JETIR.ORG

## ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)



An International Scholarly Open Access, Peer-reviewed, Refereed Journal

# A Review on Formulation and evaluation of oral rehydration salt by using of natural ingredients for prevention of diarrhea and vomiting

Priyanka Kashinath Panmand<sup>1</sup>, Reema Chandrakant Londhe<sup>2</sup>, Darshana Suresh Ghadigaonakr<sup>3</sup>

#### **Abstract:**

Dehydration from vomiting, diarrhea, or excessive fluid loss is still a major global health concern, particularly in impoverished nations. The World Health Organization (WHO) recommends oral rehydration therapy (ORT) with oral rehydration salts (ORS) as a low-cost, efficient method of reestablishing fluid and electrolyte balance. However, traditional ORS formulations frequently have bad taste, no further therapeutic benefits, and can lead to noncompliance in older and pediatric patients. Recent studies have concentrated on adding natural chemicals and herbal extracts to ORS formulations in order to get around these restrictions. Essential electrolytes and glucose are combined with bioactive plant components in herbal rehydration salts to improve palatability and give antidiarrheal, antibacterial, antioxidant, and digestive benefits. Aegle marvel (bael fruit), Zingiber officinale (ginger), Mentha piperita (peppermint), Citrus limon (lemon), and Cocos nucifera (coconut water powder) are among the ingredients that have demonstrated potential in improving the effectiveness and acceptance of ORS. The many natural sources, formulation techniques, assessment criteria, and pharmacological functions of herbs in preserving electrolyte balance and digestive health are compiled in this review. A safe, efficient, and user-friendly substitute for traditional synthetic ORS preparations may be provided by the creation of standardized, stable, and clinically verified herbal ORS formulations.

#### **Keywords:**

Dehydration, noncompliance, palatability, effectiveness, antidiarrheal, antibacterial, antioxidant.

#### **Introduction:**

Excessive loss of water and electrolytes from vomiting, diarrhea, fever, or vigorous physical exercise causes dehydration, a serious global health hazard. In poor nations, it is one of the main causes of morbidity and mortality, especially for young children, the elderly, and neonates. The World Health Organization (WHO) has acknowledged oral rehydration therapy (ORT) as a straightforward, economical, and efficient technique for reestablishing fluid and electrolyte balance. Glucose, sodium chloride, potassium chloride, and trisodium citrate make up the majority of the typical Oral Rehydration Salt (ORS) formulation. These ingredients work together to facilitate the absorption of water and sodium via the intestinal mucosa through glucose-salt co-transport pathways. Conventional ORS formulations have various drawbacks despite their efficacy. They just rehydrate; they don't treat related gastrointestinal symptoms like nausea, diarrhea, or abdominal pain. Furthermore, typical ORS's bland flavor frequently results in low patient compliance, particularly in young patients. Research on using natural and herbal components to improve the therapeutic and sensory qualities of ORS has been prompted by this. Herbal rehydration salts combine the pharmacological advantages of medicinal herbs with the physiological rehydration benefits of conventional ORS. Natural ingredients that are high in electrolytes, antioxidants, and bioactive compounds with antidiarrheal, antimicrobial, anti-inflammatory, and digestive-stimulant qualities include Citrus limon (lemon), Mentha piperita (peppermint), Zingiber officinale (ginger), Aegle marmelos (bael fruit), and Cocos nucifera (coconut water). In addition to improving palatability and patient acceptance, these herbal ingredients may aid in gastrointestinal protection and a quicker recovery. The need of developing herbal ORS has been further reinforced by the pharmaceutical and nutraceutical industries' increasing desire for natural and plant-based formulations. To guarantee product safety and effectiveness, however, issues including osmolar equilibrium maintenance, stability of active ingredients, and standardization of herbal extracts must be resolved. The goal of this review is to present a thorough analysis of the creation and testing of herbal rehydration salts made with natural ingredients. . It covers the pharmacological functions of herbal components, formulation techniques, evaluation criteria, composition, and potential future applications of herbal ORS as a secure and efficient substitute for traditional rehydration therapy.

#### **Concept of Herbal Oral Rehydration Salt**

A scientifically proven method for treating dehydration brought on by vomiting, diarrhea, and other fluid-loss disorders is oral rehydration salt (ORS) therapy. Through the salt-glucose co-transport mechanism, glucose and the vital electrolytes sodium, potassium, chloride, and citrate—which are included in the standard ORS advised by the World Health Organization (WHO)—help restore osmotic equilibrium and encourage water absorption through the intestinal mucosa. Conventional ORS, however, does not directly address the underlying causes of diarrhea or related gastrointestinal disorders, even while it efficiently replenishes lost fluids and electrolytes. The Herbal Oral Rehydration Salt (H-ORS) approach blends the pharmacological qualities of natural substances and therapeutic plants with the electrolyte-restoring advantages of ORS. This formulation improves the

basic ORS base's nutritional value, palatability, and medicinal benefit by adding natural powders or herbal extracts. These organic components could be used as digestive stimulants, antioxidants, antimicrobials, electrolyte supplies, or anti-inflammatory agents .For instance, Aegle marmelos (bael fruit) has potent antidiarrheal and astringent qualities, Zingiber officinale (ginger) and Mentha piperita (peppermint) help to relieve nausea and aid in digestion, and Cocos nucifera (coconut water) offers natural electrolytes like potassium and sodium. Lemon, or citrus limon, is a natural citrate source that helps treat acidosis and adds citric acid, which improves taste and alkalinity. In addition to improving the flavor profile, these additives help increase patient compliance, especially in older and younger patients. In order to provide appropriate rehydration efficiency, the herbal ORS must maintain an electrolyte concentration and osmolarity (about 245 MOs/L) equal to the WHO-recommended ORS. Herbal extracts shouldn't affect the stability or absorption of electrolytes. To obtain consistent therapeutic results, it is therefore essential to choose appropriate herbal sources, standardize active ingredients, and create formulations that are appropriate.

#### **Ingredient**

Quantity (g) and function

1.Glucose (anhydrous) :-10.00 gm

Provides energy, enhances sodium absorption

2. Sodium chloride:-3.50 gm

Replenishes sodium chloride ions

3.Potassium chloride: - 1.50 gm

Restores potassium during diarrhea

**4.Sodium citrate:-** 2.90 gm

Buffer, prevents metabolic acidosis

**5.Ginger powder :-** 0.80 mg

Antiemetic and digestive

**6.Fennel**-0.60 mg

Carminative, relieve cramps

7.Coriander powder:-0.50mg

Digestive aid

8.Stevia powder:-0.20 mg

Natural sweetener

#### **9.Rice powder** :-0.40 mg

Stabilizer, mild carbohydrate source

#### **Formulation Approach**

The goal of creating a Herbal Oral Rehydration Salt (H-ORS) is to incorporate standardized herbal constituents that offer extra medicinal and organoleptic benefits while preserving the electrolyte and glucose balance of the WHO-recommended ORS. To guarantee product stability, palatability, and efficacy, the method carefully chooses, amounts, and processes both natural and chemical ingredients.

#### 1. Principles of Formulation

The main principle behind H-ORS formulation is the sodium—glucose co-transport mechanism, which facilitates the absorption of sodium and water from the intestine. To guarantee optimal rehydration efficiency while maintaining osmolarity within the physiological range (about 245 MOs/L), the glucose-to-sodium ratio must be tuned. Herbal extracts or powders shouldn't interfere with electrolyte absorption or change the osmotic equilibrium.

#### 2. Basic Components of H-ORS

The formulation of herbal ORS consists of two main groups of ingredients:

#### A. Essential Electrolyte and Sugar Base (per WHO guidelines):

Anhydrous glucose: Gives you energy and makes it easier for your body to absorb salt. Sodium chloride (NaCl): Preserves the equilibrium of extracellular fluid. The intracellular potassium lost during dehydration is replaced by potassium chloride(KCl). Trisodium Citrate Dihydrate: Prevents metabolic acidosis and functions as a systemic alkalinizer.

#### **B.** Herbal / Natural Ingredients:

Powdered coconut water (Cocos nucifera): An organic source of electrolytes. Natural citrate is provided by lemon powder (Citrus limon), which also enhances flavor. Extract from ginger (Zingiber officinale): digestive stimulant and antiemetic. Extract from peppermint (Mentha piperita): flavoring, cooling, and carminative.

#### 3. Method of Preparation

#### **Step 1: Preformulation Studies**

Use methods like FTIR or DSC to ascertain whether herbal powders and electrolytes are compatible. Assess each component's stability and hygroscopicity.

#### **Step2:Precise Weighing**

Every component is carefully weighed in accordance with the formulation ratio intended to

produce electrolyte concentrations that are WHO-equivalent following reconstitution.

#### **Step 3: Blending and Dry Mixing**

To achieve homogeneous particle size, individual components are sieved (through mesh no. 40 or 60). To guarantee homogeneity, all ingredients are dry-blended using a double-cone or ribbon blender in a geometric dilution approach.

**step 4:Granulation is the fourth (optional).** Wet granulation can be carried out with a limited binder solution (such as starch paste) if the powder exhibits poor flow characteristics. After drying at 40 to 45°C, the granules are sieved through mesh number

Step 5: Adding Anticaking and Flavoring Agents
To enhance flow and stability, trace amounts of anticaking agents (talc or silicon dioxide) and
natural flavorings (lemon, mint) are added.

Step 6: Packaging

Low humidity conditions are used to pack the homogeneous powder in laminated aluminum sachets that are resistant to moisture. Each sachet is intended to be reconstituted in a specific amount of drinkable water, such as 200 milliliters or one liter.

- 4. **Important Formulation Points** the osmolarity between 200 and 310 MOs/L (ideally, Keep about 245 MOs/L). that the electrolyte concentrations are in line with WHO ORS guidelines. Herbal powders that produce a lot of turbidity or precipitation after reconstitution should be avoided. For stability and keep the рН between 6.0 and 8.0. flavor, moisture below 5% microbial Keep content to prevent growth. Pharmacopeial requirements for pesticide residues, heavy metals, and microbiological load must be met by all herbal ingredients.
- 5. Crucial of **Elements Formulation** Maintain 200-310 MOs/L, preferably osmolarity 245 MOs/L. of around an electrolyte concentrations meet **WHO ORS** Verify the recommendations. It is best to stay away from herbal powders that cause a lot of turbidity or precipitation following reconstitution.

The рH maintained between 6.0 and 8.0 for flavor should and stability. microbiological To growth, keep the moisture content All herbal substances must meet pharmacopeial requirements for microbial load, heavy metals, and pesticide residues.

**Assessment** Criteria

A crucial first step in making sure the formulation satisfies the necessary physicochemical,

chemical, microbiological, and medicinal requirements is evaluating Herbal Oral Rehydration Salt (H-ORS). These review criteria determine the final product's efficacy, safety, and quality. To evaluate performance, stability, and patient acceptance, tests are conducted on both the dry powder and reconstituted solution. the

1.Organoleptic Assessment

These factors influence patient compliance and give the product's initial impression. The color ought to be consistent and indicative of the herbal components that were utilized. Odor: It should be pleasant and devoid of any unpleasant or rancid smells.

Taste: Verified following reconstitution, it should be agreeable and not very bitter or salty. Look: The powder is free-flowing, non-caking, and devoid of lumps or contaminants. Clarity (after reconstitution): Depending on the herbal content, the solution should be either clear somewhat cloudy.

2. of **Parameters Physicochemistry** Test: Objective/Description Standard Moisture Content (Loss on Drying) and Acceptable hygroscopicity shelf stability and assesses Density in bulk or taped: shows the characteristics and consistency of the flow. calculated Carr's data that needed to calculate Hausner's Ratio and Index Repose Angle: evaluates the powder's flowability; a flow of  $\leq 30^{\circ}$  is considered good. Reconstituted solution's pH Assures taste and physiological compatibility: 6.0 to 8.0 Reconstitution Time: Total time in a given volume of water  $\geq 2$  minutes The Osmolarity/Osmolality ratio Assures 200–310 MOs/L of isotonic nature for rehydration (WHO ≈245 MOs/L). Particular Conductivity Verifies the presence and balance of electrolytes Similar to the typical ORS

#### Pharmacological and Therapeutic Role of Herbs in Oral Rehydration Salts (ORS)

Herbal compounds are added to oral rehydration salts (H-ORS) to provide additional therapeutic, antioxidant, antidiarrheal, and gastro protective advantages in addition to replacing lost electrolytes and fluids. The use of medicinal herbs in H-ORS formulations aids in intestinal health improvement, taste and acceptability enhancement, and the reduction of associated with dehydration. symptoms The pharmacological actions of herbs are mainly attributed to their phytoconstituents, such as alkaloids, flavonoids, tannins, phenolics, and essential oils, which synergistically act with the electrolyte solution.

1. Water from (Cocos nucifera) coconuts Sugars, amino acids, potassium, sodium, calcium, magnesium, and vitamin C are examples of active constituents. **Actions** ofPharmacology:

preserves osmotic and electrolyte equilibrium by functioning as a naturally occurring isotonic fluid.

has cooling and moisturizing properties because of its mineral makeup. has antioxidants that aid in lowering the oxidative stress brought on by dehydration. Therapeutic Role: Improves the palatability of H-ORS and acts as a natural electrolyte substitute.

2. Zingiber officinale, or ginger Active ingredients include volatile oils, zingerone, gingerols, and shogaols. Pharmacological Actions: Shows anti-inflammatory, carminative, and antiemetic qualities. promotes digestion and guards against dehydration-related nausea or vomiting. Therapeutic Role: Prevents electrolyte loss through vomiting and improves gastrointestinal comfort.

#### 3. Active Ingredients in Lemon (Citrus limon):

flavonoids (naringin, Hesperidin), Vitamin C. citric acid. and essential oils. Actions of Pharmacology: serves as an antioxidant and natural alkalinizer. offers digestive and antibacterial advantages, enhances the ORS solution's flavor and freshness.

Therapeutic Role: Encourages patient compliance by enhancing electrolyte absorption and incorporating natural flavor.

4. **Peppermint** (Mentha piperita) Constituents: flavonoids. Active Menthol. menthone, limonene, Pharmacological **Actions:** carminative, reducing discomfort. Acts as coolant and abdominal and Has antispasmodic antiemetic effects, relieving cramps and nausea. activity antimicrobial against intestinal pathogens. Therapeutic Role: Provides freshness, relieves gastrointestinal irritation, and improves acceptability.

5. Coriandrum sativum, coriander or Active Ingredients: Flavonoids, coumarins, and linalool. Pharmacology: Actions of digestive-stimulating antioxidant qualities. and lessens intestinal irritation. flatulence and Therapeutic Role: **Prevents** pain and improves digestion. stomach

#### 6. The active ingredients

fennel (Foeniculum vulgare) include flavonoids, fenchone, anethole, and estragole. Pharmacological Actions: Reduces cramping and bloating; carminative and antispasmodic. The gut mucosa is protected by antimicrobial and anti-inflammatory properties. Therapeutic Role: Promotes intestinal comfort and speeds up the healing process when dehydrated.

7. **Octimum** sanctum, tulsi or Rosmarinic acid. ursolic acid, and eugenol the active are constituents. Pharmacological Actions: Displays immunomodulatory, antioxidant, and antibacterial properties.

decreases diarrhea brought on by infections and strengthens the immune system. Therapeutic Role: Promotes a quicker recovery and offers broad-spectrum protection.

#### 8. H-ORS's Combined Pharmacological Advantages:

Rehydration, Contributors, Action of Herbal and Electrolyte Balance with water revitalize of  $Na^+$  $K^+$ and Bananas coconut Balance  $C1^{-}$ Astringent and antidiarrheal Lemon, Tulsi, and Bael minimizes fluid loss Digestive & Antiemetic Assistance Peppermint, Fennel, and Ginger vomiting reduces and increases hunger antioxidant Anti-inflammatory and Tulsi, lemon, coriander and damage decreases oxidative and improves palatability with Peppermint lemon Enhances compliance and flavor

#### Stability and Packaging Herbal Oral Rehydration Salts (H-ORS):

Some Considerations Herbal Oral Rehydration Salts (H-ORS) formulation and quality control depend heavily on stability and packaging. The formulation is extremely susceptible to temperature, moisture, and microbial contamination because it contains sugars, electrolytes, and hygroscopic herbal ingredients. While stability studies verify the product's safety and effectiveness under a range of storage settings, proper packaging guarantees the product's integrity throughout its shelf life.

#### 1. Packaging's significance in H-ORS

The formulation is shielded from environmental elements (moisture, light, and oxygen) by the packaging. preserving the herbal actives' and electrolytes' chemical and microbiological stability. ensuring that consumers can easily reconstitute the right dosage. compliance, mobility, and patient convenience. Dry powder stability is the primary factor to be taken into account when storing H-ORS because it is reconstituted before to use.

#### 2. Filling and sealing the packaging process:

Done in low-humidity environments (less than 35% RH). Oxidation can be reduced by nitrogen flushing. Unit Dose Design: Each sachet is made to reconstitute in a certain volume, such as 1 L or 200 mL. Use of a Desiccant: To keep things dry, use silica gel or molecular sieves. Secondary Packaging: During transit, outer cartons offer physical protection.

#### 3. Stability consideration:

A Look at StabilityH-ORS stability is dependent upon: Physical aspects: light exposure, temperature changes, and moisture absorption. Chemical variables include the breakdown of glucose or citrate and the hydrolysis or oxidation of herbal

Microbial factors: If moisture is absorbed, bacteria, fungi, or yeast may grow. According to ICH and WHO recommendations, both expedited and long-term stability studies are carried out to assess these aspects.

#### 4. According to ICH Q1A Guidelines,

stability studies Examine Faster Stability at  $40 \pm 2^{\circ}$ C and  $75 \pm 5\%$  relative humidity. Three months six forecasts the behavior of deterioration and shelf life under stressful circumstances. Intermediate Stability: 65 5% RH and 30 2°C Six months for results in the middle. accelerated that test are steadiness Long-term 25 2°C 5% RH and 12 24 60 months  $\pm$ to Verifies stability in real time for the duration of the intended shelf life.

- 5. Parameters tracked throughout the stability test
  Physical Characteristics
  No lump formation, discolouration, or caking.
- **5%** 6. The below w/w. moisture content ought to stay pН (after reconstitution) is between 6.0 and 8.0; not much has changed. 200-310 The osmolarity is mOsm/L. range of The electrolyte content (Na, K, Cl, and citrate) is between 90 and 110 percent of what the label says.

| The                                             | glucose   | content | is            | constan | t within     | a        | range.        |
|-------------------------------------------------|-----------|---------|---------------|---------|--------------|----------|---------------|
| Herbal                                          |           |         |               | Active  |              |          | Indicator     |
| 90%                                             | or        | more    |               | of      | the          | starting | value.        |
| The                                             | Microbial |         |               |         | Limit        |          | Test          |
| must                                            | adhere    | to pl   | pharmacopeial |         | requirements | (no      | pathogens).   |
| Properties                                      |           |         |               | of      |              |          | Organoleptics |
| No discernible change in color, taste, or odor. |           |         |               |         |              |          |               |

- 7. Conditions of and Shelf Life **Storage** cold circumstances, Shelf Life: In dry, it usually lasts 24 months. Storage should be kept below 30°C, out of direct sunshine, and away from moisture. Post-Reconstitution Stability: To prevent microbial development, use the reconstituted solution within 24 hours discard leftovers. and any
- 8. Typical **Stability H-ORS Difficulties** Clumps and microbiological contamination are caused by the absorption of moisture. caramelization glucose humidity temperatures. of high or in Herbal flavorings like peppermint or lemon oil might cause volatile loss. Hg have an impact flavor and electrolyte balance. on The oxidation of phenolic chemicals in herbs causes color changes.
- 9. Techniques Increasing for **Stability** Make use of low-moisture herbal powders and anhydrous excipients. To lessen oxidation, include natural antioxidants like tocopherol and ascorbic acid. For delicate herbal active ingredients, use coating or microencapsulation. Throughout production, maintain stringent environmental control (temperature, humidity). Choose laminated, high-barrier packing materials.

### The following are the safety, quality, and regulatory aspects of herbal oral rehydration salts (H-ORS):

To guarantee that the product is safe and effective for human consumption, established safety, regulatory, and quality criteria must be followed during the production of Herbal Oral Rehydration Salts (H-ORS). H-ORS is subject to a special regulatory area that encompasses both drug and traditional medicine frameworks since it blends pharmaceutical electrolytes with natural components. Prior to market approval, a thorough assessment of quality control, toxicological safety, and adherence to national and international regulatory standards is necessary.

2. The toxicological acceptability of the herbal additions and the base ORS components determines the safety profile of H-ORS.

a. Base Component Safety

When used within WHO-recommended levels, electrolytes (NaCl, KCl, and sodium citrate) are widely acknowledged as safe (GRAS status). Anhydrous glucose is safe

intestinal

the

for

necessary

and

salt.

of

co-transport

product.

Aegle marmelos, Zingiber officinale, Citrus limon, Mentha piperita, and Cocos nucifera are among the herbs that have been chosen for H-ORS because they are pharmacologically proven for gastrointestinal safety and have been used traditionally. But safety testing needs to verify: lack of harmful phytochemicals such pesticide residues, heavy metals, or alkaloids. natural ingredients that don't affect osmolarity or electrolyte absorption. No microbiological contamination was found in the finished

**Toxicological** c. Assessment Prior to being used in therapeutic settings, H-ORS formulations should go through:testing for acute and subacute toxicity in lab animals. Tests for sensitivity and applicable). irritation (if screening cytotoxicity and genotoxicity herbal for A in extracts. Safety assessment of degradation byproducts in relation to stability.

Framework 2.The Regulation Regional regulations, which combine requirements for pharmaceutical and herbal determine how H-ORS products medicine, regulated. are Regulatory Organization, Directive Attention and Pertinence to H-ORS WHO's criteria for the composition, stability, and quality of ORS establishes a global standard for the ratio of glucose to electrolytes. Indian Pharmacopoeia (IP) Quality Requirements for Herbal Products and ORS specifies acceptable concentrations of pollutants and active ingredients. The Indian Ministry of Health and Family Welfare, or AYUSH Guidelines for herbal and Ayurvedic formulations oversees safety paperwork, labeling, and herbal ingredients. FDA. United Food Administration States and Drug **OTC** electrolyte herbal oral solutions and supplements Ensures safety, labeling, and manufacturing standards (21 CFR Part 111). ICH Guidelines (Q1–Q6 Series) Stability, impurities, analytical validation Ensures consistent quality during development and shelf life.

Current Studies and Advancements

Oral rehydration treatment (ORT) and related formulations are still the subject of ongoing research. The following are some recent advancements that are especially pertinent to herbal ORS:

1. Alternative electrolyte/carbohydrate bases

Research on rice-based ORS (i.e., substituting rice powder or carbohydrate for glucose) has demonstrated advantages in specific diarrheal circumstances. For instance, a meta-analysis revealed that, in comparison to regular ORS, rice-based ORS dramatically decreased stool production in cholera patients. Although additional research is required for herbal blends and non-cholera diarrhea, this points to potential for natural carbohydrate sources, which are consistent with herbal/natural ORS techniques (e.g., banana powder, coconut water powder).

**2. Packaged and ready-to-drink (RTD)** products with enhanced usability The introduction of a ready-to-drink formulation by Kenvue in India that purports to adhere to the WHO ORS composition is a significant recent development. Although not necessarily herbal, the RTD format's convenience is a useful advancement that demonstrates how the market is moving toward more approachable formats.

#### 3. Market and regulatory changes impacting

the ORS environment Only products that strictly follow the WHO-recommended ORS formula are permitted to use the name "ORS" on their labels, according to a guideline issued by the Food Safety and Standards Authority of India (FSSAI) in October 2025. The development of herbal ORS is also impacted by this regulatory push: in order to be labeled as an ORS, any herbal ORS must still satisfy the fundamental electrolyte/glucose/osmolar requirements. Additionally, consumers are becoming more conscious of deceptive items in some areas, such as sugary drinks that are marketed as ORS.

#### 4. Gaining prominence:

herbal/functional adjuncts in ORS Although most large-scale studies continue to concentrate on conventional ORS formulations, there is an increasing curiosity regarding supplementary herbal or nutraceutical components that enhance therapeutic effects or improve taste (such as natural flavorings, carminatives, and mild antidiarrheals). This encompasses the use of herbal sources of potassium and other electrolytes (such as banana and coconut water), as well as herbs with antidiarrhoeal or gut-protective properties (like bael, ginger, and mint). These advancements are in line with the trend towards "functional ORS"—which combines rehydration with a mild adjunctive benefit. However, clinical evidence remains limited and further controlled studies are needed for herbal ORS specifically.

#### 5. Stability, expression & delivery system inventions

The request appears to be moving toward bettered delivery formats (RTD, grains, sachets with better stability), seasoned variants (while maintaining electrolyte balance), and better packaging to help abuse or incorrect reconstitution. From a expression exploration perspective, challenges similar as maintaining osmolarity, precluding hygroscopicity of herbal maquillages, icing herbal- electrolyte comity, and shelf- life under sticky conditions are entering further attention (though specific published papers remain kindly limited). also, mindfulness of the significance of correct dilution/ medication in ORS effectiveness has been stressed a study set up wide variability in osmolarity of reconstituted powdered ORS due to caregiver crimes in dimension. These findings emphasis that expression advancements must go hand- in- hand with stoner-friendly instructions and packaging.

#### 6. Gaps and requirements for unborn exploration

Herbal ORS clinical trials Little high-quality clinical data live specifically for ORS that include herbal excerpts adjuncts; this is a crucial occasion. Mechanistic studies Understanding how herbal actives (e.g., tannins, pectin's, flavonoids) affect intestinal fluid/ electrolyte immersion or gut hedge under dehumidification/ diarrhea conditions. Standardization of herbal factors More logical styles, marker composites, and stability data of herbal fragments in ORS matrix are demanded. Delectability/ sensitive studies Especially for pediatric use, how herbal flavor/ texture variations affect compliance. Scale- up and cost- effectiveness in low- resource settings icing herbal ORS remains affordable and manufacturable. Regulatory adjustment For herbal ORS, aligning claims, markers, and nonsupervisory pathways with present ORS norms to avoid misleading marketing.

#### **Discussion**

The integration of herbal drug principles into conventional oral rehydration remedy represents a promising elaboration in the operation of dehumidification and diarrheal conditions. The conception of Herbal Oral Rehydration mariners (H- ORS) addresses two crucial limitations of traditional ORS phrasings warrant of remedial action beyond rehydration and poor delectability in certain populations. By incorporating natural constituents with proven pharmacological parcels, H- ORS offers the binary advantage of electrolyte loss and gastrointestinal symptom relief.

#### 1. Scientific explanation

Traditional ORS phrasings, while clinically effective in restoring fluid and electrolyte balance, don't address intestinal inflammation, motility, or infection that frequently accompany diarrhea. Incorporating sauces similar as Aegle marmelos, Cocos nucifera, Zingiber officinale, and Mentha piperita introduces bioactive phytoconstituents like tannins, flavonoids, pectins, and essential canvases. These composites antidiarrhoeal, anti-inflammatory, antioxidant, and antimicrobial conditioning, which can prop intestinal mending, reduce coprolite frequence, and ameliorate overall gastrointestinal comfort.

#### 2. expression and quality challenges

The expression of H- ORS requires precise optimization to maintain the electrolyte attention and osmolarity within the WHO- recommended limits( around 245 mOsm/ L). The addition of herbal excerpts must n't alter the stability, solubility, or immersion of the essential ions. likewise, herbal factors are sensitive to humidity, temperature, and light, challenging the use of desiccant- grounded or laminated packaging for extended shelf life.

The challenge lies in balancing remedial energy of the sauces with physicochemical stability of the ORS greasepaint.

Analytical ways similar as HPLC, UV- spectrophotometry, infinitesimal immersion spectroscopy(AAS), and FTIR play a vital part in the standardization of herbal excerpts and the quantification of electrolytes. ultramodern styles like LC - MS/ MS and ion chromatography are being explored for enhanced perfection and reproducibility in H-ORS analysis.

#### 3. Phmacologiarcal and remedial Counteraccusations

Herbal ORS offers significant advantages in treating diarrhea caused by contagious or seditious mechanisms. Studies have demonstrated that photochemical cinnamaldehyde, eugenol, citral, and gingerol parade antimicrobial exertion against E. coli, Vibrio cholerae, and Shigella species pathogens generally associated with diarrhoeal conditions. also, natural carbohydrate sources like coconut water or banana greasepaint act as indispensable glucose carriers, promoting sodium immersion through the Na +glucoseco-transport medium, thereby maintaining fluid homeostasis. also, the bettered taste and aroma of herbal constituents can enhance patient compliance, especially among children and senior cases who frequently repel the mellow taste of conventional ORS.

#### 4. Safety and Regulatory Considerations

Although herbal constituents are generally regarded as safe, nonsupervisory fabrics similar as WHO- GMP, AYUSH, and FSSAI guidelines accreditation thorough evaluation toxin, microbial safety, and quality parameters. harmonious sourcing and standardization of raw sauces are pivotal to avoid variability in active ingredients and insure reproducibility of remedial goods. likewise, herbal ORS must conform to WHO norms for sodium, potassium, chloride, and glucose content to be legitimately labeled as an ORS expression.

#### 5. Recent Developments and request Counteraccusations

Recent advancements concentrate on perfecting stability, portability, and patient convenience through ready- to- drink( RTD) phrasings, seasoned sachets, and lowosmolarity herbal composites. still, clinical data validating the efficacity of H- ORS remain limited. relative trials between herbal and conventional ORS are demanded to establish substantiation- grounded issues in dehumidification correction, coprolite volume reduction, and patient satisfaction. The current exploration trend is moving toward the development of functional ORS phrasings, integrating herbal or nutraceutical factors to give fresh gastrointestinal benefits. With nonsupervisory bodies tensing the description of "ORS," icing compliance with electrolyte balance while retaining herbal benefits will be essential for the acceptance and commercialization of H- ORS products.

#### 6. Overall Perspective

The conflation of ultramodern pharmaceutics and traditional herbal wisdom offers a feasible pathway for invention in rehydration remedy. H- ORS stands as an integrative remedial approach, addressing both characteristic relief and physiological correction of dehumidification. nevertheless, its success depends on methodical expression design, quality standardization, and clinical confirmation. A multidisciplinary collaboration among pharmacognosists, expression scientists, and nonsupervisory experts is necessary to bring H- ORS from abstract development to clinical and marketable reality.

#### **Conclusion**

The development of Herbal Oral Rehydration mariners (H- ORS) represents a promising advancement in rehydration remedy by integrating the scientifically proven electrolyte relief principles of conventional ORS with the remedial and nutritive benefits of medicinal shops. Herbal constituents similar as Aegle marmelos, Cocos nucifera, Zingiber officinale, Mentha piperita, and Citrus limon not only contribute to electrolyte and carbohydrate loss but also offer fresh antidiarrhoeal, anti-inflammatory, and antioxidant goods, thereby furnishing a more holistic operation of dehumidification and gastrointestinal diseases. expression of H- ORS, still, demands a delicate balance between herbal efficacy and physicochemical stability. The herbal excerpts shouldn't compromise the osmolarity, solubility, or electrolyte bioavailability of the rehydration result. Proper selection, standardization, and logical evaluation of herbal raw accoutrements are essential to insure product safety, reproducibility, and compliance with WHO and AYUSH quality morals. Although primary studies and traditional substantiation support the explanation of herbal ORS, comprehensive pharmacological, toxicological, and clinical evaluations are still needed to substantiate its safety and efficacy. Standardization of herbal actives, comity with electrolytes, and stability under variable environmental conditions remain major exploration challenges. In conclusion, Herbal ORS embodies a synergistic emulsion of ultramodern pharmaceutics and traditional drug, offering a natural, safe, and effective volition to conventional ORS particularly suited for developing regions where herbal coffers are abundant. unborn concentrate on clinical trials, bioavailability studies, and exploration should nonsupervisory adjustment to establish H- ORS as a scientifically validated, encyclopedically accepted, and case-friendly rehydration remedy.

#### References

- 1. World Health Organization (WHO). Oral Rehydration Salts: Production of the New ORS. Geneva: WHO Press; 2006.
- 2. World Health Organization (WHO). Reduced Osmolarity Oral Rehydration Salts (ORS) Formulation: Report of the Meeting of Experts. Geneva: WHO Press; 2001.

- 3. Singh R, Kumar A, Upadhyay G, Pandey A. Herbal oral rehydration therapy: a new approach to rehydration management. J Pharm Res Int. 2021;33(40A):120–132.
- 4. Ramesh N, Prakash V, Kumar S. Formulation and evaluation of herbal oral rehydration salts using natural ingredients. Int J Pharm Sci Rev Res. 2020;64(2):45–52.
- 5. Patel N, Desai J, Gohil R. Development of herbal oral rehydration solution using Aegle marmelos and Cocos nucifera: formulation and evaluation. J Drug Deliv Ther. 2019;9(5):56–62.
- 6. Mahajan A, Jadhav N, Patil S. Natural alternatives to conventional oral rehydration salts: a review. Int J Herb Med. 2018;6(4):34–41.
- 7. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003;81(3):197–204.
- 8. Ghosh P, Saha D. Role of medicinal plants in the management of diarrhea and dehydration. Asian J Pharm Clin Res. 2017;10(4):8–15.Kumar S, Kumar D, Singh J, Narender R. Pharmacognostical and antidiarrhoeal potential of Aegle marmelos (Bael). Indian J Nat Prod Resources 2020;11(1):12–21.
- 9. Jena S, Ray A, Banerjee A. Phytochemical and pharmacological review of Cocos nucifera Linn. Pharmacognosy Rev. 2019;13(26):29–37.
- 10.Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review. Food Chem Toxicology. 2008;46(2):409–420.
- 11.Shah SK, Mulla S. Herbal and nutraceutical formulations for rehydration therapy: current trends and future prospects. J Appl Pharm Sci. 2022;12(3):10–18.
- 12. Tiwari P, Nayak S, Singh S. Analytical quality control of herbal formulations: need for standardization. Pharmacognosy Rev. 2019;13(25):17–24.
- 13.Indian Pharmacopoeia Commission. Indian Pharmacopoeia 2022, Volume II. Ghaziabad: IPC; 2022.
- 14.AYUSH Ministry. Guidelines for the Evaluation of Herbal Medicinal Products. Government of India, New Delhi; 2021.
- 15. Food Safety and Standards Authority of India (FSSAI). ORS Labeling and Composition Standards Circular. October 2025.
- 16.Kenvue India launches WHO-approved ready-to-drink ORS. ETHealthworld. 2025 Oct 22. Available from: https://pharma.economictimes.indiatimes.com
- 17. Sharma M, Patel V. Stability and compatibility studies of herbal oral rehydration salts. Int J Pharm Pharm Sci. 2021;13(2):66–73.
- 18.Patel R, Singh R, Nayak S. Herbal excipients and natural flavoring agents in oral formulations: recent advances. Pharm Sci Lett. 2020;8(1):52–59.
- 19.ICH Harmonised Guideline Q1A(R2): Stability Testing of New Drug Substances and Products. Geneva: ICH; 2003.