
© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2511160 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b468

Infrastructure-as-Code (IaC) Drift Security with

GitOps-Driven Auto-Remediation in AWS

1Liktha Yogesh, 2Nidhi N, 3Spoorthi Rai, 4Shreyas Reddy B, 5Dr. Deepthi VS
1Student, 2Student, 3Student, 4Student, 5Professor,
1 2 3 4 5Computer Science Engineering (Cyber Security),
1 2 3 4 5Dayananda Sagar College of Engineering, Bangalore, India

Abstract: With the fast growth of cloud computing and DevOps, Infrastructure-as-Code (IaC) has become the key-stone of

managing scalable and reproducible cloud environments as yet, configuration drift-the difference between declared infrastructure

computer code and deployed state-represents fundamental threats to cloud security system, compliance, and operational reliability.

Nonetheless, this work presents an Automated IaC Drift Security Framework using Terraform, AWS Config, Open Policy Agent

(OPA), and GitOps processes for continuous drift detection, validation, and remediation. The approach path uses GitOps pipeline

to automatically roll back to the prior secure state after endlessly detecting difference between AWS resources and IaC templates

and classifying them into security severity level. Additionally, the envisioned modeling be intended to create a self-healing, security-

oriented, and auditable cloud infrastructure that addresses research and industry demands for robust cloud management.

IndexTerms - Infrastructure-as-Code, Drift Detection, GitOps, Terraform, AWS, DevSecOps, Cloud Security.

I.INTRODUCTION

With cloud environments becoming increasingly dynamic in nature, ensuring their configuration integrity is critical. Additionally,

Tools like Terraform and AWS CloudFormation for Infrastructure-as-Code (IaC) allow provisioning and versioned deployment in

an automated manner, which takes human error out of the manual configuration. Even so, infrastructure drift-wherein the live state

of the cloud differs from its specified IaC template-is still an ongoing issue.

II. LITERATURE REVIEW

The increasing complexity of cloud infrastructures governed by Infrastructure-as-Code (IaC) has introduced novel challenges in

ensuring configuration consistency and security.

This section discusses recent industry and research works addressing IaC drift, fix, and DevSecOps automation.

A. Drift and Reconciliation Defects

Hassan et al. [1] conducted a large empirical study examining 5,110 reconciliation defects in IaC projects and discovered new

defect classes like inventory and semantic mismatches. Although fundamental, their effort was merely diagnostic in nature and

did not provide any automatic remediation. Additionally, Gera and Gabrani [9] introduced an AI-based anomaly detection

model that automatically detects cloud configuration drift patterns in realtime. Consequently, while promising, it doesn’t

support runtime rollback or risk prioritization. These results highlight the necessity for realtime, automated drift management

embedded within operational pipelines.

B. Automated IaC Repair Systems

Saavedra et al. [2] proposed InfraFix, a tech-agnostic repair system based on Intermediate Representation (IR) and

Satisfiability Modulo Theory (SMT) reasoning to fix erroneous IaC scripts with a high rate of more than 95 Weiss et al. [6]

created Tortoise, which balances imperative repairs with declarative IaC definitions. Its ideas influenced the reconciliation

logic taken in this work, but it was only applicable to small-scale system configurations.

C. Security and Policy-as-Code Integration

Verdet et al. [4] performed a systematic review of security practice in IaC and found sparse usage of tools like Checkov and

Tfsec within enterprise workflows. Nevertheless, Velu et al. [10] presented Security as Code with Open Policy Agent

(OPA) and Rego to write compliance rules directly into IaC pipelines, which was effective in security validation.

Okhonmina and Trodd [15] benchmarked a number of IaC security scanners, including Checkov, Tfsec, Terrascan, and

Tflint, and found it to have fragmented coverage and endorsing the necessity of converged policy enforcement, an area that

this work bridges.

D. GitOps and Continuous Delivery

Farcic et al. [8] introduced the model of GitOps for Continuous Delivery, where Git is the single source of truth and

reconciliation is defined via pull requests. The Secure GitOps research [7] emphasized trust boundaries and hazards in Git-

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2511160 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b469

based automation. Consequently, both increase the operational reliability but do not include security-conscious rollback,

which our model incorporates by introducing GitOps and policy- driven remediation together.

E. Industry Tools and Practical Implementations

AWS documentation [11][12] and HashiCorp guidelines [13] address built-in drift detection (CloudFormation Drift API,

AWS Config) and the Terraform refresh-only plan. These are operational baselines but detection-only. Vendor -neutral

guides such as Code Ocean [18] and Firefly [19] address drift detection best practices, while Spacelift/env0 [20] describes

edge cases in plan behavior. Additionally, these industry references show active development but with minimal automation

and cross-tool integration. Additionally,

F. IaC Quality, Maintainability, and Smells

Bessghaier et al. [5] etected IaC “smells”- bad patterns that are associated with drift-prone misconfigurations. Furthermore,

Mkaouer et al. [17] asked practitioners to rate these smells by severity, providing a glimpse of risk prioritization.

Consequently, Bolhuis [14] expanded static analysis by identifying non-security drifts like cost inefficiencies, demonstrating

the necessity for complete checks that this project undertakes. Nevertheless,

G. Emerging Directions

Isazadeh et al. [16] studied change drift in microservices with a comparison to configuration drift in infrastructure. Zeng

[21] suggested automated serverless system configuration management, concurrent with our solution for resource drift.

Hence, The SANER 2024 profile by Bessghaier et al. Therefore, [22] confirms previous results, showing the prevalence of

IaC quality problems at scale. Collectively, these papers form a solid foundation but identify the lack of an automated drift

remediation framework that is security-focused-the gap which the suggested research fills directly.

H. Secure Network and Additional Resources

Deepthi et al. [23]-[26] explored intelligent network models for crowd prediction and malicious node detection in MANETs,

emphasizing adaptive monitoring and trust-based evaluation. Adnan et al. [25] proposed an AI-driven ransomware detection

framework integrating optimization with machine learning for improved threat classification. Nevertheless, Tajuddin and

Nandini [27]-[30] developed biometric-based cryptographic key generation and multi-trust agent systems to enhance

authentication and security. Collectively, these studies advance automation and secure computing-principles aligned with the

proposed IaC drift remediation framework.

TABLE I: Comprehensive Literature Review on Infrastructure-as-Code (IaC)

No Paper Title Authors Problem Addressed Methodology Key Findings Limitations
Relevance to Present
Work

1
State Reconciliation Defects
in Infrastructure as Code

Hassan et al.
State defects in IaC
deployments

Empirical analysis
of 5,110 defects

Identified new
defect classes

Lacks remediation
automation

Motivates automated
reconciliation

2
InfraFix: Technology-
Agnostic Repair of IaC

Saavedra et al.
Repairing
scripts

faulty IaC
IR + SMT
reasoning

95% repair success
rate

Handles static
issues only

Supports
generatio

n
automatic fix

3

Automated Drift Detection
and Remediation in IaC

Deployments
Solanki A.M.

Drift detection and
correction

Terraform + AWS
APIs

Validated CFN drift
Lacks GitOps
support

Basis for drift
automation

4
Exploring Security Practices
in IaC

Verdet et al. Security practices in IaC Empirical study
Found major
security adoption
gaps

No practical
solution

Justifies OPA/Checkov
Layer

5
On the
Smells

Prevalence of IaC Bessghaier et al.
IaC
quality
smells

and code Smell taxonomy
Linked to
misconfigurations

No mitigation Supports risk detection

6
Tortoise: Interactive
Configuration Repair

Weiss et al. System config correction
Synthesis-based
repair

Successful in
controlled settings

Not scalable Informs rollback logic

7
Secure GitOps: Analysis and
Solutions

ACM Queue Secure GitOps practices Security review
Identified GitOps
threats

Conceptual only Supports secure rollout

8
GitOps for Continuous
Delivery

Farcic et al.
Continuous delivery via
GitOps

Case study
Git as source of
truth

No runtime
enforcement

Basis for version control

9
AI-Driven Configuration Drift
Detection

Gera & Gabrani ML-based drift analysis Anomaly detection
Detected runtime
drift

No remediation
pipeline

Guides adaptive
thresholds

10
Security as Code with
OPA/Rego

Velu et al. IaC policy enforcement
Rule-based
validation

Strong compliance
assurance

Prototype coverage Used for policy module

11
Detect Drift on
CloudFormation Stacks

AWS Docs Drift identification gap Drift API usage Effective detection Detection- only Integrated into design

12
AWS Config Conformance
Packs

AWS Docs Automated compliance Pre-built rules
Simplifies
validation

Vendor lock- in Base for generic solution

13
Terraform Plan (Refresh
Mode)

HashiCorp Docs Drift via refresh Comparison engine Identifies infra drift Partial detection Core detection method

14 Catching Cost Issues in IaC Bolhuis Cost-related drift Static linting
Found cost
inefficiencies

Security ignored
Supports cost
optimization

15
Fortifying Cloud DevSecOps
with Terraform

Okhonmina & Trodd IaC security automation Tool evaluation Compared tools
No automation
layer

Aids tool choice

16 Change-Drift in Microservices Isazadeh et al. Drift in microservices Comparative study
Found dependency
Drifts

Not IaC- specific Contextual insight

17
Do Experts Agree on IaC
Smells?

Mkaouer et al. IaC smell severity Expert survey
Ranked critical
smells

Subjective limits Guides prioritization

18
Detecting Drift in
CloudFormation

Code Ocean
CLI drift check
automation

Practical workflow Effective demo Non- research Process reference

19 Firefly Drift Detection Guide Firefly Docs
Multi-cloud drift
visibility

Tool documentation Unified drift view No remediation Operational reference

20
Terraform Refresh & Plan
Behavior

Spacelift/env0 Drift edge cases
Technical
comparison

Improved detection Informational only Refines drift logic

21
Automating Serverless
Configurations

Zeng
Serverless IaC
automation

IaC automation
flow

Reduced manual
config errors

Limited to
serverless

Technique reference

22
IaC Smells Profile (SANER
2024)

Bessghaier et al.
Empirical validation of
smells

Large-scale study
Confirmed prior
findings

No mitigation
Supports dataset
reliability

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2511160 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b470

III. RESEARCH GAPS

LITERATURE POINTS OUT SEVERAL IMPORTANT GAPS IN CURRENT IAC MANAGEMENT AND SECURITY STUDIES:

 No automated remediation: The majority of frameworks only detect drift and need to be corrected by

hand. Hence,

 Security prioritization is limited: Drifts are not differentiated based on risk or compliance effect.

Additionaly,

 No GitOps integration: Not many systems return configuration consistency through version control

rollbacks. Thus, consequently,

 Seller lock-in: Solutions such as AWS Config are confined to individual ecosystems. Hence, Nevertheless,

 Fragmented validation tools: There is no one pipeline that integrates drift detection, security validation,

and remediation.

The system proposed here fills these gaps by creating an end- to-end AWS-centric drift security framework.

IV.PROPOSED METHODOLOGY

The intended study seeks to develop and automate an Infrastructure-as-Code (IaC) Drift Security Framework to identify, inspect,

and remediate AWS environment configuration drifts. Nonetheless, The Terraform use by framework, AWS Config, Open Policy

Agent (OPA), and GitOps automation to keep the deployed cloud infrastructure in sync with its stated IaC definitions

continuously and uphold compliance and security posture.

Consequently, the approach is separated into the following main phases Figure 1 illustrates the architecture of the proposed IaC

Drift Security Framework. It shows how Terraform templates from the Git repository be endlessly monitor by the Drift Detection

Engine, validated through the Security Policy Engine, and remediated via a GitOps CI/CD pipeline. The Monitoring and Alert

System collects drift and violation logs, sending alerts and reports to the user. This workflow ensures automated drift detection,

policy-based validation, and secure rollback within the AWS cloud environment.

Fig. 1. Architecture Diagram

A. Drift Detection

Utilize Terraform plan (refresh-only) and AWS Config APIs to detect differences between current and desired states of

infrastructure. Detect configuration drifts for compute, storage, and network resources.

B. Validation & Policy Enforcement

Invoke Open Policy Agent (OPA) and Checkov to check the detected drifts against compliance and security policies (e.g.,

public S3 buckets, open ports). Categorize drifts as Low, Medium, or High severity. Hence,

C. Automated remediation

Use GitOps pipelines (GitHub Actions/ArgoCD) to roll back to the last secure commit. Keep complete audit logs and

change traceability. Nevertheless,

D. Monitoring and Reporting

Utilize AWS CloudWatch and Grafana to monitor drift metrics, rollback activity, and compliance status. Nevertheless,

Offer security dashboards and alerting systems. Moreover, this process guarantees continuous compliance and security

resilience for all AWS deployments.

V. SIGNIFICANCE OF THE PROPOSED SYSTEM

The IaC Drift Security Framework proposed is of both academic and practical importance:

A. Security Assurance

Avoids misconfigurations that potentially leak cloud assets or break compliance regulations. Moreover,

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2511160 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b471

B. Operational Resilience

Facilitates self-healing infrastructure with minimum human input.

C. Auditability

keeps immutable logs and rollback history for governance purposes. Hence,

D. Sustainability

is in alignment with SDG 9 (Industry, Innovation, and Infrastructure) and SDG 16 (Peace, Justice, and Strong Institutions) by

promoting secure and transparent digital infrastructure.

E. Industry Relevance

Complements seamlessly with current AWS and DevOps toolchains, enabling it to be deployed in actual production

environments.

VI. RESEARCH OPPORTUNITIES AND FUTURE WORK

Nonwithstanding the immense advancements outlined in this model, there are still some research directions and unresolved

issues around Infrastructure-as-Code (IaC) security and drift control. Furthermore, the following research directions are

listed for further investigation:

A. Multi-Cloud Drift Reconciliation

The majority of current drift detection methodologies, including the present framework, are platform-specific (e.g., AWS).

Future work may involve the creation of cloud -agnostic drift reconciliation mechanisms that concurrently support Terraform,

Azure ARM, and Google Deployment Manager. This would allow organizations to have consistent security posture across

hybrid and multi-cloud environments.

B. AI-Driven Drift Prediction and Risk Scoring

While existing systems identify information drift and remediate it reactively, subsequent efforts can concentrate on predictive

models based on machine learning to predict likely drift events prior to occurrence. A model trained on data can scan commit

history, user activity, and cloud change information to provide risk scores to deployments at runtime and prevent

misconfigurations ahead of time.

C. Continuous Compliance Assurance

Combining compliance-as-code models for standards like CIS Benchmarks, ISO 27001, PCI-DSS, and GDPR is a

primary research area. Future development can look into automatic mapping between OPA/Rego regulations and

world -wide regulatory needs, with real-time continuous compliance verification.

D. Autonomous Remediation Intelligence

Intelligence Though the system in question has GitOps - based rollback support, future releases might include

context -aware remediation engines that can choose the best fix (rollback, patch, or quarantine) based on impact

analysis and policy severity. Nevertheless, these systems may employ reinforcement learning to get better over

time by learning from past drift and remediation experience. Moreover,

E. Distributed and Serverless Drift Correlation

New architectural styles like Kubernetes clusters and server-less functions create new challenges for drift tracking.

Furthermore, Research can be pushed to cross-layer drift correlation, correlating application-level configuration

changes (e.g., Helm charts) with underlying IaC drift in compute or network infrastructure.

F. Blockchain-Based Provenance and Auditability

Incorporating blockchain to enable immutable logging of drift events, policy evaluations, and rollbacks can improve

transparency and accountability. This kind of strategy can offer tamper-proof audit trails for regulatory and forensic

use in DevSecOps processes.

http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2511160 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b472

VII. CONCLUSION

The paper introduces a security-focused methodology for controlling infrastructure drift in IaC- based AWS

environments. Through the integration of Terraform’s declarative provisioning, OPA’s policy enforcement, and

GitOps automated rollback, the presented framework accomplishes continuous security verification, remediation

automation, and compliance visibility. The study makes a contribution to DevSecOps automation research as it shows

the way policy-based drift management may improve cloud system integrity. Future developments will apply this

framework to multi-clouds and investigate AI-based drift prediction as the basis for proactive remediation.

VIII. ACKNOWLEDGMENT

The authors wish to offer their sincere thanks to Dr. Deepthi V.S., Department of Computer Science and

Engineering (Cybersecurity), Dayananda Sagar College of Engineering, for her precious guidance and mentorship

during this research.

REFERENCES

[1] A. Hassan et al., “State Reconciliation Defects in Infrastructure as Code,” in Proc. ACM FSE, 2024.

[2] M. Saavedra et al., “InfraFix: Technology-Agnostic Repair of Infrastructure as Code,” arXiv/FSE, 2025.

[3] A. M. Solanki, “Automated Drift Detection and Remediation in IaC Deployments,” MSc Thesis, National College of Ireland,

2024.

[4] A. Verdet et al., “Exploring Security Practices in Infrastructure as Code,” arXiv, 2023.

[5] N. Bessghaier et al., “On the Prevalence, Co-occurrence, and Impact of IaC Smells,” in Proc. IEEE SANER, 2024.

[6] A. Weiss et al., “Tortoise: Interactive System Configuration Repair,” arXiv, 2017.

[7] ACM Queue, “Secure GitOps: Analysis and Solutions,” ACM Queue Magazine, 2021.

[8] V. Farcic et al., “GitOps for Continuous Delivery,” Research Compendium, 2022.

[9] A. Gera and A. Gabrani, “Configuration Drift in Cloud Systems: An AI -Driven Approach,” Int. J. of Communication Networks

and Information Security (IJCNIS), 2023.

[10] V. Velu et al., “Security as Code with OPA and Rego,” in Proc. CEUR Workshop, 2023.

[11] AWS, “Detect Drift on CloudFormation Stacks,” AWS Documentation, 2024.

[12] AWS, “AWS Config Conformance Packs,” AWS Documentation, 2024.

[13] HashiCorp, “Terraform Plan (Refresh-Only),” HashiCorp Documentation, 2023.

[14] J. Bolhuis, “Catching Cost Issues in IaC Artifacts using Linters,” MSc Thesis, 2024.

[15] T. Okhonmina and J. Trodd, “Fortifying Cloud DevSecOps using Terraform,” MSc Project, University of West London, 2025.

[16] R. Isazadeh et al., “Change Drift in Microservices,” arXiv, 2025.

[17] M. Mkaouer et al., “Do Experts Agree About Smelly Infrastructure?,” Preprint, 2025.

[18] Code Ocean, “Detecting Drift in CloudFormation,” Technical Guide, 2025.

[19] Firefly, “Guide: Detect Drift in CloudFormation,” Firefly Documentation, 2024.

[20] Spacelift/env0, “Terraform Refresh & Plan Behavior,” Blogs and Technical Docs, 2024.

[21] J. Zeng, “Automating Serverless Resource & Security Config,” MSc Thesis, University of British Columbia (UBC), 2024.

[22] N. Bessghaier et al., “IaC Smells (Profile),” in Proc. IEEE SANER, 2024.

[23] V. S. Deepthi, N. Venkat Chavan, S. Shanbhag, and S. S. Dandappala, “Crowd density estimation and location prediction in

public transport system,” Int. J. Eng. Res. Technol. (IJERT), vol. 11, no. 7, pp. 1–4, 2022.

[24] V. S. D. Vagdevi, “Behaviour Analysis and Detection of Blackhole Attacker Node under Reactive Routing Protocol in

MANETs,” in Proc. Int. Conf. on Networking, Embedded and Wireless Systems, 2018.

[25] M. M. Adnan, S. V. Devi, and N. Yamsani, “Sine Cosine Reptile Search Algorithm with Grid Search Support Vector Machine

Based Ransomware Detection and Classification,” in Proc. Int. Conf. on Integrated Circuits and Communication, 2024.

[26] V. S. Deepthi and S. Vagdevi, “Multiphase Detection and Evaluation of AODV for Malicious Behaviour of a Node in

MANETs,” in Proc. Int. Conf. on Electrical, Electronics, Communication & Computing, 2018.

[27] M. Tajuddin and C. Nandini, “Secured Crypto Biometric System Using Retina,” Int. Adv. Res. J. Sci. Eng. Technol., vol. 2,

no. 5, pp. 38–42, 2015.

[28] M. Tajuddin and C. Nandini, “Performance Measurement of Cryptographic Key Using Biometric Images,” Int. J. Electrical

Sciences, vol. 1, no. 2, pp. 15–20, 2015.

[29] M. Tajuddin and C. Nandini, “More Secured Cryptographic Key Generation through Retinal Biometric Using EBI Algorithm,”

Int. J. Eng. Innovations and Research, vol. 3, no. 5, pp. 616–620, 2014.

[30] M. Tajuddin and C. Nandini, “An Agent-Based Negotiating System with Multiple Trust Parameter Evaluation Across

Networks,” in Proc. 48th Annu. Conv. Computer Society of India (CSI), Springer, 2014, pp. 225 -233.

http://www.jetir.org/

