ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Analysis of Heavy Equipment Management Challenges and Remedial Strategies in Construction Projects

¹Mr. Bramhdev Dattatray Pawar, ²Prof. Amit.B. Patil, Prof. ³Prof. Sagar. B. Patil

¹PG Student,, ²Assistant Professor, ³Assistant Professor

¹Civil (Construction Management), Tatyasaheb Kore Institute of Engineering and Technology, Warananagar, Pin – 416113, Maharashtra, India

²Civil (Construction Management), Tatyasaheb Kore Institute of Engineering and Technology, Warananagar, Pin – 416113, Maharashtra, India

³Civil (Construction Management), Tatyasaheb Kore Institute of Engineering and Technology, Warananagar, Pin – 416113, Maharashtra, India

Abstract: Heavy equipment plays a crucial role in modern construction projects, significantly influencing productivity, project cost, and completion time. However, ineffective management of equipment resources often results in project delays, cost overruns, idle time losses, and safety risks. This paper presents an analytical study on the various problems associated with heavy equipment management and explores practical remedial measures to enhance operational efficiency. The research identifies key challenges such as poor maintenance planning, lack of skilled operators, inadequate scheduling, improper equipment selection, and inefficient tracking systems. Through literature review, field data, and expert interviews, the study evaluates the impact of these problems on project performance parameters including cost, time, and quality. The paper further recommends strategic solutions such as adopting preventive maintenance systems, implementing digital equipment monitoring tools, operator training programs, and effective resource allocation methods. The findings emphasize the importance of systematic equipment management as an integral part of project planning and control to achieve sustainable and cost-effective construction practices.

Index Terms - Heavy Equipment Management, Construction Projects, Equipment Utilization, Maintenance Planning, Resource Allocation, Cost Overruns, Productivity, Project Efficiency, Preventive Maintenance, Equipment Scheduling.

1. Introduction

In the field of construction engineering and project management, heavy equipment plays a fundamental role in achieving timely, cost-effective, and quality project delivery. Equipment such as excavators, bulldozers, loaders, cranes, graders, and dump trucks are indispensable for major construction activities including earthwork, material handling, concreting, and structural assembly. The effective utilization and management of these machines directly determine the productivity and overall performance of a construction project. However, despite technological advancements and improved management tools, many construction projects continue to face serious challenges related to the planning, operation, and maintenance of heavy equipment.

The construction industry is characterized by high capital investment, complex operational environments, and tight project schedules. In such a scenario, mismanagement of heavy equipment can lead to significant financial and operational consequences. Common issues include equipment downtime due to inadequate maintenance, improper equipment selection for specific tasks, lack of skilled operators, inefficient scheduling, and poor record-keeping. These problems not only reduce equipment productivity but also contribute to project delays, cost overruns, and underutilization of resources. According to several studies, equipment-related costs account for nearly 30-50% of the total project cost in heavy civil works, highlighting the critical importance of efficient equipment management systems.

Heavy equipment management encompasses all activities involved in the acquisition, deployment, operation, maintenance, and eventual disposal of equipment assets. The objective of effective management is to minimize idle time, optimize equipment utilization, reduce maintenance and repair costs, and ensure operational safety. However, in many developing countries, construction firms still rely on manual methods of planning and monitoring, resulting in poor coordination between site operations and equipment logistics. This gap emphasizes the need for adopting systematic approaches, such as preventive maintenance planning, digital fleet management systems, and data-driven performance tracking.

The challenges in heavy equipment management are multifaceted—ranging from mechanical failures and operator negligence to administrative shortcomings and lack of communication among project stakeholders. Furthermore, external factors such as harsh site conditions, inadequate fuel management, and fluctuating market prices for spare parts exacerbate these difficulties. The absence of standardized management practices and real-time monitoring systems often leads to decision-making based on intuition rather than accurate performance data.

Recognizing these challenges, this study focuses on analyzing the major problems faced in heavy equipment management and identifying feasible remedial measures that can enhance efficiency and productivity in construction projects. The analysis includes evaluating the root causes of inefficiencies, assessing their impact on project performance, and proposing corrective strategies based on industry best practices and modern management tools. Emphasis is placed on preventive maintenance systems, equipment performance monitoring, training and skill development, and the integration of digital technologies such as telematics and equipment tracking software.

The outcomes of this research are expected to contribute to better understanding and optimization of heavy equipment operations, leading to improved project performance and reduced wastage of resources. By implementing the recommended strategies, construction organizations can ensure more sustainable equipment utilization, minimize financial losses, and strengthen overall project management effectiveness.

1.1. **Equipment Managements Practices of Contractors**

Research in the domain of equipment management practices of contractors has been the subject of various studies. The proposed equipment policies for utility contractors in which were classified into seven areas i.e., equipment acquisition, financing, depreciation, maintenance, obsolescence, equipment life, and disposal and reclassified equipment organization policy into four aspects equipment financing, replacement analysis, equipment standardization, and miscellaneous. The current industry practices regarding equipment ownership such as record keeping, recognition of replacement-decision factors, replacement decision-making practices, and equipment retention periods. A reconsider of during a pilot test of the questionnaire rendered 73 variables on equipment management practices of highway contractors see Table 1. These variables were categorized into four groups. The variables in each group are called observed variables, and are utilized in characterizing the following latent factors: acquisition condition, operational practice, maintenance quality, and disposal practice. Here, a latent factor was defined as a hypothetical or theoretical variable that cannot be observed directly; instead, it must be measured or characterized by a set of specified observed variables.

1.2. **Equipment Management Problems Resulting from Downtime**

Problems of equipment management occurring is a consequence of downtime. As a result, a total of six problems were found. These problems act as an observed variable to describe and characterize the downtime consequence latent factor.

Basic Information of Work

The all-basic information of project is in which Four Lanning of Yedeshi-Aurangabad section of NH-211 is 189.090 km long & amp; required 30 months to complete. This project includes in the state of Maharashtra under NHDP Phase – IV B on Design, Build, Finance, Operate and Transfer (DBFOT) basis. The total project cost of highway work is Rs.3177.00 Crore.

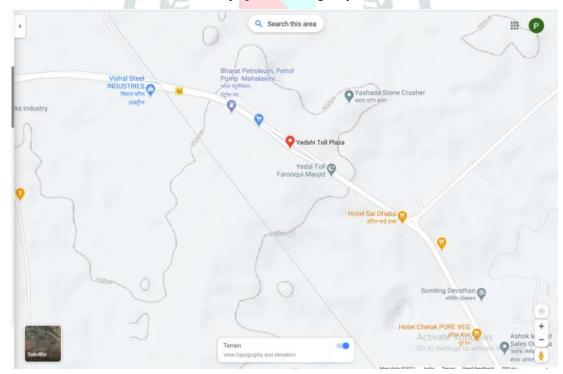


Figure No 1 Yedeshi - Aurangabad Section of NH-211

Figure No 2 Yedeshi -Aurangabad Section of NH-211

Figure No 3 Pandharpur - Solapur Section

2. FACTOR AFFECTING ON EQUIPMENT'S

The causal relationships between equipment management practices and downtime consequence have been mentioned widely below. One such study revealed that maintenance could be modeled as a process of defect management, where a defect is defined as anything short of nil it breaks down. The level of defects in the equipment determines the breakdown rate. Once breakdown occurs, a number of consequences would repair and maintenance. In general, equipment defects can arise from many sources such as initial condition of purchased equipment, workmanship quality, operational practices, machine failure, material, and spare parts quality. On the other hand, machine defects can also be reduced in several ways such as repair and maintenance, replacement of worn parts, and disposal of old equipment. All of the above are examples of defect generators and eliminators, which characterize the status of equipment management practices. The status of equipment management practices, in turn, influences downtime consequence. In this study, the status of equipment management practices was illustrated by the following latent factors: acquisition condition, operational practice, maintenance quality, and disposal practice. The theoretical grounds of each factor associated with downtime consequence are as follows. First, acquisition condition which affects downtime consequence lease, and purchase. Renting and leasing of construction machines are considered as a key strategy to improve the status of equipment management practices. For instance, once the equipment fails in the field, contractors would always obtain a substitute machine from a rental agency in 1 h without incurring a delay from the repair process. Thus, less downtime occurs. In addition, purchasing new rather than used equipment is another alternative to avoid downtime problems. Second, good operational practice suggests an equipment operator is the best person in most circumstances to perform daily inspection for preventive maintenance in order to avoid downtime. Providing regular equipment safety and training programs ensures that defects are quickly identified by the equipment operator and all abusive behaviors are eliminated.. Third, maintenance quality is often found to have a significant influence on downtime problems. Maintenance quality could be achieved, for example, by adopting a preventive maintenance program and providing maintenance by dealers and operators. Such maintenance activities may include maintenance scheduling, machine cleaning, inspection, and spare parts management. Obviously, having quality in equipment maintenance not only improves the status of equipment management practices, but also alleviates downtime problems as well. Finally, it is claimed that downtime consequences can be influenced by disposal practices. Disposal practices are characterized by the consideration of several factors: economic life, obsolescence, equipment efficiency, a company's financial status, downtime costs, investment costs, depreciation, and repair and maintenance costs.

In this table No.5.1 shows the Equipment management practices of highway contractors, the various factor affecting on equipment and their sum of squares total are given in the table. In acquisition Condition total 40 factors affects in which Buy equipment by financing is high SST is 62.67 & Use renting or leasing strategy to avoid uncertainty of spare parts cost is low SST is 33.63.

Table No.1 **Equipment Management Practices Of Highway Contractors**

Sr. No	Acquisition condition (AC)	SST
1	Buy equipment outright by cash	58.00
2	Buy equipment by financing	62.67
3	Acquire Rental equipment	47.85
4	Acquire leased equipment	52.96
5	Buy equipment in used condition	50.00
6	Buy equipment in new condition	56.67
7	Buy equipment based on personal judgments	50.96
8	Buy equipment based on current & future workloads	50.67
9	Buy equipment based on internal rate of return on investment	48.67
10	Buy equipment based on its life-cycle cost	46.67
11	Buy equipment based on financial status of the company	47.19
12	Buy equipment based on discount or special options from dealers	51.85
13	Make decision on acquiring or disposing equipment by President/CEO	54.96
14	Make decision on acquiring or disposing equipment by board of directors	48.67
15	Make decision on acquiring or disposing equipment by equipment manager	48.96
16	Make decision on acquiring or disposing equipment by project manager	48.67
17	Buy equipment based on brand popularity and spare parts availability	46.67
18	Buy equipment based on functions and its usage	44.00
19	Buy the same brand that is being used regularly	49.63
20	Buy equipment from the familiar dealer	54.67
21	Buy equipment based on price	48.67
22	Buy new or used equipment based on budget availability	49.19
23	Buy used equipment because of cheaper price but still in good condition	62.67
24	Buy new equipment because of a need in functions and advanced technology	45.41
25	Buy equipment that composes of simple systems in used condition	43.85
26	Buy equipment that renders expensive repair costs once failure in new condition	50.67
27	Buy equipment that has low repair costs once failure in used condition	45.85
28	Buy equipment that is important and frequently utilized in new condition	45.41
29	Buy equipment that is less important and infrequently utilized in used condition	46.96
30	Use renting or leasing strategy for the infrequently utilized equipment	56.00
31	Use renting or leasing strategy to avoid equipment obsolescence	50.00
32	Use renting or leasing strategy to avoid uncertainty of spare parts cost	33.63
33	Use renting or leasing strategy to avoid financial burden to the company	42.67
34	Use renting or leasing strategy to test a newly launched machine	48.96
35	Use standardization policy to save spare parts cost	54.00
36	Use standardization policy to benefit from mechanics' learning curve	53.19
37	Use standardization policy to lower operator/labor costs on equipment	49.85
38	Use standardization policy for better relationships with dealers	49.85
39	Use standardization policy to enhance safety as operators use similar machines	54.00
40	Use standardization policy for easier equipment administration	47.85

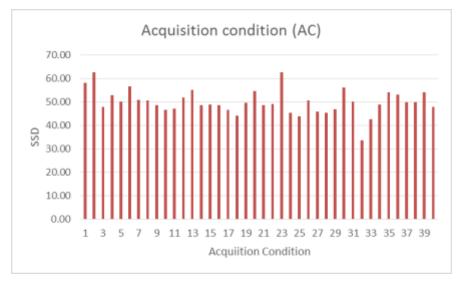


Figure No 4 **Acquisition Condition (AC)**

Chart No 5.1 shows the Acquisition Condition (AC) various factors effects on equipment's Vs their sum of squares total. In which acquisition Condition total 40 factors affects in which Buy equipment by financing is high SST is 62.67 &Use renting or leasing strategy to avoid uncertainty of spare parts cost is low SST is 33.63.

In this table No.5.2 shows the Operational practice (OP) the various factor affecting on equipment and their sum of squares total are given in the table. In acquisition Condition total 6 factors affects in which Provide training by other external agencies is high SST is 59.63 & Consider poor operating procedures as a main cause of equipment accident is low SST is 48.67.

Operational Practice (OP)	SST
Allow equipment operator to work in multiple machines	59.41
Provide training by in-house equipment department	56.67
Provide training by equipment dealers	54.67
Provide training by other external agencies	59.63

Table No.2 **Operational Practice (OP)**

Consider poor operating procedures as a main cause of equipment accident

Consider poor maintenance as a main cause of equipment accident

Figure No 5 **Operational Practice (OP)**

Chart No 5.2 shows the Operational Practices (OP) various factors effects on equipment's Vs their sum of squares total. In which acquisition Condition total 6 factors affects in which Provide training by other external agencies is high SST is 59.63 & Consider poor operating procedures as a main cause of equipment accident is low SST is 48.67.

In this table No.5.3 shows the Maintenance Quality (MQ) the various factor affecting on equipment and their sum of squares total are given in the table. In acquisition Condition total 13 factors affects in which Provide maintenance by other external mechanics is high SST is 61.85 & Seek for substituted equipment once it suddenly breaks down is low SST is 40.96.

Table No.3 **Maintenance Quality (MQ)**

Sr. No	Maintenance Quality (MQ)	
1	Provide maintenance by equipment operators	48.00
2	Provide maintenance by in-house equipment department	51.85

48.67

54.07

Sr. No

6

3	Provide maintenance by equipment dealers	52.00
4	Provide maintenance by other external mechanics	61.85
5	Provide preventive maintenance programs to equipment	47.41
6	Seek for substituted equipment once it suddenly breaks down	40.96
7	Wait until the failed machine is completely repaired and ready for use	54.96
8	Transfer crews to other works once machine suddenly breaks down	48.07
9	Accelerate speed of works once machine suddenly breaks down	49.41
10	Modify project activity and schedule once machine suddenly breaks down	42.96
11	Consider poor operating procedures as a main cause of machine failure	60.00
12	Consider poor maintenance as a main cause of machine failure during use	50.30
13	Consider the use of non-original parts as a main cause of machine failure	42.67

Figure No 6 Maintenance Quality

Chart No 5.3 shows the Maintenance Quality (MQ) various factors effects on equipment's Vs their sum of squares total. In which acquisition Condition total 13 factors affects in which Provide maintenance by other external mechanics is high SST is 61.85 &Seek for substituted equipment once it suddenly breaks down is low SST is 40.96.

In this table No. 5.4 shows the Disposal Practices (DP) the various factor affecting on equipment and their sum of squares total are given in the table. In acquisition Condition total 14 factors affects in which Determine equipment economic life based on profit accrued from use is high SST is 63.41 & Determine equipment economic life based on maintenance and repair cost is low SST is 44.96.

Table No.4 Disposal Practices (DP)

Sr. No	Disposal practices (DP)	SSD
1	Dispose or replace equipment based on intuition and rules of thumb	46.67
2	Dispose or replace equipment based on economic analysis	50.00
3	Dispose or replace equipment when it becomes technologically obsolete	50.67
4	Dispose or replace equipment when it becomes inefficient	55.41
5	Dispose or replace equipment when the company financial status is good	61.85
6	Dispose or replace equipment before commencing a new job or project	50.67
7	Dispose or replace equipment before major overhaul with high repair cost	51.85
8	Determine equipment economic life based on investment cost	56.96
9	Determine equipment economic life based on downtime cost	54.07
10	Determine equipment economic life based on obsolescence cost	51.85
11	Determine equipment economic life based on tax advantage	52.96
12	Determine equipment economic life based on depreciation cost	57.85
13	Determine equipment economic life based on maintenance and repair cost	44.96
14	Determine equipment economic life based on profit accrued from use	63.41

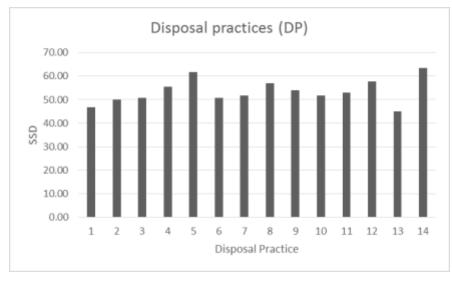


Figure No 7 **Disposal Practices (DP)**

Chart No 5.4 shows the Disposal Practices (DP) various factors effects on equipment's Vs their sum of squares total. In which acquisition Condition total 14 factors affects in which Determine equipment economic life based on profit accrued from use is high SST is 63.41 & Determine equipment economic life based on maintenance and repair cost is low SST is 44.96.

2.1. **Hourly Cost**

In this table No.5.5 shows the Average annual cost the various equipment's with their purchasing cost & per hour cost for insurance & taxes given. Average annual cost is calculated by using life in year & book value. In which Excavator cost is high is Rs. 2046240 & Tandem Roller is low cost is Rs. 708750.

Table No.5	Average Annual Cost
S 200 100 100 100 100 100 100 100 100 100	

Sr. No	Equipment	Purchasing Cost (Rs)	Per Hour Cost For Insurance & Taxes (Rs)	Life in	Book Value (Rs)	Average Annual Cost (Rs)
1	Excavator	3654000	182700	15	3836700	2046240
2	Grader	3300000	165000	10	3465000	1905750
3	Backhoe Loader	2600000	130000	10	2730000	1501500
4	Loader	2250000	112500	10	2362500	1299375
5	Soil Compactor	2600000	130000	10	2730000	1501500
6	Tandem Roller	1200000	60000	8	1260000	708750
7	Tipper Truck	2300000	115000	10	2415000	1328250
8	Paver	2000000	100000	6	2100000	1225000
9	Hot Mix Plant	3100000	155000	18	3255000	1717916.667

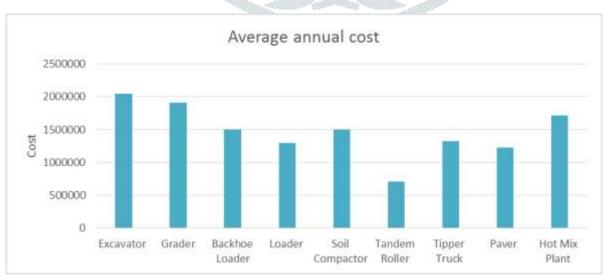


Figure No 8 **Average Annual Cost**

Chart No 5.5 shows the Average annual cost. The various equipment vs. annual cost are given. In which Excavator cost is high is Rs. 2046240 & Tandem Roller is low cost is Rs. 708750.

In this table No.5.6 shows the energy consume the various equipment's with their energy consume percentage are given. In which soil compactor are more energy consume is 93.25 & hot mix plant are less consume is 29.84.

Table No.6 **Energy Consume**

Sr. No	Equipment	ВНР	C1	C2	Energy Consume (%)
1	Excavator	140	0.5	1.2	62.664
2	Grader	140	0.4	1.33	55.56
3	Backhoe Loader	90	0.58	1.3	50.62
4	Loader	76	0.58	1.3	42.75
5	Soil Compactor	100	1	1.25	93.25
6	Tandem Roller	110	0.57	1.25	58.47
7	Tipper Truck	220	0.3	1.4	68.93
8	Paver	150	0.62	1.3	90.19
9	Hot Mix Plant	40	1	1	29.84

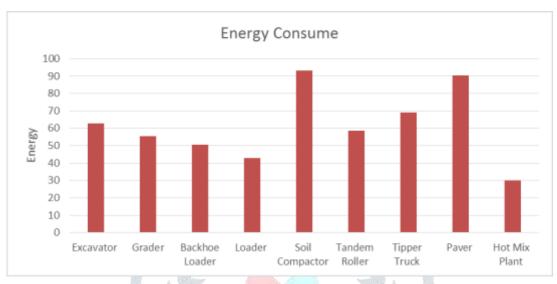


Figure No 9 **Energy Consume**

Chart No 5.6 shows the Energy Consume. The various equipment vs. energy consume in percentage are given. In which soil compactor are more energy consume is 93.25% & hot mix plant are less consume is 29.84%

In this table No.5.7 shows the Fuel consumption in litres per hour, the various equipment's with their BHP, C1&C2 using this factor Fuel consumption per hour are calculated. In which Paver is high is 20.60 L/hr & Hot Mix Plant is low cost is 8.8 L/hr

Table No.7 **Fuel Consumption In Litres Per Hour**

Sr. No	Equipment	внр	C1	C2	Fuel Consumption In Liters Per Hour
1	Excavator	140	0.5	1.2	18.48
2	Grader	140	0.4	1.33	16.39
3	Backhoe Loader	90	0.58	1.3	14.93
4	Loader	76	0.58	1.3	12.61
5	Soil Compactor	100	1	1.25	27.5
6	Tandem Roller	110	0.57	1.25	17.24
7	Tipper Truck	220	0.3	1.4	20.33
8	Paver	150	0.62	1.3	26.60
9	Hot Mix Plant	40	1	1	8.8

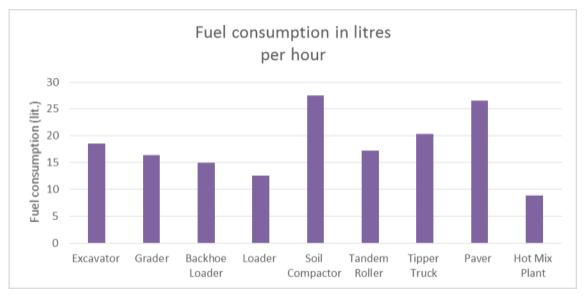


Figure No 10 **Fuel Consumption In Litres Per Hour**

Chart No 5.7 shows the Fuel consumption in litres per hour. The various equipment vs. Fuel consumption in litter are given. In which Paver is high is 20.60 L/hr &Hot Mix Plant is low cost is 8.8L/hr

2.2. **Stochastic Equipment**

In this table No.5.8 shows the Life cycle costs, the Operating cost & Operating cost are calculated by using formula. LCC is calculated by addition of Operating cost & Operating cost. In which excavator is more LCC is Rs.3835110.53 & Tandem roller is less LCC is Rs.1290546.57

Sr. No	Equipment	Operating Cost(Rs)	Operating Cost(Rs)	LCC (Rs)
1	Excavator	181110.5336	3654000	3835110.53
2	Grader	149964.44	3300000	3449964.44
3	Backhoe Loader	166903.91	2600000	2766903.91
4	Loader	127813.65	2250000	2377813.65
5	Soil Compactor	114199.3028	2600000	2714199.303
6	Tandem Roller	90 <mark>546.5</mark> 7	1200000	1290546.57
7	Tipper Truck	107248.70	2300000	2407248.70
8	Paver	98843.93	2000000	2098843.93

Table No.8 **Life Cycle Costs**

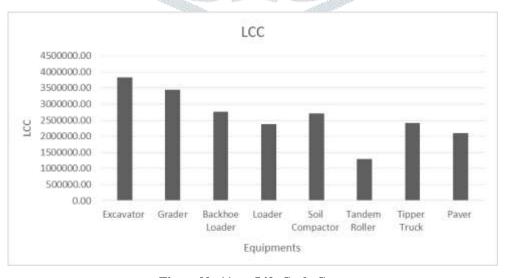


Figure No 11 Life Cycle Costs

Chart No 5.8 shows the Life cycle cost. The equipment vs. Life cycle cost is given. In which excavator is more LCC is Rs. 3835110.53 & Tandem roller is less LCC is Rs. 1290546.57.

This chapter defines the variables that impact the equipment management issue and computes the yearly fuel and machinery use. Conclusion of the Results Inspections of electronic construction equipment help you maintain employee safety and comply with regulatory requirements. Create inspection forms according to your own requirements, and then do mobile inspections in a matter of minutes. We automatically generate fuel economy measures so that you can track the fuel efficiency and expenses of your equipment and stop fuel theft, whether you store gasoline on site or have it supplied.

3. CONCLUSION

- 1. In this study, the status of equipment management practices was illustrated by the four main factors: acquisition condition, operational practice, maintenance quality, and disposal practice.
 - In Acquisition Condition (AC), Buy equipment by financing is high SST is 62.67 affected on equipment's.
 - In Operational Practices (OP), Provide training by other external agencies is high SST is 59.63 affected on equipment's.
 - In Maintenance Quality (MQ), Provide maintenance by other external mechanics is high SST is 61.85 affected on equipment's.
 - In Disposal Practices (DP), Determine equipment economic life based on profit accrued from use is high SST is 63.41 affected on equipment's.
- 2. Hourly cost study in which average annual cost, energy consumes & Fuel consumption in litters per hour is calculated which useful for future.
 - The Average annual cost, cost per year of per equipment are calculated in which Excavator cost is high is Rs. 2046240 & Tandem Roller is low cost is Rs. 708750.
 - The Energy Consume, percentage of energy consume by per equipment. In which soil compactor are more energy consume is 93.25% & hot mix plant are less consume is 29.84%.
 - The Fuel consumption in litres per hour, in which Paver is high is 20.60 L/hr & Hot Mix Plant is low cost is 8.8
- Stochastic models were developed for public agencies to calculate equipment fleet life cycle costs and the optimal economic life. In which excavator is more LCC is Rs. 3835110.53 & Tandem roller is less LCC is Rs. 1290546.57.

REFERENCES

- C. William Ibbs, Jr., A. M. ASCE and Kenneth R. Terveer, "Integrated Construction Preventive Maintenance System", J. [1]. Constr. Eng. Manage., Vol. 110 (1), Pg. No. 43-59, 1984.
- Cliff J. Schexnayder, F.ASCE and Scott A. David, "Past and Future of Construction Equipment—Part IV", J. Constr. Eng. [2]. Manage. Vol. 128, Pg. No. 279-286, 2002.
- David J. Edwards and Gary D. Holt, "Construction Plant and Equipment Management Research: Thematic Review", Journal [3]. of Engineering, Design and Technology, Vol. 7, No. 2, Pg No. 186-206, 2009.
- Jiuwen Cao, Member, IEEE, Wei Wang, Jianzhong Wang, and Ruirong Wang, "Excavation Equipment Recognition Based [4]. on Novel Acoustic Statistical Features" IEEE. Pg. No. 2168-2267, 2016.
- Jiuping Xu, A.M.ASCE and Ziqiang Zeng, "Applying Optimal Control Model to Dynamic Equipment Allocation Problem: [5]. Case Study of Concrete-Faced Rockfill Dam Construction Project", J. Constr. Eng. Manage, Vol.137, Pg. No. 536-550, 2011.
- [6]. Khandakar M. Rashid and Amir H. Behzadan, "Risk Behavior-Based Trajectory Prediction for Construction Site Safety Monitoring", J. Constr. Eng. Manage., Vol. 144 (2), 2018
- Michael Romanenko & Marcel Baybus, "Implementation of Overall Equipment Efficiency Methodology in the [7]. Semiconductor Test Facility", IEEE, Vol. 978 (1) Pg. No- 5090-5448, 2017.
- Mr. Nilesh D. Chinchore, Prof. Pranay R. Khare, "Planning and Selection of Heavy Construction Equipment in Civil [8]. Engineering", Int. Journal of Engineering Research and Applications, Vol. 4, Issue 12 (Part 1), Pg. No. 29-31, December 2014
- Ms. Neha Shinde, & Prof. Rahul Shinde, "A Methodology To Select Construction Equipment Acquisition Method", [9]. International Journal of Civil and Structural Engineering Research, Vol. 4, Issue 1, Pg. No 262-265, April 2016.
- Mithilesh V.V.S, Nagavinothini R, "A Critical Study on Latest Heavy Equipment and Latest Technologies Used In Road Works and Recommending the Types of Equipment and Its Effectiveness for Indian Roads Equipment Recommendation for Indian Roads - A Critical Study", IJIRSET, 2016.
- [11]. Panagiotis Mitropoulos Tariq S. Abdelhamid and Gregory A. Howell, "Systems Model of Construction Accident Causation", J. Constr. Eng. Manage, Vol.131, Pg. No- 816-825, 2005.
- [12]. Prasannasangeetha. A, Alan. S, "Equipment Management In Construction Sector", International Journal of Science and Engineering Research, Vol 3, Issue 6, June -2015.
- Thanapun Prasertrungruang and B. H. W. Hadikusumo, "Modeling the Dynamics of Heavy Equipment Management Practices and Downtime in Large Highway Contractors", J. Constr. Eng. Manage. Vol- 135 Pg. No. 939-947, 2009.

- Thanapun Prasertrungruang and B. H. W. Hadikusumo, "Study of Factors Influencing the Efficient Management and Downtime Consequences of Highway Construction Equipment in Thailand", J. Constr. Eng. Manage. Vol.135, Pg. No. 2-11, 2009.
- [15]. Xin Shi, Shusen Zhang, Yuan li, "Construction of Equipment Knowledge Management System", IEEE, Vol. 978, Pg. No. 7695-4522, 2011.
- [16]. Thanapun Prasertrungruang and B.H.W. Hadikusumo, "Heavy Equipment Management Practices and Problems in Thai Highway Contractors", Engineering, Construction and Architectural Management, Vol. 14, No. 3, 2007.
- [17]. Zaho Raui et al. "Study on Multiple Objective Optimization Method in Construction Project Management", 2008.

