Unlike imaging-based systems, it uses clinical,
demographic, behavioral, and physiological features such as age, BMI, cholesterol, MMSE score, and lifestyle factors to provide a
cost-effective and comprehensive risk evaluation. The workflow includes data preprocessing (missing value handling and
normalization), data splitting (80:20 ratio), model training using XGBoost, and performance evaluation through accuracy, precision,
recall, F1-score, and ROC-AUC. SHAP analysis enhances interpretability by quantifying each feature’s contribution to predictions,
helping clinicians understand the impact of factors like age, MMSE score, and family history on AD risk. This combination ensures
a high-performing, explainable, and reliable diagnostic tool.
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FIG 1: SYSTEM ARCHITECTURE

Proposed Modules:

The system consists of seven key modules: (1) Data Collection from Kaggle (clinical, demographic, and behavioral features), (2)
Data Preprocessing using imputation and MinMax scaling, (3) Data Splitting into training and testing sets, (4) XGBoost Model
Training to learn complex patterns, (5) Model Testing to validate generalization, (6) Performance Evaluation through standard metrics
and visualization, and (7) SHAP Analysis for feature interpretability. Together, these modules enable efficient learning, robust
validation, and transparent prediction of Alzheimer’s disease.

Proposed Algorithm — XGBoost:

XGBoost is an optimized gradient boosting algorithm that combines multiple decision trees to minimize prediction error
iteratively. It applies gradient descent and second-order derivatives for faster and more accurate optimization. Regularization (L1 and
L2) prevents overfitting, while pruning and subsampling enhance generalization. XGBoost’s ability to handle nonlinear relationships,
missing data, and large datasets makes it ideal for biomedical prediction tasks. In this study, it is employed to classify subjects as
Healthy or AD, providing reliable probabilistic predictions supported by SHAP-based interpretability.
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IV. SOFTWARE AND DOMAIN DESCRIPTION

This project utilizes Python as the primary programming language due to its simplicity and extensive support for machine
learning and data analysis. Essential libraries such as NumPy, Pandas, Scikit-learn, TensorFlow, Keras, Matplotlib, and Seaborn are
employed for data preprocessing, model training, and visualization. NumPy and Pandas enable efficient data manipulation, Scikit-
learn supports classical ML algorithms, while TensorFlow and Keras facilitate deep learning model development. Visualization tools
like Matplotlib and Seaborn help interpret results effectively. The project lies within the domain of Data Mining and Machine
Learning, focusing on discovering useful patterns and knowledge from large datasets. Data mining integrates methods from databases,
statistics, and artificial intelligence to perform classification, clustering, and pattern recognition. Machine learning enhances this
process by enabling systems to automatically learn and make predictions from data. The data mining process involves stages such as
preprocessing, modeling, testing, and evaluation to ensure accuracy and reliability. By combining these tools and techniques, the
system efficiently extracts meaningful insights from complex data and supports intelligent decision-making.

4.1 SYSTEM DESIGN

The system design defines the structure and functionality of the proposed model, ensuring smooth data flow and process
interaction. The Data Flow Diagram (DFD) illustrates how input data is processed and transformed into output, showing relationships
among processes, data stores, and external entities. The Unified Modeling Language (UML) provides standardized visual models,
including Use Case, Class, Sequence, and Activity Diagrams, which represent system behavior and structure. Input design focuses
on collecting, validating, and processing user data efficiently while minimizing errors and ensuring ease of use. Output design
emphasizes clear and accurate presentation of processed information for effective decision-making. System testing validates system
performance through various test types—Unit, Integration, Functional, and System Testing. White Box and Black Box testing
approaches ensure both internal logic and external functionality are verified. Finally, User Acceptance Testing confirms that the
system meets all functional requirements and operates as expected. The overall testing results ensure reliability, efficiency, and
correctness of the system.

V. EXPERIMENTAL SYSTEMS

MODULE 1- Data Loading and EDA
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Dataset shape / Dataset input features / Statistical Analysis
df.shape

(2149, 34)

df.columns

Index({[ "PatientID’, "Age’', "Gender', "'Ethnicity®, 'EducationLewvel®, "'BMI",
"Smoking", "AlcohelConsumption’, "PhysicalActivity', 'DietQuality’,
"SleepQuality’, "FamilyHistoryAlzheimers®, 'CardiovascularDisease’,
"Diabetes’, "Depression’, "HeadInjury', "Hypertension', "SystolicBP',
"DiastolicBP”, "CholesterolTotal”, "CholesterollDL’, "CholesterolHDL",
"CholesterolTriglycerides”, "MMSE", "FunctionalAssessment’,
"MemoryComplaints’, "BehavioralPreblems®, "ADL", "Confusion’,
"Disordientation’, "PersonalityChanges’', "'DifficultyCompletingTasks’,
"Forgetfulness’, 'Diagnosis’],

dtype="object”)
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MODULE 2 - Data Preprocessing
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Data Cleaning

Null Value Checking Result

o
PatientiD o
Age 0 DiastolicBP o
Gender o CholesterolTotal o
Ethnicity 0 CholesterolLDL o
EducationLevel 0 CholesterolHDL o
BMI o CholesterolTrigiycericdes (¢]
Smoking o o) o
AlcoholConsumption o FunctionalAssessment (o}
PhysicalActivity o MemoryComplaints o
WBehavioralProblems O
DietQuality 0
ADL o]
NisspAuNiity. 9 Confusion o
FamilyHistoryAlzheimers O Disoriantation o
CardiovascularDisease 0 PerszonalityChanges o
Dlabetes o DifficultyCompleting Tazskszs O
Depression 0 Forgetfulness o
HeadInjury (o] Diagnosis (+]
Hypepansion 9 diype: intGa
SvstolicBP 0
Data Scaling using MinMax Scaler
[[e.2ea088802+88 4.333333332-81 &.028802882=+88 . Be868880e4+006
1.892282288=2+82 2.2028288088:24+88 ]
[4.56554093482-84 0.666666672-81 @.00082808=2+08 . BBeBeaa0e+08
2.822800082+88 1.9088808824+88 ]
[2.318286962-84 4.33333333e-81 &.020028208=+08 . BE86828302+808
1.828820882+828 ©.29028808824+88 ]
[9.90868981=-81 5.566666672-81 0.820828882+22 . B836823024+00
8.2888808002+88 ©.80080088e+88
[9.99534451=-81 6.2802800882-81 1.02082088=2+22 . Be868880a+006
8.028828882+82 1.8088008824+88 ]
[1.828800882+88 4.800860882-81 0.80088808=2+08 . BB0Beaate+08
2.8228200882+88 1.0088008824+808] ]

MODULE 3 - Data Splitting

Data Splitting — 80:20

Train shape: (1719, 33) Test shape: (438, 33)

MODULE 4 — XGBoost Model Training

Model training completed!

MODULE 5 — Model Testing

Testing Set Prediction Result
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The testing phase evaluates the XGBoost model’s performance using unseen data. The model generates predicted labels and
probability scores indicating Alzheimer’s likelihood. Results show clear separation between healthy and AD subjects, with high
probabilities (near 1) for Alzheimer’s cases and low values (near 0) for healthy individuals. Most predictions accurately match actual
labels, confirming strong learning and generalization. The model demonstrates high precision, reliability, and robustness, making it
effective for early Alzheimer’s detection and clinical decision support.

MODULE 6 — Performance Evaluation

Confusion Matrix

Confusion Matrix - Alzhelmer's Disease Prediction
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The confusion matrix shows that the XGBoost model accurately classified 268 healthy individuals and 144 Alzheimer’s patients,
with only 9 false positives and 9 false negatives. These results indicate high accuracy, strong sensitivity, and specificity. The model
effectively minimizes classification errors and reliably distinguishes between healthy and AD cases. Overall, the confusion matrix
confirms the model’s robustness and precision, demonstrating its potential as a reliable tool for early Alzheimer’s detection.

Performance Metrics

The evaluation metrics confirm the high performance and reliability of the proposed XGBoost-based Alzheimer’s prediction
model. It achieved 95.81% accuracy, with precision, recall, and F1-score all at 0.9543, showing consistent and balanced performance.
The ROC-AUC value of 0.9916 indicates excellent separability between healthy and AD cases. Slightly higher precision and recall
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for healthy subjects suggest strong overall classification stability. These results validate the model’s efficiency, robustness, and
suitability as a reliable tool for early Alzheimer’s detection.

ROC Curve

ROC Curve - Alzheimer's Disease Prediction
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The ROC curve illustrates the strong classification ability of the proposed XGBoost-based Alzheimer’s prediction model, showing
a steep rise toward the top-left corner, which indicates high sensitivity and low false positives. The AUC value of 0.992 confirms
near-perfect discrimination between Alzheimer’s and healthy cases. This demonstrates the model’s robustness, reliability, and
excellent balance between sensitivity and specificity, making it a highly effective tool for accurate early detection and clinical decision
support in Alzheimer’s diagnosis.

SHAP Analysis

Featre valie

.......

The SHAP analysis highlights how each feature influences the XGBoost model’s Alzheimer’s predictions. Key factors include
Functional Assessment, ADL, and MMSE — where lower scores increase disease risk. Memory Complaints and Behavioral
Problems also strongly affect outcomes. Overall, the SHAP results confirm that the model is accurate, interpretable, and clinically

reliable.

JETIR2511033 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org |a273


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

VI. CONCLUSION

The proposed XGBoost-SHAP model provides an intelligent and interpretable framework for Alzheimer’s disease prediction.
Using a Kaggle dataset with clinical and behavioral features such as age, BMI, MMSE, and daily activities, the model achieved
95.81% accuracy and an AUC of 0.992, showing excellent classification performance. SHAP analysis identified Functional
Assessment, ADL, and MMSE as key predictors, enhancing transparency and clinical trust. Overall, the model proves to be a robust
and explainable tool for early Alzheimer’s detection and effective clinical decision support.
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