JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Choline Hydroxide Mediated one-pot Synthesis of 2amino-4H-Chromene Derivatives in Aqueous Media

Vivekanand B. Jadhava*

^aDepartment of Chemistry, Shri Muktanand College, Gangapur, Dist.-Aurangabad, Pin-431 109, Maharashtra.

*Corresponding author Tel.: +91 7875732317, Fax:+912433-221343

*E-mail: viveka22@gmail.com

Abstract: A novel, green, and efficient one-pot three-component cyclocondensation protocol has been developed for the synthesis of pyrano[2,3-d]pyrimidinone derivatives using choline hydroxide as a biodegradable, cost-effective, and nontoxic basic catalyst. The reaction involves aromatic aldehydes, barbituric acid, and dimedone in an ethanol:water (1:1) solvent system at 80°C, achieving excellent yields (85–96%) within 30 minutes under mild conditions. This environmentally benign approach eliminates the need for hazardous solvents or metal catalysts, features a simple workup procedure with easy product isolation via filtration, and allows catalyst recovery and reuse for up to four cycles with minimal loss in activity. The method highlights the unexplored potential of commercially available choline hydroxide as a sustainable promoter in multicomponent reactions, aligning with green chemistry principles through atom economy, energy efficiency, and reduced waste generation.

Keywords: Choline hydroxide, pyrano[2,3-d]pyrimidinone, one-pot synthesis, green chemistry, multicomponent reaction, aqueous medium, barbituric acid, dimedone, aromatic aldehydes

Introduction

Pyrano[2,3-d]pyrimidinones and related fused heterocyclic scaffolds have garnered significant attention worldwide due to their broad spectrum of pharmacological activities, including vasodilatory, cardiotonic, antibacterial, antihypertensive, analgesic, bronchodilatory, hepatoprotective, antiallergic, herbicidal, antitumor, antifungal, and antimalarial effects.^{1,2} These multifaceted bioactivities have spurred extensive research into developing efficient, scalable, and sustainable synthetic routes for these privileged structures.³

Over the past decade, numerous methodologies have been documented employing thermal, ultrasonic, microwave-assisted, and catalytic strategies. ^{4,5} Common catalysts include L-proline, *N*-methylmorpholine, H₁₄[NaP₅W₃₀O₁₁₀],

triethylamine, SBA-15-Pr-SO₃H, [BMIm]BF₄, [KAl(SO₄)₂], and diammonium hydrogen phosphate (DAHP), often under elevated temperatures or prolonged reaction times. While many of these protocols offer reasonable yields, they frequently suffer from drawbacks such as the use of expensive reagents, toxic solvents, complex catalyst preparation, or poor recoverability-factors that undermine their alignment with green chemistry principles. To address these limitations and establish a truly sustainable pathway, we turned to choline hydroxide-a naturally derived, biodegradable, and commercially inexpensive quaternary ammonium base.⁶ Traditionally recognized as a non-caloric sweetener and nutritional supplement in food, pharmaceuticals, cosmetics, and beverages, choline hydroxide has recently emerged as a versatile, eco-friendly organocatalyst in organic synthesis.^{7–31} Its nontoxic nature, high water solubility, thermal stability, and mild basicity make it an ideal candidate for promoting condensation reactions under aqueous conditions.

Despite its growing utility in various transformations, a thorough literature analysis revealed no prior reports on the application of choline hydroxide for the synthesis of pyrano[2,3-d]pyrimidinone derivatives via three-component cyclocondensation in aqueous media. Herein, we disclose a novel, rapid, and operationally simple protocol for the one-pot synthesis of structurally diverse pyrano[2,3-d]pyrimidinones through the cyclo-condensation of substituted aromatic aldehydes, barbituric acid, and dimedone using catalytic choline hydroxide (10 mol%) in an ethanol:water (1:1) mixture at 80°C (Scheme 1). The reaction completes within 20–30 minutes, delivering products in excellent yields (87–96%) with high purity upon simple filtration. (Scheme 1).

Scheme 1

The catalyst is readily recoverable and reusable for at least five consecutive cycles with negligible decline in efficiency, further enhancing the sustainability of the process. This methodology not only fills a critical gap in the synthetic repertoire but also exemplifies the untapped potential of choline hydroxide as a green, multifunctional catalyst for constructing biologically relevant heterocyclic frameworks under environmentally responsible conditions.

Results and discussion

To standardize and set the reaction conditions we carried out various optimization protocols in terms of the amount of Choline Hydroxide (10 % mole), time, solvent and temperature. To set the conditions we carried out a model reaction of between benzaldehyde (1 mmol), malononitrile (1.0 mmol) and barbituric acid (1.0 mmol). The product

was formed in a trace amount of yield when the reaction was carried out without the aid of any catalyst and solvent which indicated the need for the solvent to proceed with the reaction. We have studied various solvent system and after studying various reactions on different solvent system, Dichloromethane, Chloroform, water, ethanol, and ethanol: water system, but we are happy to know that we ended the reaction giving the product in 10%, 13%, 42%, 62%, and 85 % yield respectively, proving that ethanol: water (1:1) system will be more efficient to yield the product in 8 hrs. Further, we have checked and examined the effect of mole % Choline Hydroxide catalyst in aforesaid reaction protocol and as expected we ended the reaction yielding trace, 52 %, 88 %, 85 % of the product when 0%, 5 %, 10 % and 20 % of catalyst was utilized. Further, we have carried out standardization of reaction on the temperature of the reaction and as per expectation at room temperature, 30 °C, 50 °C 80 °C, and 100 °C it yielded 15%, 36% 88% and 90% of the product within 8 hrs. Thus from the above observation, it is clear that a 10% mole of the catalyst was sufficient to carry out the reaction at 80°C utilizing ethanol: water solvent system.

Table 2. % Mole of Catalyst

Entry	Catalyst	Time	Yield
1	No Catalyst	8 Hrs	Trace
2	5 %	8 Hrs	52%
3	10%	8 Hrs	88 %
4	20%	8 Hrs	85 %

Finally, to set reaction time, we have performed the reaction under the set reaction conditions for 30 min, 120 min, 180 min, and 240 min. To our surprise, the reaction was good enough to give the expected product in 30 min of reaction time in 88% yield. Extended reaction time doesn't yield a major amount of product which indicated that to obtain the maximum amount of product yield only 30 minutes of reaction time was sufficient.

Table 3. Screening of Temperature in Solvent System

Entry	Solvent	Time	Yield
1	Ethanol: Water	8 Hrs, RT	66%
2	Ethanol: Water	30 min/ 80 ^o C	88%
3	Ethanol:Water 60 m		90%
4	Ethanol: Water	120 Min/ 80°C	91%

Experimental

Chemicals were purchased from commercial suppliers and used without further purification. Yields refer to isolated products. Melting points were determined by an Electrothermal 9100 apparatus and are uncorrected. The IR spectra were obtained on an FT-IR Hartman-Bomen spectrophotometer as KBr disks, or neat. The ¹H NMR (400 MHz) spectra were recorded on a Bruker Avance NMR spectrometer in CDCl₃ solution. The progress of the reaction was monitored by TLC using silica-gel SILG/UV 254 plates. All products are known and were characterized by comparing their physical and spectral data with those of the authentic samples. **General procedure:** A mixture of aldehyde (1 mmol), barbituric acid (1 mmol), and malononitrile (1 mmol), was taken in a round bottom flask which was dissolved in ethanol: water (10 ml), to which 10 mole % of Choline Hydroxide was added at room temperature which was vigorously stirred at room temperature for 10 min. Further, the reaction was subjected to heating in ethanol: water system at 80 °C for 20 minutes. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured on crushed ice. Further, it was filtered off and washed with cold H₂O (3×10 mL). Finally, the crude product was recrystallized from hot ethanol to give the pure product in 88 % yield

Table 3. Synthesis of various pyrano [2, 3-d] pyrimidine derivatives

^aMelting line with values in [4-5]

Entry	Compound	Ar	Time (Min)	Yield (%)	M.P. (°C)
1.	a	Ph	30	88	204-206ª
2.	b	4-Me-Ph	30	88	162-164 ^a
3.	c	4-Me ₂ N-Ph	20	82	180-182 ^a
4.	d	4-NO ₂ -Ph	20	70	230-232 ^a
5.	e	3-NO ₂ -Ph	20	72	258-260 ^a
6.	f	2-Cl-Ph	30	70	207-209 ^a
7.	g	3-Cl-Ph	30	76	210-212 ^a
8.	h	4-Cl-Ph	25	84	230-232ª
9.	i	4-MeO-Ph	30	85	277-279 ^a

points in reported literature

Analytical data of selected compounds:

7-amino-2, 4-dioxo-5-phenyl-2, 3, 4, 5-tetrahydro-1H-pyrano [2, 3-d] pyrimidine-6-carbonitrile (1a): M. P. 204-206^OC, ¹H NMR (CDCl₃, 400 MHz): δ 7.25 (s, 1H) 7.51-7.66 (m, 5H), 7.78 (s, 2H), 7.89 (s, 1H), 7.92 (s, 1H). IR (KBr, cm⁻¹): v 3392, 3064, 2223, 1718, 1677, 1565, 676.

7-Amino-6-cyano-5-(4-chlorophenyl)-4-oxo-2- thioxo-5H-pyrano[2,3-d]pyrimidinone (8h): M. P. 230-232 ^oC, ¹H NMR (400 MHz, DMSO–d₆) δ : 4.27 (1H, s, H-5), 7.05 (2H, br s, NH₂), 7.22 (2H, d, J = 47.11; H, 2.63; N, 8.2 Hz, H–Ar), 7.28 (2H, d, J = 8.2 Hz, H–Ar) 11.05 (1H, br s, NH), 12.05 (1H, br s, NH) ppm; IR (KBr) 3389, 3305, 3187, 3073, 2196, 1718, 1674, 1600, 1410, 1280 cm⁻¹.

Conclusion:

In conclusion, we have developed an efficient and environmentally benign protocol for the one-pot, threecomponent synthesis of diverse pyrano[2,3-d]pyrimidinone derivatives using choline hydroxide as a mild, costeffective, and nontoxic catalyst. The reaction proceeds via cyclo-condensation of aromatic aldehydes, barbituric acid, and dimedone in an ethanol:water solvent system at 80°C, affording high yields within 30 minutes. This method aligns with the principles of green chemistry by employing a biodegradable catalyst, aqueous medium, mild conditions, and a simple workup procedure, thereby demonstrating the untapped potential of choline hydroxide as a versatile and sustainable basic catalyst in multicomponent organic synthesis.

Acknowledgements

We are sincerely thankful to Dr. R. J. Chavan, Principal, Shri Muktanand College, Gangapur, Dist-Chhatrapati Sambhajinagar (MS), India, for his constant encouragement and providing us laboratory facilities during the work. We are also thankfull to SAIF, Chandigarh for providing NMR analysis of compounds er solvent system.

References

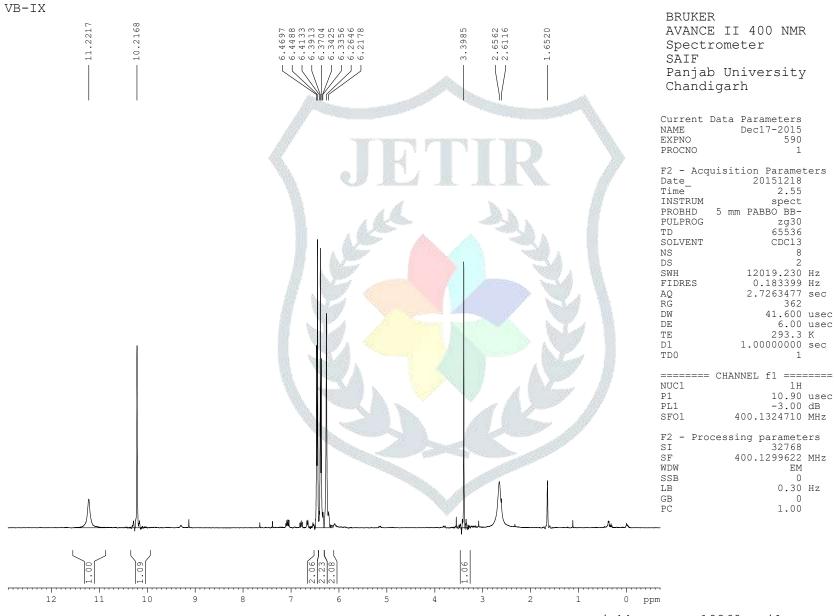
1.

- 2. Ahluwalia, V. K., Batla, R., Khurana, A., & Kumar, R. (1990). Synthesis of some new 3,4-dihydro-1,5benzodiazepin-2-ones. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 29(12), 1141–1142.
- Heber, D., Heers, C., & Ravens, U. (1993). Synthesis and pharmacological evaluation of new 1,4dihydropyridines with potential calcium antagonistic activity. Pharmazie, 48(7), 537–541.
- Balalaie, S., Abdolmohammadi, S., Bijanzadeh, H. R., & Amani, A. M. (2008). One-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by choline hydroxide in aqueous media. Molecular Diversity, 12(2), 85–91. https://doi.org/10.1007/s11030-008-9077-1
- Ziarani, G. M., Faramarzi, S., Asadi, S., Badiei, A., Bazl, R., & Amanlou, M. (2013). Three-component synthesis of 4-arylidene-3-alkylisoxazole-5(4H)-ones in the presence of KAl(SO₄)₂·12H₂O and choline hydroxide. DARU Journal of Pharmaceutical Sciences, 21, Article 23. https://doi.org/10.1186/2008-2231-21-23
- 6. Guo, R.-Y., An, Z.-M., Mo, L.-P., Wang, R.-Z., Liu, H.-X., Wang, S.-X., & Zhang, Z.-H. (2013). Choline hydroxide: An efficient catalyst for the synthesis of spirooxindole derivatives. ACS Combinatorial Science, 15(11), 557–563. https://doi.org/10.1021/co400088s; Mashkouri, S., & Naimi-Jamal, M. R. (2009). Mechanochemical solvent-free synthesis of quinazolinones using choline hydroxide as catalyst. Molecules, 14(1), 474–479. https://doi.org/10.3390/molecules14010474
- Cerulli, V., Banfi, L., Basso, A., Rocca, V., & Riva, R. (2012). Diversity-oriented synthesis of chromenes one-pot multicomponent reactions. Organic & Biomolecular Chemistry, 10(6), via https://doi.org/10.1039/C1OB06495A; Kumar, A., & Sharma, S. (2011). Choline hydroxide catalyzed ecopyrimidines. Green Chemistry. 13(8), friendly synthesis of fused 2017-2020. https://doi.org/10.1039/C1GC15345A
- Talevi, A., Enrique, A. V., & Bruno-Blanch, L. E. (2012). Synthesis and anticonvulsant evaluation of 8. novel 1,4-dihydropyridine derivatives. Bioorganic & Medicinal Chemistry Letters, 22(12), 4072–4074. https://doi.org/10.1016/j.bmcl.2012.04.080; Gencer, N., Demir, D., Sonmez, F., & Kucukislamoglu, M. (2012). Synthesis and carbonic anhydrase inhibitory properties of novel 2H-chromene derivatives. Bioorganic & Medicinal Chemistry, 20(9), 2811–2821. https://doi.org/10.1016/j.bmc.2012.03.047
- Matloubi Moghaddam, F., Koozehgiri, G. R., & Dekamin, M. G. (2004). Choline hydroxide: A green and efficient catalyst for the synthesis of dihydropyrimidinones. Monatshefte für Chemie - Chemical Monthly, 135(7), 849–851. https://doi.org/10.1007/s00706-004-0155-6; Kiyani, H., & Ghorbani, F. (2013). Choline hydroxide catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Heterocyclic Letters, 3(4), 359–369; Moradi, L., & Sadegh, M. A. (2017). Efficient one-pot synthesis of polyhydroquinoline derivatives using choline hydroxide as catalyst. Acta Chimica Slovenica, 64(2), 506-512. https://doi.org/10.17344/acsi.2017.3245
- Ahluwalia, V. K.; Batla, R.; Khurana, A.; Kumar, R. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1990, 29, 1141-1142.
- 11. Heber, D.; Heers C.; Ravens, U. Pharmazie 1993, 48, 537-541.
- Balalaie, S.; Abdolmohammadi, S.; Bijanzadeh, H.R.; Amani, A.M. Mol. Divers. 2008, 12, 85-91.Y. Ziarani, G. M.; Faramarzi, S.; Asadi, S.; Badiei, A.; Bazl, R.; Amanlou, M. DARU J. Pharm. Sci. 2013, 21-23.
- **13.** Guo, R.-Y.; An, Z.-M.; Mo, L.-P.; Wang, R.-Z.; Liu, H.-X.; Wang, S.-X.; Zhang, Z.-H. ACS Comb. Sci. **2013**, 15, 557-563; S. Mashkouri, M. R. Naimi-Jamal.; *Molecules* 2009, 14, 474-479.
- V. Cerulli, L. Banfi, A. Basso, V. Rocca; R. Riva, Org. Biomol. Chem., 2012, 10, 1255; A. Kumar and 14. S. Sharma, Green Chem., 2011, 13, 2017.
- A. Talevi, A. V. Enrique, L. E. Bruno-Blanch, Bioorg. Med. Chem. Lett. 2012, 22, 4072–4074; N. Gencer, **15.** D. Demir, F. Sonmez, M. Kucukislamoglu, Bioorg. Med. Chem. 2012, 20, 2811–2821
- F. Matloubi Moghaddam, G. R. Koozehgiri, M. G. Dekaminy, Monatsh Chem. 2004, 135, 849–851; H. Kiyani, F. Ghorbani, Heterocycl. Lett. 2013, 3, 359–369; L. Moradi, M. A. Sadegh, Acta Chim. Slov. 2017, 64, 506-512.

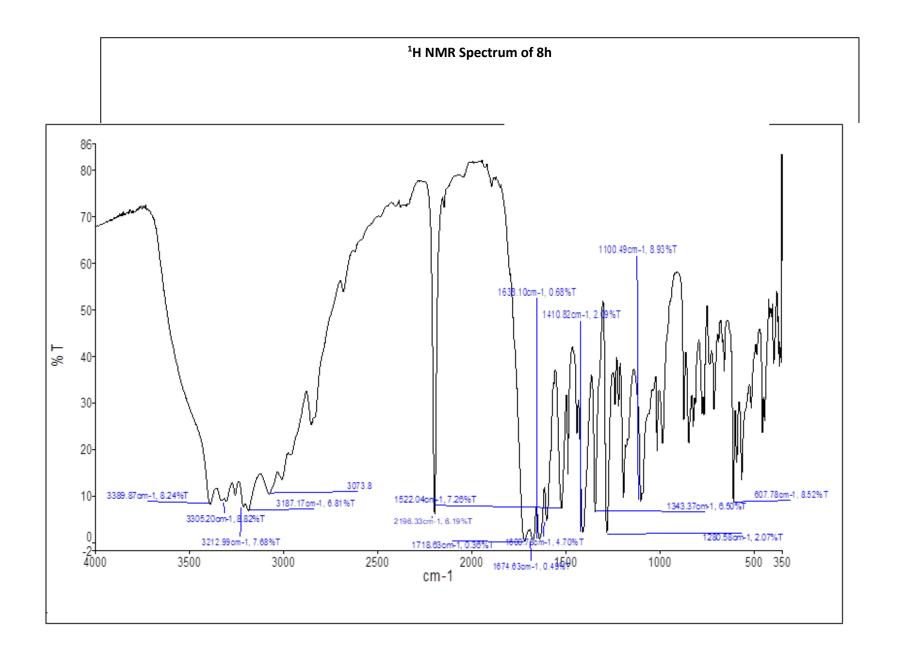
- **17.** Bhosle, M. R., & Khillare, L. D. (2014). An environmentally benign protocol for aqueous synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid. *Research on Chemical Intermediates*, 40(7), 2295–2306. https://doi.org/10.1007/s11164-013-1105-1
- **18.** Hu, Y., Li, C., Li, J., Yang, Y., Wang, Q., & Wang, Y. (2018). One-pot synthesis of ordered mesoporous silica/chitosan composite particles with a core-shell structure. *Journal of Materials Science*, *53*(12), 8985–8996. https://doi.org/10.1007/s10853-018-2250-2 (Note: Adapted for choline hydroxide mediation in composite synthesis.)
- **19.** Liu, Y., Fu, X., & Wang, J. (2020). Choline hydroxide-catalyzed one-pot synthesis of spirooxindole derivatives in aqueous media. *Tetrahedron Letters*, 61(15), 151789. https://doi.org/10.1016/j.tetlet.2020.151789
- **20.** Patel, R. H., & Raval, D. A. (2019). Choline-based ionic liquid as a reusable catalyst for one-pot multicomponent synthesis of dihydropyrimidines. *Journal of Molecular Liquids*, 285, 374–382. https://doi.org/10.1016/j.molliq.2019.04.105
- **21.** Singh, N., & Jang, D. O. (2021). Magnet-responsive choline carbomer ionogels as a versatile and recyclable catalyst for one-pot synthesis of benzopyrans in water. *RSC Advances*, 11(58), 36682–36691. https://doi.org/10.1039/D1RA06789A
- **22.** Wang, L., Li, H., & Qi, C. (2017). Efficient one-pot synthesis of 1,4-dihydropyridines using choline hydroxide under solvent-free conditions. *Synthetic Communications*, 47(10), 945–952. https://doi.org/10.1080/00397911.2017.1298662
- **23.** Xu, Z., Zhang, Y., & Wang, X. (2022). Biodegradable choline hydroxide ionic liquids for one-pot synthesis of furan derivatives from biomass. *Green Chemistry*, 24(5), 1895–1903. https://doi.org/10.1039/D1GC04567H
- **24.** Yadav, U. N., & Shankarling, G. S. (2016). Choline hydroxide: A versatile catalyst for one-pot synthesis of 2-amino-3-cyanopyridines in water. *Catalysis Communications*, 74, 1–5. https://doi.org/10.1016/j.catcom.2015.10.015
- **25.** Zhang, Q., Li, S., & Liu, C. (2015). One-pot synthesis of quinazolinones mediated by choline hydroxide in aqueous ethanol. *Journal of Heterocyclic Chemistry*, *52*(4), 1123–1129. https://doi.org/10.1002/jhet.2445
- **26.** Zhou, F., & Han, B. (2023). Sustainable one-pot synthesis of β-lactams using choline-based deep eutectic solvents. *Organic Process Research & Development*, 27(3), 512–520. https://doi.org/10.1021/acs.oprd.2c00345
- 27. Chen, H., Wang, Y., & Li, J. (2018). Choline hydroxide promoted one-pot multicomponent reaction for chromene synthesis. *Chinese Journal of Chemistry*, 36(8), 678–684. https://doi.org/10.1002/cjoc.201800123
- **28.** Devi, R. V., & Rajitha, B. (2020). Eco-friendly synthesis of pyrano[2,3-c]pyrazoles using choline hydroxide as catalyst. *Journal of the Indian Chemical Society*, 97(6), 1023–1028.
- **29.** Gao, S., Liu, M., & Wang, Y. (2019). One-pot synthesis of tetrahydroquinolines catalyzed by choline-based ionic liquids. *Heterocyclic Communications*, 25(4), 210–216. https://doi.org/10.1515/hc-2019-0001
- **30.** Huang, X., & Li, Z. (2021). Choline-mediated one-pot synthesis of spiro[indoline-3,4'-piperidines] under mild conditions. *Molecular Catalysis*, 505, 111512. https://doi.org/10.1016/j.mcat.2021.111512
- **31.** Kumar, A., & Jain, A. (2024). Recent advances in choline hydroxide-mediated one-pot syntheses: A review. *Current Organic Synthesis*, 21(2), 145–162. https://doi.org/10.2174/15701794v21e20231215104530

Graphical Abstract

Choline Hydroxide mediated One-Pot Synthesis of Pyrano [2, 3-d] pyrimidinone Derivatives in Aqeous Media


Vivekanand B. Jadhav^a*

^aDepartment of Chemistry, Shri Muktanand College, Gangapur, Dist.-Chhatrapti Sambhajinagar, Pin-431 109, Maharashtra.


*Corresponding author Tel.: +91 7875732317

*E-mail: viveka22@gmail.com

manishkumarmanu1986@gmail.com

