

JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Critical Appraisal on the Ayurvedic Perspective of Genetics with Reference to Congenital and Developmental Anatomical Disorders

¹Dr.Anjali Sahebrao More ² Dr.Alka Shyam Charde
Md Scholar HOD & Professor
Rachana sharir Department
Bhausaheb Mulak Ayurveda College
Nandanwan ,Nagpur, India

1. Abstract

Ayurveda, the ancient science of life, presents a unique perspective on genetics through the concepts of Beeja (seed), Beejabhaga (gene), and Beejabhagavyava (chromosomal subunit), which together describe the biological and hereditary basis of life. These concepts mirror many principles of modern genetics, including inheritance, mutation, and congenital anomalies.

This paper provides a critical appraisal of the Ayurvedic understanding of heredity, congenital, and developmental disorders by comparing them with modern genetic science. Ancient Ayurvedic texts such as the Charaka Samhita, Sushruta Samhita, and Ashtanga Hridayam describe hereditary defects (Beeja Dosha), congenital anomalies (Garbhaj Vikriti), and developmental abnormalities (Janmabala Pravritta Vyadhi). Modern genetics explains these phenomena in terms of chromosomal disorders, gene mutations, and environmental influences during pregnancy.

2. Keywords

Ayurveda, Genetics, Beeja Dosha, Garbhaj Vikriti, Congenital Disorders, Developmental Anomalies, Garbhini Paricharya, Inheritance

3. Introduction

Ayurveda considers heredity and genetics not only as physical phenomena but as expressions of biological, psychological, and spiritual inheritance.

The ancient seers (Acharyas) viewed the Beeja (sperm/ovum) as the carrier of parental characteristics. When the Beeja or its parts (Beejabhaga and Beejabhagavyava) become defective, the resulting progeny may have congenital or developmental abnormalities.

This concept aligns closely with modern genetics, which identifies DNA mutations, chromosomal aberrations, and gene–environment interactions as causes of such anomalies [1].

The Charaka Samhita states:

"बीजभाजनयो दोषात् विकृतिः संप्रजायते।"

(Beejabhajanayo doshat vikritih samprjayate) – "Due to defect in the seed and its container, deformities arise." [2]

This ancient statement clearly reflects the genetic mechanism underlying birth defects. In modern scientific terms, it correlates with the understanding that defects in gametes (sperm or ovum) or the uterine environment can lead to congenital malformations.

Ayurvedic Basis of Heredity

According to Ayurveda, six factors known as Shad Garbhakar Bhavas determine the quality of offspring:

- 1. Matrija Bhava maternal contribution
- 2. Pitrija Bhava paternal contribution
- 3. Aatmaja Bhava psychological and spiritual factors
- 4. Satmyaja Bhava compatibility and nutrition
- 5. Rasaja Bhava nourishment through the mother's diet
- 6. Sattvaja Bhava mental and emotional influence

The balance or disturbance of these factors influences the formation and health of the fetus. Modern science similarly recognizes that genetic material, nutrition, and psychological environment play key roles in development [3].

4. Literature Review

The Ayurvedic understanding of heredity, congenital anomalies, and developmental disorders is deeply rooted in the Sharira Sthana (embryology and anatomy chapters) of classical texts such as the Charaka Samhita, Sushruta Samhita, and Ashtanga Hridayam. Each Acharya approached the topic from a different angle—Charaka from a physiological perspective, Sushruta from an anatomical perspective, and Vagbhata from a holistic viewpoint integrating both.

4.1 Ayurvedic Literature

According to Charaka Samhita, the formation of a healthy embryo depends on the purity of Beeja (reproductive element), Beejabhaga (its subparts), and Beejabhagavyava (the structural components) [4].

If any of these components are defective, the resulting fetus may develop abnormalities. Charaka clearly states:

"यदि बीजं बीजभागं बीजभागव्यवमपि वा विकृतं स्यात्, तेन विकृतिः गर्भस्य।"

(If the seed, its subpart, or its finer fraction is defective, deformity occurs in the embryo.)

This view demonstrates that the ancient seers understood heredity as a multilayered biological process, much like the gene-chromosome-DNA hierarchy described in modern genetics.

Sushruta Samhita elaborates on Garbhaj Vikriti (congenital deformities) and attributes them to the vitiation of doshas—particularly Vata dosha—during conception or fetal development. He describes physical deformities such as Kubja (hunchbacked), Kuni (crooked limbs), and Pangu (crippled) as resulting from abnormal intrauterine conditions and defective parental factors [5].

Vagbhata in Ashtanga Hridaya emphasizes the role of Daiva (karmic or past-life actions) and Aharaja (dietary) causes, suggesting that both biological and metaphysical factors determine congenital outcomes [6].

4.2 Modern Scientific Literature

Modern genetics provides parallel explanations for congenital and developmental disorders. These include:

Chromosomal abnormalities such as trisomy 21 (Down syndrome) and Turner's syndrome

Gene mutations, both inherited and spontaneous

Multifactorial inheritance influenced by both genes and environment

Epigenetic modifications caused by diet, stress, or toxins during pregnancy [7]

According to the World Health Organization (2023), approximately 6% of global live births present with a congenital anomaly, with genetic factors accounting for nearly 30% of these cases [8].

Recent studies have confirmed that epigenetic regulation—such as DNA methylation and histone modification—can be influenced by maternal diet and stress, paralleling Ayurveda's concept of Satmyaja and Sattvaja Bhava.

Table 1: Comparative Analysis of Ayurvedic and Modern Genetic Concepts

Ayurvedic Concept	Modern Equivalent	Explanation
Beeja	Gene / Germ cell	Carrier of hereditary information
Beejabhaga	Chromosome	Structure within cell nucleus controlling traits
Beejabhagavyava	DNA sequence	Finer segment of hereditary material
Beeja Dosha deformity	Gene mutation	Defective changes causing deformity
Garbhaj Vikriti	Congenital anomaly	Structural or functional birth defects
Shad Garbhakar Bhava	Genetic, nutritional, psychological factors	Six-fold determinants of healthy progeny

4.3 Correlations from Contemporary Research (2020–2024)

Recent advances in integrative medicine and genetics have brought renewed attention to Ayurveda's embryological principles:

Singh et al. (2021) analyzed Beeja Shuddhi (pre-conceptional purification) and found that couples following traditional preconceptional regimens showed better reproductive outcomes and lower rates of miscarriage [9].

Patil & Joshi (2022) demonstrated parallels between Garbha Sanskara (prenatal conditioning) and modern epigenetic programming, emphasizing mental and emotional influences on fetal gene expression [10].

WHO (2023) reiterated that maternal nutrition, avoidance of teratogens, and emotional stability significantly reduce congenital disorders—concepts deeply aligned with Ayurvedic Garbhini Paricharya [11].

6. Discussion

The Ayurvedic and modern perspectives on genetics converge on the idea that hereditary and congenital disorders result from defects in the primary reproductive material. Ayurveda, however, goes beyond the biological dimension, integrating mental, spiritual, and environmental influences into the developmental process.

In Charaka Samhita Sharira Sthana 3/17, it is said:

"बीजं च बीजभागं च यद्विकृतं तदात्मजं विकृतं जनयति।"

(If the seed and its subparts are defective, they give rise to defective progeny.)

This reflects the fundamental genetic concept that defects at the molecular level (DNA, gene, or chromosome) lead to congenital disorders.

From a critical appraisal perspective, Ayurveda's Beeja Dosha aligns conceptually with gene mutation, while Garbha Vikriti parallels developmental malformations caused by environmental or epigenetic influences.

6.1 Ayurvedic Viewpoint

Ayurveda identifies multiple causes for congenital disorders:

- 1. Beeja Dosha (Defective gametes) comparable to mutations.
- 2. Kshetra Dushti (Defective uterine environment) akin to teratogenic exposure.
- 3. Kala Garbhata (Improper timing of conception) analogous to disrupted embryogenesis.
- 4. Ahara and Vihara of Parents nutrition, habits, and stress affecting gamete health.

Thus, Ayurveda's model represents a bio-psycho-spiritual triad of heredity—one that recognizes not only genes but also the mind (manas) and consciousness (atma) as contributors to inheritance.

6.2 Modern Correlations

Contemporary genetics recognizes mutations, epigenetic regulation, and maternal-fetal interaction as determinants of congenital and developmental disorders. Epigenetics, in particular, bridges modern understanding with Ayurvedic insights. Research by Patel et al. (2023) has shown that maternal mindfulness, diet, and yoga practices can positively influence fetal epigenetic expression, thereby reducing risks of neurodevelopmental defects [12].

Both systems emphasize preventive measures and holistic well-being during conception and pregnancy. Ayurveda simply articulates this in spiritual and ethical terms such as Garbhini Paricharya and Sadvrutta, while modern science translates it through nutritional, psychological, and epigenetic mechanisms

7. Preventive and Therapeutic Aspects

Ayurveda lays strong emphasis on prevention rather than cure, especially for congenital and developmental disorders where correction after birth is limited. The preventive strategies can be classified as pre-conceptional, antenatal, and postnatal measures.

- 7.1 Pre-conceptional Measures
- 1. Beeja Shuddhi (Purification of gametes):

Detoxification of both partners before conception through Panchakarma and herbal rasayanas to ensure healthy gametes.

Studies by Nair et al. (2022) demonstrated improved sperm morphology and motility after Ayurvedic detoxification therapies [13].

2. Garbha Sanskara:

Involves spiritual, psychological, and dietary preparation before conception. It aligns with preconception genetic counseling and epigenetic conditioning in modern science.

7.2 Antenatal Measures

1. Garbhini Paricharya (Antenatal regimen):

Monthly regimens described by Charaka and Sushruta focus on nutrition, rest, and mental calmness. For example, Sushruta Samhita recommends milk, ghee, and sweet foods in early pregnancy for fetal nourishment.

Modern obstetrics also emphasizes micronutrient supplementation (iron, folic acid, omega-3 fatty acids), stress reduction, and exercise for optimal fetal development [14].

2. Avoidance of Garbhopaghata Kar Bhavas:

These are harmful factors that can damage the fetus, such as trauma, stress, malnutrition, or teratogenic exposure—concepts strikingly similar to those of teratology in modern embryology.

7.3 Postnatal Measures

1. Samskaras (Rituals and nurturing care):

Postnatal Ayurvedic rituals like Jatakarma and Namakarana signify early stimulation, parental bonding, and the psychosocial development of the newborn.

2. Swasthavritta (Healthy living):

Encouraging practices that promote physical and mental resilience, much like preventive pediatrics.

Thus, Ayurveda provides a comprehensive lifespan-based preventive approach encompassing preconception to postnatal care, closely paralleling modern preventive genetics and developmental medicine.

9. Conclusion

The critical appraisal of Ayurveda in the light of genetics reveals remarkable foresight. Long before DNA and chromosomes were identified, Ayurvedic scholars conceptualized hereditary transmission through Beeja, Beejabhaga, and Beejabhagavyava.

Their descriptions of Beeja Dosha, Garbhaj Vikriti, and Garbha Sanskara parallel modern concepts of mutation, congenital anomaly, and epigenetic regulation.

Both systems recognize that the health of future generations depends not only on genetic integrity but also on the mental, emotional, and environmental state of parents. Ayurveda, however, uniquely integrates ethical and spiritual elements, suggesting that purity of thought and conduct also influence heredity—a view that modern psychosomatic and behavioral epigenetics increasingly supports.

Hence, Ayurveda's contribution lies in its holistic understanding of heredity, offering preventive and promotive strategies that complement modern genetics. Integrating Ayurvedic principles such as Garbha Sanskara, Beeja Shuddhi, and Garbhini Paricharya into modern genetic counseling and maternal care could greatly enhance the health of future generations.

References

- [1] Gupta, R., & Sharma, P. (2020). Genetic correlations between Ayurvedic concepts of Beeja Dosha and modern gene mutation theory. Journal of Ayurveda and Integrative Medicine, 11(3), 185–192.
- [2] Charaka. Charaka Samhita, Sharira Sthana, Chapter 3, Verse 17. Reprint Edition, Chaukhambha Sanskrit Sansthan, Varanasi, 2021.

- [3] Shastri, A., & Deshpande, S. (2021). Ayurvedic embryology in light of modern reproductive genetics. International Journal of Research in Ayurveda and Pharmacy, 12(4), 45–52.
- [4] Sushruta. Sushruta Samhita, Sharira Sthana, Chapter 2. Chaukhambha Orientalia, Varanasi, 2020.
- [5] Vagbhata. Ashtanga Hridayam, Sharira Sthana, Chapter 1. Chaukhambha Sanskrit Series, Varanasi, 2020.
- [6] Singh, N., & Patwardhan, B. (2021). Ayurgenomics: Integrating Ayurveda and modern genomics for personalized medicine. Journal of Translational Medicine, 19(1), 89–96.
- [7] World Health Organization. (2023). Congenital anomalies: Key facts. WHO Global Health Observatory. Retrieved from https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies
- [8] Patel, D., Kumar, A., & Mehta, S. (2023). Epigenetic modulation in pregnancy: Bridging ancient Ayurveda and modern genetics. Frontiers in Genetics, 14, 119–128.
- [9] Singh, S., & Kulkarni, R. (2021). Impact of Beeja Shuddhi and Panchakarma on reproductive health: A clinical review. International Journal of Ayurveda Research, 12(2), 102–110.
- [10] Patil, A., & Joshi, M. (2022). Garbha Sanskara and fetal gene expression: An Ayurvedic epigenetic approach. Journal of Ethnopharmacology, 285, 114892.
- [11] World Health Organization. (2023). Maternal and perinatal health report. WHO Publications.
- [12] Patel, R., Nair, V., & Shukla, A. (2023). Maternal mindfulness and prenatal yoga: Implications for epigenetic outcomes. BMC Pregnancy and Childbirth, 23(1), 377.
- [13] Nair, S., Gokhale, S., & Pillai, K. (2022). Effect of Ayurvedic detoxification (Panchakarma) on male fertility parameters. Journal of Complementary and Integrative Medicine, 19(5), 935–943.
- [14] Sharma, V., & Kumar, S. (2024). Nutritional and lifestyle influences on congenital disorders: Comparative insights from Ayurveda and modern science. International Journal of Integrative Health Sciences, 15(2), 201–212.