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Abstract: Depression is a major mental health concern often underdiagnosed due to subjective assessments and social stigma.
Traditional diagnostic methods relying on clinical interviews and surveys are time-consuming and prone to bias. To overcome these
limitations, this study proposes a Stacking Machine Learning Model that integrates SVM, KNN, and LightGBM as base learners,
with Logistic Regression as the meta-classifier. The dataset includes socio-economic and lifestyle factors such as age, gender,
marital status, income, and living expenses. After preprocessing using missing value handling, normalization, and feature
correlation analysis, the stacking ensemble effectively combines the strengths of individual models—capturing nonlinear relations,
locality-based learning, and complex feature interactions. Experimental results show that the proposed model outperforms
individual classifiers in accuracy, precision, recall, and ROC-AUC, providing an efficient tool for early depression prediction and
supporting data-driven mental health interventions.

l. INTRODUCTION

Depression is a widespread mental health disorder that affects millions of people worldwide, leading to emotional distress and
reduced quality of life. According to the World Health Organization (WHO), over 280 million individuals suffer from depression,
making it one of the leading causes of disability. Despite its prevalence, early detection remains difficult due to overlapping
symptoms, subjective assessments, and social stigma. Traditional diagnostic methods based on clinical interviews and self-reported
surveys are often time-consuming, inconsistent, and prone to bias. Hence, there is a growing need for automated, data-driven
systems that can assist in accurate and early depression prediction. Machine Learning (ML) offers promising solutions by analyzing
socio-economic, behavioral, and lifestyle data to identify depression patterns. However, single classifiers such as SVM, KNN, or
Gradient Boosting often struggle with data imbalance, noise, and limited generalization. To address these issues, this research
proposes a Stacking Ensemble Model combining SVM, KNN, and LightGBM as base learners, with Logistic Regression as the
meta-classifier. The model aims to improve prediction accuracy, robustness, and interpretability, offering a reliable tool for early
depression detection and supporting mental health professionals in timely intervention.

Il. LITERATURE SURVEY

Several studies have explored stress and depression detection using physiological, behavioral, and machine learning-based
approaches. Jinlong Chao et al. utilized functional near-infrared spectroscopy (fNIRS) to distinguish patients with Major Depressive
Disorder (MDD) from healthy controls, achieving up to 99.94% accuracy, and identified neuromarkers in the prefrontal cortex as
indicators of depression. Zhang et al. examined the effects of acute psychosocial stress on cooperation and competition in women
using fNIRS, revealing that stress enhanced competitive behavior and neural synchronization in the dorsolateral prefrontal cortex.
Soyeon Park and Suh-Yeon Dong improved mental state classification by incorporating daily stress levels into fNIRS-based models,
demonstrating that personalized stress assessment enhances detection accuracy. Jayawickrama and Rupasingha investigated stress
detection through sleep habits using multiple machine learning algorithms, where the Naive Bayes classifier achieved 91.27%
accuracy. Nina Speicher et al. analyzed how acute stress, gender, and personality traits affect moral decision-making, concluding
that stress promotes prosocial tendencies, especially in females. V.R. Archana and B.M. Devaraju predicted stress levels using
physiological signals like ECG, EMG, GSR, and respiration, showing improved accuracy with models such as Decision Tree, Naive
Bayes, and KNN. Similarly, R. Swarna Malika and I. Ravi compared Logistic Regression, Decision Tree, and Random Forest
algorithms on a stress dataset, identifying Random Forest as the most accurate classifier. These studies collectively highlight the
growing role of Al and physiological data in enhancing mental health prediction and stress assessment accuracy.

I11. PROPOSED METHODOLOGY

3.1 Problem Statement

Traditional depression prediction systems rely mainly on clinical interviews, self-assessment surveys such as PHQ-9 and BDI,
and single-model machine learning techniques like SVM, KNN, and Random Forest. While these methods help identify depression
patterns, they often suffer from subjectivity, inconsistency, and limited scalability. Machine learning-based approaches have
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improved automation but still face challenges such as poor generalization, sensitivity to noise, and data imbalance—where non-
depressed cases dominate the dataset, causing biased predictions. Single classifiers also fail to perform consistently across
heterogeneous socio-economic data. Hence, a hybrid ensemble approach is required to enhance accuracy, robustness, and
interpretability in depression prediction.

3.2 Proposed System

The proposed system introduces a Stacking Machine Learning Framework that integrates multiple classifiers for improved
prediction performance. The framework combines Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Light
Gradient Boosting Machine (LightGBM) as base learners, with Logistic Regression (LR) as the meta-classifier. This ensemble
leverages the complementary strengths of individual algorithms to produce more reliable predictions. The methodology involves
four main stages: data preprocessing, model construction, training/testing, and performance evaluation. In preprocessing, missing
values are imputed using mean or median techniques, and data normalization is applied using RobustScaler to minimize the
influence of outliers. The model construction phase employs SVM for nonlinear separation, KNN for distance-based learning, and
LightGBM for efficient feature interaction modeling. Predictions from these models are combined through a Logistic Regression
meta-learner to generate the final classification. During training, stratified sampling ensures balanced class representation, and
cross-validation prevents overfitting. Performance evaluation uses metrics such as Accuracy, Precision, Recall, F1-Score, and ROC-
AUC, supported by confusion matrices and ROC curves for visualization. The proposed ensemble provides a more stable and
accurate prediction framework than single learners by handling nonlinearity, noise, and imbalance more effectively. It also offers
interpretability through the logistic meta-model, making it suitable for mental health professionals to identify at-risk individuals
early.
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FIG 1: SYSTEM ARCHITECTURE
IV. SOFTWARE AND DOMAIN DESCRIPTION

Python is one of the most popular programming languages used in machine learning and data science due to its simplicity
and extensive library support. Commonly used libraries include NumPy for numerical computations, SciPy for optimization and
statistics, Scikit-learn for machine learning algorithms, Theano for mathematical expression optimization, TensorFlow and PyTorch
for deep learning and neural networks, and Keras for easy and fast neural network prototyping. Pandas aids in data extraction,
cleaning, and analysis, while Matplotlib and Seaborn are used for effective data visualization. OpenCV supports real-time computer
vision applications, Pillow enables image manipulation, and ImageAl provides APIs for object detection using pre-trained models.
Together, these libraries form a robust ecosystem for developing intelligent and data-driven systems.

Data mining, an interdisciplinary field integrating databases, statistics, machine learning, and visualization, focuses on extracting
meaningful patterns and hidden insights from large datasets. It involves processes such as data preprocessing, transformation, and
modeling to uncover relationships and trends useful for decision-making. Techniques like classification, association, and sequence
analysis help identify behavioral patterns, correlations, and time-based trends in data. Data warehouses and OLAP tools further
support efficient storage, retrieval, and multi-dimensional data analysis. Overall, data mining and machine learning together provide
powerful tools for predictive analytics, helping in areas such as business intelligence, healthcare, and social sciences by transforming
raw data into actionable knowledge.

SYSTEM DESIGN

System design defines how data flows, processes, and outputs are represented within a system. The Data Flow Diagram
(DFD) illustrates input, processing, and output relationships, showing how data moves through various transformations. The Unified
Modeling Language (UML) provides standardized diagrams such as Use Case, Class, Sequence, and Activity diagrams to model
system behavior, structure, and workflows. Input design focuses on creating user-friendly, error-free, and secure data entry methods,
while output design ensures that processed information is presented clearly and effectively to support decision-making. System
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testing verifies that the integrated software meets all functional and user requirements through various levels, including unit,
integration, functional, and acceptance testing. Both white box and black box testing approaches are used to ensure reliability,
accuracy, and performance. All tests produced successful results, confirming the proper functionality of the system.

V. EXPERIMENTAL SYSTEMS

MODULE 1- Data Loading and EDA
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Dataset shape / Dataset input features / data types / Statistical Analysis

df.shape

(1767, 23)
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MODULE 2 - Data Preprocessing

Data Cleaning
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Data Visualization

Exploratory Visualizations — Depression Survey
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MODULE 3 - Data Splitting
Data Splitting — 80:20
training set size: (1413, 22), testing set size: (354, 22)

MODULE 4 & 5 — Stacking ML Model Building and Training

L stackingClassifier
SV knn 1gbm
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MODULE 6 — Depression Prediction
Testing Set Prediction Result

Testing Set Prediction Results (first 28 rows):

haea Actuast Labet Precicred Latel Peadicned Probaditey

The proposed Stacking Machine Learning Model was tested on an unseen dataset to evaluate its accuracy in predicting
depression status. The model effectively distinguished between depressed and non-depressed individuals, as shown in the test results
containing actual labels, predicted labels, and probability scores ranging from 0.07 to 0.86, indicating strong classification
confidence. These results confirm that the model achieves high accuracy, stable probability estimates, and strong generalization,
proving its reliability as a robust tool for early depression detection and mental health assessment.

MODULE 7 — Performance Evaluation
Confusion Matrix

Confusion matrix - Test Set

No Depressed

Actual

Depressed

No Depressed Depressed
Predicted

The confusion matrix demonstrates the strong performance of the proposed Stacking Machine Learning Model in predicting
depression. It accurately classified 230 “No Depressed” (True Negatives) and 107 “Depressed” (True Positives) cases, with only 8
False Positives and 9 False Negatives. This balanced and highly accurate performance indicates the model’s effectiveness in
distinguishing between depressed and non-depressed individuals with minimal confusion. The integration of SVM, KNN, and
LightGBM base learners, combined with Logistic Regression as a meta-learner, enables efficient handling of nonlinear relationships
and subtle data variations. Overall, the results confirm the model’s robustness, precision, and suitability for reliable mental health
prediction and early detection.

Performance Metrics

Accuracy on test set: 95.19599999990050%

The proposed Stacking Machine Learning Model achieved excellent performance in depression prediction, with an overall

accuracy of 95.20%. Evaluation using Accuracy, Precision, Recall, and F1-Score confirmed its strong and balanced classification
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ability. For the “No Depression” class, it achieved precision, recall, and F1-score values of 0.9623, 0.9664, and 0.9644, while for
the “Depression” class, the values were 0.9304, 0.9224, and 0.9264, respectively. The macro and weighted F1-scores (0.9454 and
0.9519) further validate consistent performance across both classes. By integrating SVM, KNN, and LightGBM with Logistic
Regression as a meta-learner, the stacking ensemble effectively combines nonlinear decision boundaries, local pattern recognition,
and feature interaction learning. Overall, the model demonstrates high accuracy, robustness, and reliability, making it suitable for
early depression detection and mental health prediction.

ROC Curve

ROC Curve for Stacking Machine Learning Mode!

The ROC curve of the proposed Stacking Machine Learning Model demonstrates excellent discrimination between depressed
and non-depressed individuals, with an AUC value of 0.9444. The curve’s steep rise toward the top-left corner indicates a high true
positive rate and low false positive rate, confirming strong sensitivity and specificity. By combining SVM, KNN, and LightGBM
through Logistic Regression as a meta-learner, the model effectively handles nonlinear patterns and complex feature interactions.
Opverall, the high AUC score validates the model’s strong predictive power, reliability, and suitability for early depression detection
and Al-assisted mental health diagnosis.

Performance Comparison

Accuracy Comparison Across Models
0935 0957

0.856

0.672

ACCuraty Score

04

SV NN ughtGem Sackng

The accuracy comparison chart shows that the proposed Stacking Machine Learning Model outperforms individual models—
SVM, KNN, and LightGBM—in depression prediction. SVM achieved 67.2% accuracy, KNN reached 85.6%, and LightGBM
improved to 93.5%, while the stacking ensemble attained the highest accuracy of 95.2%. By combining SVM, KNN, and LightGBM
through Logistic Regression as a meta-classifier, the stacking model effectively merges their strengths, achieving better
generalization and reducing errors. This demonstrates its superior reliability, robustness, and suitability for real-world depression
detection compared to standalone models.

VI CONCLUSION

Early detection of depression is essential to prevent severe mental health issues, but traditional methods relying on self-reports
are often unreliable. To address this, a Stacking Machine Learning Model integrating SVM, KNN, and LightGBM with Logistic
Regression as a meta-learner was developed to predict depression using socio-economic and lifestyle data. After preprocessing with
missing value handling and normalization, the proposed model achieved a 95.2% accuracy, outperforming individual models (SVM:
67.2%, KNN: 85.6%, LightGBM: 93.5%). With high precision, recall, F1-score, and an AUC of 0.9444, the stacking ensemble
demonstrated strong discriminative ability and robust performance. This approach proves that ensemble learning enhances
depression prediction accuracy and reliability, offering a data-driven tool for early diagnosis and intervention. Future work may
integrate deep learning and explainable Al for improved interpretability and clinical usability.
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