© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

Nl deliel ISSN: 2349-5162 | ESTD Year : 2014 | Monthl

JOURNAL OF EMERGING TECHNOLOGIES AND
INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Infrastructure-as-Code (laC) Drift Security with
GitOps-Driven Auto-Remediation in AWS

L iktha Yogesh, 2Nidhi N, 3Spoorthi Rai, “‘Shreyas Reddy B, °Dr. Deepthi VS

IStudent, 2Student, 3Student, *Student, SProfessor,
12345Computer Science Engineering (Cyber Security),
12345payananda Sagar College of Engineering, Bangalore, India

Abstract: With the fast growth of cloud computing and DevOps, Infrastructure-as-Code (laC) has become the key-stone of
managing scalable and reproducible cloud environments as yet, configuration drift-the difference between declared infrastructure
computer code and deployed state-represents fundamental threats to cloud security system, compliance, and operational reliability.
Nonetheless, this work presents an Automated laC Drift Security Framework using Terraform, AWS Config, Open Policy Agent
(OPA), and GitOps processes for continuous drift detection, validation, and remediation. The approach path uses GitOps pipeline
to automatically roll back to the prior secure state after endlessly detecting difference between AWS resources and laC templates
and classifying them into security severity level. Additionally, the envisioned modeling be intended to create a self-healing, security-
oriented, and auditable cloud infrastructure that addresses research and industry demands for robust cloud manage ment.

IndexTerms - Infrastructure-as-Code, Drift Detection, GitOps, Terraform, AWS, DevSecOps, Cloud Security.

I.INTRODUCTION

With cloud environments becoming increasingly dynamic in nature, ensuring their configuration integrity is critical. Additionally,
Tools like Terraform and AWS CloudFormation for Infrastructure-as-Code (1aC) allow provisioning and versioned deployment in
an automated manner, which takes human error out of the manual configuration. Even so, infrastructure drift-wherein the live state
of the cloud differs from its specified 1aC template-is still an ongoing issue.

Il. LITERATURE REVIEW

The increasing complexity of cloud infrastructures governed by Infrastructure-as-Code (1aC) has introduced novel challenges in
ensuring configuration consistency and security.
This section discusses recent industry and research works addressing 1aC drift, fix, and DevSecOps automation.

A. Drift and Reconciliation Defects
Hassan et al. [1] conducted a large empirical study examining 5,110 reconciliation defects in 1aC projects and discovered new
defect classes like inventory and semantic mismatches. Although fundamental, their effort was merely diagnostic in nature and
did not provide any automatic remediation. Additionally, Gera and Gabrani [9] introduced an Al-based anomaly detection
model that automatically detects cloud configuration drift patterns in realtime. Consequently, while promising, it doesn’t
support runtime rollback or risk prioritization. These results highlight the necessity for realtime, automated drift management
embedded within operational pipelines.

B. Automated laC Repair Systems
Saavedra et al. [2] proposed InfraFix, a tech-agnostic repair system based on Intermediate Representation (IR) and
Satisfiability Modulo Theory (SMT) reasoning to fix erroneous 1aC scripts with a high rate of more than 95 Weiss et al. [6]
created Tortoise, which balances imperative repairs with declarative 1aC definitions. Its ideas influenced the reconciliation
logic taken in this work, but it was only applicable to small-scale system configurations.

C. Security and Policy-as-Code Integration
Verdet et al. [4] performed a systematic review of security practice in laC and found sparse usage of tools like Checkov and
Tfsec within enterprise workflows. Nevertheless, Velu et al. [10] presented Security as Code with Open Policy Agent
(OPA) and Rego to write compliance rules directly into laC pipelines, which was effective in security validation.
Okhonmina and Trodd [15] benchmarked a number of 1aC security scanners, including Checkov, Tfsec, Terrascan, and
Tflint, and found it to have fragmented coverage and endorsing the necessity of converged policy enforcement, an area that
this work bridges.

D. GitOps and Continuous Delivery
Farcic et al. [8] introduced the model of GitOps for Continuous Delivery, where Git is the single source of truth and
reconciliation is defined via pull requests. The Secure GitOps research [7] emphasized trust boundaries and hazards in Git-

JETIR2511160] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b468

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11

www.jetir.org (ISSN-2349-5162)

based automation. Consequently, both increase the operational reliability but do not include security-conscious rollback,
which our model incorporates by introducing GitOps and policy- driven remediation together.

. Industry Tools and Practical Implementations

AWS documentation [11][12] and HashiCorp guidelines [13] address built-in drift detection (CloudFormation Drift API,
AWS Config) and the Terraform refresh-only plan. These are operational baselines but detection-only. Vendor -neutral
guides such as Code Ocean [18] and Firefly [19] address drift detection best practices, while Spacelift/env0 [20] describes
edge cases in plan behavior. Additionally, these industry references show active development but with minimal automation
and cross-tool integration. Additionally,

. 1aC Quality, Maintainability, and Smells

Bessghaier et al. [5] etected laC “smells”- bad patterns that are associated with drift-prone misconfigurations. Furthermore,
Mkaouer et al. [17] asked practitioners to rate these smells by severity, providing a glimpse of risk prioritization.
Consequently, Bolhuis [14] expanded static analysis by identifying non-security drifts like cost inefficiencies, demonstrating
the necessity for complete checks that this project undertakes. Nevertheless,

. Emerging Directions

Isazadeh et al. [16] studied change drift in microservices with a comparison to configuration drift in infrastructure. Zeng
[21] suggested automated serverless system configuration management, concurrent with our solution for resource drift.
Hence, The SANER 2024 profile by Bessghaier et al. Therefore, [22] confirms previous results, showing the prevalence of
laC quality problems at scale. Collectively, these papers form a solid foundation but identify the lack of an automated drift
remediation framework that is security-focused-the gap which the suggested research fills directly.

Secure Network and Additional Resources
Deepthi et al. [23]-[26] explored intelligent network models for crowd prediction and malicious node detection in MANETS,
emphasizing adaptive monitoring and trust-based evaluation. Adnan et al. [25] proposed an Al-driven ransomware detection
framework integrating optimization with machine learning for improved threat classification. Nevertheless, Tajuddin and
Nandini [27]-[30] developed biometric-based cryptographic key generation and multi-trust agent systems to enhance
authentication and security. Collectively, these studies advance automation and secure computing-principles aligned with the
proposed laC drift remediation framework.

TABLE I: Comprehensive Literature Review on Infrastructure-as-Code (1aC)

No | Paper Title Authors Problem Addressed Methodology Key Findings Limitations \I};&éi\éance to Present
i State Reconciliation Defects Hassan et al State defects in laC| Empirical analysis| Identified ne Lacks remediation| Motivates automated
in Infrastructure as Code ' deployments of 5,110 defects defect classes automation reconciliation
. . d .| Supports
InfraFix: Technology- Repairing IR + SMT| 95% repair success| Handles static . S
2 Agnostic Repair of laC Saavecigret al. scripts (eI (G reasoning rate issues only generatlo automaticfix
Automated Drift Detection| ;
P f ¥ Drift detection and| Terraform + AWS] : .| Lacks GitOps| Basis for drift
3 and Remediation in laC| Solanki A.M. Ehrfadtion APIs Validated CFN drift support automation
Deployments
; : ; Found major : ig
Exploring Security Practices| 4 A - i 2 No practical| Justifies OPA/Checko
4 in laC Verdet et al. Security practices in 1aC| Empirical study ;:%t;rlty adoption| solution Layer
5 ON the o lence of 1aC | Bessghaier etal | quali d code | Smell taxonom BliREd 9 No mitigation Supports risk detection
Smells Prevalence of la essghaier et al. gme”sy and code ell taxonomy misconfigurations 0 mitigatio upports risk detectio
Tortoise: Interactive : 3 . Synthesis-based Successful in| .
6 Configuration Repair Weiss et al. System config correction repair controlled settings Not scalable Informs rollback logic
Secure GitOps: Analysis and| . 3 : ¥ Identified GitOps
7 Solutions ACM Queue Secure GitOps practices | Security review threats Conceptual only Supports secure rollout
GitOps for Continuous| . Continuous delivery via| Git as source of| No runtime . :
8 Delivery Farcic et al. GitOps Case study truth enforcement Basis for version control
Al-Driven Configuration Drift] Detected runtime| No remediation Guides adaptive|
9 Detection Gera & Gabrani ML-based drift analysis | Anomaly detection drift pipeline thresholds
Security as Code with . Rule-based Strong compliance .
10 OPA/Rego Velu et al. 1aC policy enforcement validation assurance Prototype coverage | Used for policy module
11 Detect Drift o™ AWS Docs Drift identification ga) Drift API usage Effective detection | Detection- onl Integrated into design
CloudFormation Stacks 9ap 9 y 9 9
AWS Config Conformance] . . Simplifies . . .
12 Packs AWS Docs Automated compliance Pre-built rules validation Vendor lock- in Base for generic solution|
13 "\I'/leggief)orm Plan (Refresh HashiCorp Docs Drift via refresh Comparison engine | Identifies infra drift| Partial detection Core detection method
. : . N T Found cost| s Supports cost]
14 Catching Cost Issues in laC | Bolhuis Cost-related drift Static linting inefficiencies Security ignored optimization
Fortifying Cloud DevSecOps| .] " . No automation . .
15 with Terraform Okhonmina & Trodd| laC security automation | Tool evaluation Compared tools layer Aids tool choice
16 Change-Drift in Microservices| Isazadeh et al. Drift in microservices Comparative study E(iluf?sd dependency Not laC- specific Contextual insight
17 Do Experts Agree on laQ Mkaouer et al. 1aC smell severity Expert survey Ranked critical Subjective limits Guides prioritization
Smells? smells
Detecting Drift in CLlI drift check| . :
18 CloudFormation Code Ocean automation Practical workflow | Effective demo Non- research Process reference
H ; ; : i Multi-cloud drift . - e . .
19 Firefly Drift Detection Guide| Firefly Docs visibility Tool documentation| Unified drift view No remediation Operational reference
Terraform Refresh & Plan| . : Technical : . . : ;
20 Behavior Spacelift/env0 Drift edge cases comparison Improved detection | Informational only | Refines drift logic
Automating Serverless Serverless laC| laC automation Reduced manual Limited to ;
a Configurations Zeng automation flow config errors serverless Technique reference
1aC Smells Profile (SANER| . Empirical validation of] : Confirmed prior A Supports dataset
22 2024) Bessghaier et al. smells Large-scale study findings No mitigation reliability

JETIR2511160] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b469

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

I11. RESEARCH GAPS

LITERATURE POINTS OUT SEVERAL IMPORTANT GAPS IN CURRENT IAC MANAGEMENT AND SECURITY STUDIES:

e No automated remediation: The majority of frameworks only detect drift and need to be corrected by
hand. Hence,

e Security prioritization is limited: Drifts are not differentiated based on risk or compliance effect.
Additionaly,

e No GitOps integration: Not many systems return configuration consistency through version control
rollbacks. Thus, consequently,

e Seller lock-in: Solutions such as AWS Config are confined to individual ecosystems. Hence, Nevertheless,

e Fragmented validation tools: There is no one pipeline that integrates drift detection, security validation,
and remediation.

The system proposed here fills these gaps by creating an end- to-end AWS-centric drift security framework.

IV.PROPOSED METHODOLOGY

The intended study seeks to develop and automate an Infrastructure-as-Code (1aC) Drift Security Framework to identify, inspect,
and remediate AWS environment configuration drifts. Nonetheless, The Terraform use by framework, AWS Config, Open Policy
Agent (OPA), and GitOps automation to keep the deployed cloud infrastructure in sync with its stated 1aC definitions
continuously and uphold compliance and security posture.

Consequently, the approach is separated into the following main phases Figure 1 illustrates the architecture of the proposed 1aC
Drift Security Framework. It shows how Terraform templates from the Git repository be endlessly monitor by the Drift Detection
Engine, validated through the Security Policy Engine, and remediated via a GitOps CI/CD pipeline. The Monitoring and Alert
System collects drift and violation logs, sending alerts and reports to the user. This workflow ensures automated drift detection,
policy-based validation, and secure rollback within the AWS cloud environment.

Fig. 1. Architecture Diagram

A. Drift Detection
Utilize Terraform plan (refresh-only) and AWS Config APIs to detect differences between current and desired states of
infrastructure. Detect configuration drifts for compute, storage, and network resources.

B. Validation & Policy Enforcement
Invoke Open Policy Agent (OPA) and Checkov to check the detected drifts against compliance and security policies (e.g.,
public S3 buckets, open ports). Categorize drifts as Low, Medium, or High severity. Hence,

C. Automated remediation
Use GitOps pipelines (GitHub Actions/ArgoCD) to roll back to the last secure commit. Keep complete audit logs and
change traceability. Nevertheless,

D. Monitoring and Reporting
Utilize AWS CloudWatch and Grafana to monitor drift metrics, rollback activity, and compliance status. Nevertheless,
Offer security dashboards and alerting systems. Moreover, this process guarantees continuous compliance and security
resilience for all AWS deployments.

V. SIGNIFICANCE OF THE PROPOSED SYSTEM

The laC Drift Security Framework proposed is of both academic and practical importance:

User / Devaloper = Git Repasitory

S derwi e
ra
Feport
)
Drift Detection o+ Security polcy
Pt
-m,.;me Engme i G
Folicy
fuss
*
Nerts « GrOps CHCD
Ppeline
Voliron
03
*
Monltoring & Monitoring
Monitoring & N
Alart System Alort Systom | Wolatio Log | & Alert System

Akris

A. Security Assurance

Avoids misconfigurations that potentially leak cloud assets or break compliance regulations. Moreover,

JETIR2511160] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b470

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

B. Operational Resilience
Facilitates self-healing infrastructure with minimum human input.

C. Auditability
keeps immutable logs and rollback history for governance purposes. Hence,

D. Sustainability

is in alignment with SDG 9 (Industry, Innovation, and Infrastructure) and SDG 16 (Peace, Justice, and Strong Institutions) by
promoting secure and transparent digital infrastructure.

E. Industry Relevance

Complements seamlessly with current AWS and DevOps toolchains, enabling it to be deployed in actual production
environments.

VI. RESEARCH OPPORTUNITIES AND FUTURE WORK

Nonwithstanding the immense advancements outlined in this model, there are still some research directions and unresolved
issues around Infrastructure-as-Code (laC) security and drift control. Furthermore, the following research directions are
listed for further investigation:

A. Multi-Cloud Drift Reconciliation
The majority of current drift detection methodologies, including the present framework, are platform-specific (e.g., AWS).
Future work may involve the creation of cloud -agnostic drift reconciliation mechanisms that concurrently support Terraform,
Azure ARM, and Google Deployment Manager. This would allow organizations to have consistent security posture across
hybrid and multi-cloud environments.

B. Al-Driven Drift Prediction and Risk Scoring
While existing systems identify information drift and remediate it reactively, subsequent efforts can concentrate on predictive
models based on machine learning to predict likely drift events prior to occurrence. A model trained on data can scan commit
history, user activity, and cloud change information to provide risk scores to deployments at runtime and prevent
misconfigurations ahead of time.

C. Continuous Compliance Assurance
Combining compliance-as-code models for standards like CIS Benchmarks, ISO 27001, PCI-DSS, and GDPR is a

primary research area. Future development can look into automatic mapping between OPA/Rego regulations and
world -wide regulatory needs, with real-time continuous compliance verification.

D. Autonomous Remediation Intelligence

Intelligence Though the system in question has GitOps - based rollback support, future releases might include
context -aware remediation engines that can choose the best fix (rollback, patch, or quarantine) based on impact
analysis and policy severity. Nevertheless, these systems may employ reinforcement learning to get better over
time by learning from past drift and remediation experience. Moreover,

E. Distributed and Serverless Drift Correlation

New architectural styles like Kubernetes clusters and server-less functions create new challenges for drift tracking.
Furthermore, Research can be pushed to cross-layer drift correlation, correlating application-level configuration
changes (e.g., Helm charts) with underlying laC drift in compute or network infrastructure.

F. Blockchain-Based Provenance and Auditability

Incorporating blockchain to enable immutable logging of drift events, policy evaluations, and rollbacks canimprove
transparency and accountability. This kind of strategy can offer tamper-proof audit trails for regulatory and forensic
use in DevSecOps processes.

JETIR2511160] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b471

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

VII. CONCLUSION

The paper introduces a security-focused methodology for controlling infrastructure drift in 1aC- based AWS
environments. Through the integration of Terraform’s declarative provisioning, OPA’s policy enforcement, and
GitOps automated rollback, the presented framework accomplishes continuous security verification, remediation
automation, and compliance visibility. The study makes a contribution to DevSecOps automation research as it shows
the way policy-based drift management may improve cloud system integrity. Future developments will apply this
framework to multi-clouds and investigate Al-based drift prediction as the basis for proactive remediation.

VIIl. ACKNOWLEDGMENT

The authors wish to offer their sincere thanks to Dr. Deepthi V.S., Department of Computer Science and
Engineering (Cybersecurity), Dayananda Sagar College of Engineering, for her precious guidance and mentorship
during this research.

REFERENCES

[1] A. Hassan et al., “State Reconciliation Defects in Infrastructure as Code,” in Proc. ACM FSE, 2024.

[2] M. Saavedra et al., “InfraFix: Technology-Agnostic Repair of Infrastructure as Code,” arXiv/FSE, 2025.

[3] A. M. Solanki, “Automated Drift Detection and Remediation in 1aC Deployments,” MSc Thesis, National College of Ireland,
2024.

[4] A. Verdet et al., “Exploring Security Practices in Infrastructure as Code,” arXiv, 2023.

[5] N. Bessghaier et al., “On the Prevalence, Co-occurrence, and Impact of IaC Smells,” in Proc. IEEE SANER, 2024.

[6] A. Weiss et al., “Tortoise: Interactive System Configuration Repair,” arXiv, 2017.

[7] ACM Queue, “Secure GitOps: Analysis and Solutions,” ACM Queue Magazine, 2021.

[8] V. Farcic et al., “GitOps for Continuous Delivery,” Research Compendium, 2022.

[9] A. Gera and A. Gabrani, “Configuration Drift in Cloud Systems: An Al -Driven Approach,” Int. J. of Communication Networks
and Information Security (IJCNIS), 2023.

[10] V. Velu et al., “Security as Code with OPA and Rego,” in Proc. CEUR Workshop, 2023.

[11] AWS, “Detect Drift on CloudFormation Stacks,” AWS Documentation, 2024.

[12] AWS, “AWS Config Conformance Packs,” AWS Documentation, 2024.

[13] HashiCorp, “Terraform Plan (Refresh-Only),” HashiCorp Documentation, 2023.

[14] J. Bolhuis, “Catching Cost Issues in IaC Artifacts using Linters,” MSc Thesis, 2024.

[15] T. Okhonmina and J. Trodd, “Fortifying Cloud DevSecOps using Terraform,” MSc Project, University of West London, 2025.

[16] R. Isazadeh et al., “Change Drift in Microservices,” arXiv, 2025.

[17] M. Mkaouer et al., “Do Experts Agree About Smelly Infrastructure?,” Preprint, 2025.

[18] Code Ocean, “Detecting Drift in CloudFormation,” Technical Guide, 2025.

[19] Firefly, “Guide: Detect Drift in CloudFormation,” Firefly Documentation, 2024.

[20] Spacelift/env0, “Terraform Refresh & Plan Behavior,” Blogs and Technical Docs, 2024.

[21] J. Zeng, “Automating Serverless Resource & Security Config,” MSc Thesis, University of British Columbia (UBC), 2024.

[22] N. Bessghaier et al., “TaC Smells (Profile),” in Proc. [EEE SANER, 2024.

[23] V. S. Deepthi, N. Venkat Chavan, S. Shanbhag, and S. S. Dandappala, “Crowd density estimation and location prediction in
public transport system,” Int. J. Eng. Res. Technol. (IJERT), vol. 11, no. 7, pp. 1-4, 2022.

[24] V. S. D. Vagdevi, “Behaviour Analysis and Detection of Blackhole Attacker Node under Reactive Routing Protocol in
MANETS,” in Proc. Int. Conf. on Networking, Embedded and Wireless Systems, 2018.

[25] M. M. Adnan, S. V. Devi, and N. Yamsani, “Sine Cosine Reptile Search Algorithm with Grid Search Support Vector Machine
Based Ransomware Detection and Classification,” in Proc. Int. Conf. on Integrated Circuits and Communication, 2024.

[26] V. S. Deepthi and S. Vagdevi, “Multiphase Detection and Evaluation of AODV for Malicious Behaviour of a Node in
MANETS,” in Proc. Int. Conf. on Electrical, Electronics, Communication & Computing, 2018.

[27] M. Tajuddin and C. Nandini, “Secured Crypto Biometric System Using Retina,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 2,
no. 5, pp. 38-42, 2015.

[28] M. Tajuddin and C. Nandini, “Performance Measurement of Cryptographic Key Using Biometric Images,” Int. J. Electrical
Sciences, vol. 1, no. 2, pp. 15-20, 2015.

[29] M. Tajuddin and C. Nandini, “More Secured Cryptographic Key Generation through Retinal Biometric Using EBI Algorithm,”
Int. J. Eng. Innovations and Research, vol. 3, no. 5, pp. 616-620, 2014.

[30] M. Tajuddin and C. Nandini, “An Agent-Based Negotiating System with Multiple Trust Parameter Evaluation Across
Networks,” in Proc. 48th Annu. Conv. Computer Society of India (CSI), Springer, 2014, pp. 225 -233.

JETIR2511160] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b472

http://www.jetir.org/

