

A Pharmacological and Mechanistic Review of an **Integrated Ayurvedic Protocol for the Management** of Dyslipidemia

Author(s): [1DR ANIKET RAJPUT, 2DR DEEPAK KUMAR, 3DR RITIKA NAGPAL, 4DR SATRUGHNA BEHERA

1,2,3,4PG SCHOLAR, DEPARTMENT OF PANCHAKARMA, AYURVEDIC AND UNANI TIBBIA COLLEGE AND HOSPITAL, KAROL BAGH, NEW DELHI- 110005

Abstract

Background: Dyslipidemia, a major ASCVD risk factor, presents a significant global health burden. Ayurveda conceptualizes dyslipidemia as Medoroga (a metabolic disorder) and proposes a sequential Sodhana (purification) and Samana (palliative) approach, hypothesized to yield durable results.

Objective: This article reviews the pharmacological and mechanistic rationale of an integrated *Sodhana-Samana* protocol for dyslipidemia. It analyzes how the key formulations for *Deepana-Pachana*, *Snehapana* (oleation), Virechana (purgation), and Samana (palliation) synergistically target the pathophysiological stages of Medoroga.

Findings: The protocol is a multi-stage process involving metabolic priming (Deepana-Pachana), lipophilic toxin mobilization (Snehapana), and systemic purgation (Virechana). This sequential purification is designed to clear metabolic pathways (Srotorodha) by removing toxins (Ama). Following this, Shuddha Guggulu is administered as the final Samana (palliative) therapy. The purification is hypothesized to enhance the efficacy of Shuddha Guggulu's known hypolipidemic and anti-inflammatory mechanisms.

Conclusion: The classical *Sodhana-Samana* protocol is a synergistic therapeutic strategy addressing both the root cause (Srotorodha, Ama) and the manifestation (Meda accumulation) of dyslipidemia. By first clearing metabolic pathways, this integrated approach is hypothesized to provide a more durable and comprehensive outcome than palliative (Samana) therapy alone.

Keywords: Medoroga, Virechana Karma, Ayurveda, Trikatu, Guggulutiktaka Ghrita, Trivrit Avaleha, Shuddha Guggulu, Pharmacodynamics

1. Introduction

Dyslipidemia, characterized by elevated total cholesterol, low-density lipoprotein (LDL), triglycerides, or reduced high-density lipoprotein (HDL), is a principal driver of atherosclerotic cardiovascular disease (ASCVD).

As the leading cause of global mortality, ASCVDs represent a profound public health challenge [1, 2]. The conventional management of dyslipidemia relies heavily on pharmacotherapies like statins (HMG-CoA reductase inhibitors), which are first-line agents for lowering LDL-C [3]. However, their long-term use can be limited by a constellation of adverse effects, including statin-associated myopathy, hepatotoxicity, and an increased risk of new-onset type 2 diabetes [4, 5]. Other agents, such as fibrates (which primarily target triglycerides) and niacin (which raises HDL-C), are also limited by issues of tolerability, adverse effects, and less robust evidence for cardiovascular event reduction in modern statin-treated patients [5, 6].

These limitations, coupled with the need to address the residual inflammatory risk and oxidative stress integral to atherogenesis, have spurred investigation into holistic systems like Ayurveda [7]. Ayurveda provides a comprehensive framework for metabolic disorders, correlating dyslipidemia with the concept of Medoroga (a disorder of fat tissue) or Santarpanajanya Vyadhi (a disease of over-nutrition) [8, 9]. The Ayurvedic pathogenesis posits that a sedentary lifestyle and improper diet lead to impaired metabolic fire (Agni Māndya), resulting in the formation of Ama (toxic, unprocessed metabolic residue) [10, 11]. This Ama, along with vitiated Kapha dosha, obstructs bodily channels (Srotas), a state known as Srotorodha [10]. This obstruction, in turn, impairs the metabolism of Meda Dhatu (adipose tissue), leading to its abnormal accumulation and the clinical picture of dyslipidemia [8, 12].

For such deep-seated, chronic disorders, Ayurveda advocates a dual approach: Sodhana (purification) to eliminate the root cause (Ama and Srotorodha), followed by Samana (palliation) to pacify residual doshas and restore normal *Dhatu* metabolism [13]. *Virechana Karma* (therapeutic purgation) is the *Sodhana* procedure of choice, as it is specifically indicated for expelling vitiated *Pitta* (the dosha governing metabolism) and Kapha [14, 15]. This article provides a pharmacological review of a specific, integrated Virechana protocol, analyzing the mechanistic role of each formulation in targeting the pathophysiology of *Medoroga*.

2. The Ayurvedic Pathophysiology of Dyslipidemia (Medoroga)

To understand the rationale of the treatment, one must first understand the pathology it seeks to reverse. The Ayurvedic conception of *Medoroga* is a pathological cascade that begins with *Agni Māndya* (hypofunction of digestive/metabolic fire) as the initial defect [16]. This impaired metabolic capacity leads to the incomplete digestion of food and the formation of Ama, a sticky, toxic, unprocessed metabolic residue [17].

This Ama is conceptually similar to modern biomarkers like advanced glycation end products, oxidized lipids, and pro-inflammatory metabolites that are known to induce systemic inflammation and endothelial dysfunction [18]. Due to its heavy and sticky nature, Ama lodges in the Srotas (microchannels), causing Srotorodha (obstruction). This state is analogous to the impaired microvascular exchange and atherogenic lipid deposition seen in modern pathophysiology [10, 19]. This obstruction is the central pathology; it prevents the proper nutrition of subsequent tissues and, critically, deranges the metabolism of Meda Dhatu (adipose tissue), causing its pathological increase.

Therefore, the therapeutic objective is not merely to lower lipid levels, but to dismantle this entire pathological cascade: to restore *Agni*, digest *Ama*, and clear the *Srotas* [20, 21].

3. Pharmacological Rationale of the Sodhana (Purification) Protocol

The *Sodhana* phase, with *Virechana Karma* as its cornerstone, is a precise, sequential process. Each formulation is administered at a specific stage to pharmacologically reverse the pathology of *Medoroga*.

3.1 Stage 1: Metabolic Priming (Deepana-Pachana) with Trikatu Churna

Before toxins can be mobilized, the body's metabolic fire must be optimized to prevent further *Ama* production. This preparatory stage is known as *Deepana-Pachana* (kindling and digesting). The formulation of choice is Trikatu Churna, a powder of *Sunthi* (*Zingiber officinale*), *Marica* (*Piper nigrum*), and *Pippalī* (*Piper longum*) [22]. The classical pharmacology of Trikatu is defined by the synergistic action of its three pungent components, detailed in Table 1.

 Table 1: Pharmacological Properties of Trikatu Churna Ingredients [23]

Sanskrit	Botanical	Rasa	Guna	Vīrya	Vipāka	Karma
Name	Name	(Taste)	(Quality)	(Potency)	(Post-	(Action)
					Digestive)	
Sunthi	Zingiber	Kaţu	Laghu, Snigdha	Uṣṇa (Hot)	Madhura	Deepana,
	officinale	(Pungent)	(Light,		(Sweet)	Pachana,
			Unctuous)			Kapha-Vata hara
Marica	Piper	Kaţu	La <mark>ghu, Tīkṣ</mark> ṇa	Uṣṇa (Hot)	Kaṭu	Deepana,
	nigrum	(Pungent)	(Light, Sharp)		(Pungent)	Kapha-Vata
		M &				hara, Pramāthi
Pippalī	Piper	Kaṭu	Laghu, Snigdha	An-uṣṇa-sita	Madhura	Rasāyana,
	longum	(Pungent)	(Light,	(Not hot, not	(Sweet)	Deepana,
			Unctuous)	cold)		Kapha-Vata hara

These properties make Trikatu a potent *Deepana* (appetizer) and *Pachana* (digestive) agent. It directly stimulates *Jatharagni* (digestive fire), corrects *Agnimandya*, and digests existing *Ama* [23]. From a modern perspective, its bioactives (piperine, gingerols) enhance thermogenesis and fat oxidation. Furthermore, piperine from *Marica* and *Pippalī* is a well-established *Yogavahi* (bioavailability enhancer), which potentiates the absorption and efficacy of the drugs administered in the next stages [24]. By correcting *Agni* and enhancing bioavailability, Trikatu *prepares the body* for the next, more intensive phase: internal oleation.

3.2 Stage 2: Toxin Mobilization (Snehapana) with Guggulutiktaka Ghrita

With *Agni* stabilized, the protocol shifts to *Snehapana* (internal oleation) to mobilize deep-seated, tissue-adhered *doshas* and toxins. The formulation used for this is Guggulutiktaka Ghrita, a complex, medicated ghee (*Ghrita*) containing *Guggulu* (*Commiphora mukul*) and numerous *Tikta* (bitter) herbs like *Nimba* (*Azadirachta indica*), *Patola* (*Trichanthes dioica*), and *Guduchi* (*Tinospora cordifolia*) [10].

This formulation is a pharmacological masterpiece. The *Ghrita* (ghee) base acts as the *Sneha dravya* (oleating agent). Its *Snigdha* (unctuous) and *Sukshma* (subtle, penetrating) properties allow it to act as a *lipophilic solvent*, penetrating deep into lipid-rich tissues like *Meda Dhatu* [25]. While the ghee acts as the solvent, the bitter herbs (*Tikta Dravyas*) and *Guggulu* (detailed in Table 2) perform the active work of *Srotoshodhana* (channel cleansing) and *Lekhana* (scraping) [26]. This combination achieves *Doshapakarshana*—the mobilization of toxins from the periphery towards the GI tract [12]. Modern interpretations suggest the ghee facilitates absorption of fat-soluble phytoconstituents, while the bitter herbs support hepatic detoxification pathways and enhance cholagogue (bile flow) activity [27]. Guggulutiktaka Ghrita thus acts as a highly specific mobilizing agent, liquefying and directing the target toxins to the gastrointestinal tract, setting the stage for their expulsion.

Table 2: Pharmacological Properties of Key Guggulutiktaka Ghrita Ingredients [23]

Sanskrit	Botanical	Rasa (Taste)	Guna	Vīrya	Vipāka	Karma (Action)
Name	Name		(Quality)	(Potency)	(Post-	
					Digestive)	
Guggulu	Commiphora	Tikta, Kaṭu	Laghu,	Uṣṇa	Kaṭu	Lekhana,
	mukul	(Bitter,	Rūkṣa	(Hot)	(Pungent)	Shothahara, Kapha-
		Pungent)	(Light, Dry)			Vata hara
Nimba	Azadirachta	Tikta, Kaṣāya	Laghu,	Sita (Cold)	Kaṭu	Raktashodhaka,
	indica	(Bitter,	Rūkṣa		(Pungent)	Kaphapittahara
		Astringent)	(Light, Dry)			
Patola	Trichosanthes	Tikta (Bitter)	Laghu,	Uṣṇa	Kaṭu	Pittahara,
	dioica		Rūkṣa	(Hot)	(Pungent)	Shothahara
			(Light, Dry)			
Guduchi	Tinospora	Tikta, Kaṣāya	Laghu,	Uṣṇa	Madhura	Tridoṣahara,
	cordifolia	(Bitter,	Snigdha	(Hot)	(Sweet)	Rasāyana, Deepana
		Astringent)	(Light,			
			Unctuous)			
Vāsā	Adhatoda	Tikta, Kaṣāya	Laghu,	Sita (Cold)	Kaṭu	Kaphapittahara,
	vasica	(Bitter,	Rūkṣa		(Pungent)	Raktashodhaka
		Astringent)	(Light, Dry)			
Kaţukā	Picrorhiza	Tikta (Bitter)	Laghu,	Sita (Cold)	Kaṭu	Pitta-Kapha
	kurroa		Rūkṣa		(Pungent)	ŚAmaka,
			(Light, Dry)			Yakṛtottejaka (Liver
						stimulant)

3.3 Stage 3: Systemic Purgation (Pradhana Karma) with Trivrit Avaleha

Following the successful mobilization of *doshas* from the tissues to the gut, the *Pradhana Karma* (main procedure) is initiated to eliminate them from the body. The drug of choice is Trivrit Avaleha, a linctus whose chief ingredient is *Trivrit* (*Operculina turpethum*) [28]. Classically, *Trivrit* is revered as a superior purgative (*Virechaka Dravya*) with a *Rechaka* (purgative) *Prabhāva* (specific action) [23]. It is specifically indicated to forcefully expel morbid *Pitta* (which governs metabolism and bile) and *Meda* (fat) from the body through the anal route [12]. The pharmacological properties of its key components are listed in Table 3.

Table 3: Pharmacological Properties of Trivrit Avaleha Ingredients [23, 29]

Sanskrit Name	Botanical Name	Rasa (Taste)	Guna (Quality)	Vīrya (Potency)	Vipāka (Post- Digestive)	Karma (Action)
Trivṛit	Operculina	Tikta,	Laghu,	Uṣṇa	Madhura	Rechaka,
	turpethum	Madhura	Snigdha, Sara	(Hot)	(Sweet)	Kaphapittahara
		(Bitter, Sweet)	(Light,			
			Unctuous,			
			Flowing)			
Drākṣā	Vitis vinifera	Madhura,	Snigdha, Mṛdu	Sita (Cold)	Madhura	Pittahara,
		Kaṣāya	(Unctuous,		(Sweet)	Raktaprasādaka
		(Sweet,	Soft)	A St		(Blood soother)
		Astringent)		12º		

This is not a simple laxative effect; it is a targeted therapeutic purge. The modern pharmacological correlate is the action of its active resinous glycoside, turpethin, which possesses a strong laxative and cholagogue (bile-promoting) effect [29]. This powerful purgation flushes the GI tract, expelling the bile and associated lipid-laden metabolic residues that were mobilized by the *Snehapana* phase, effectively "resetting" the gut-liver axis.

3.4 Adjuvant Therapy: Phaltrikadi Kwatha

To support the main purgation and ensure complete channel cleansing, adjuvant formulations like Phaltrikadi Kwatha are often employed. This is a decoction (*Kwatha*) containing *Triphala* (*Haritaki*, *Bibhitaki*, *Amalaki*), *Nimba*, *Patola*, *Guduchi*, and *Musta* [30]. Its classical role, driven by its *Tikta/Kashaya Rasa* (bitter/astringent), is to act as a *Srotoshodhaka* (channel purifier) and *Raktashodhaka* (blood purifier) [23]. The properties of its main ingredients (Table 4) allow it to function as a "clean-up crew," washing the channels of any residual *Ama* and preventing toxin re-accumulation, while the *Triphala* base provides gentle, *Rasayana* (rejuvenative) detoxification [31].

Table 4: Pharmacological Properties of Phaltrikadi Kwatha Ingredients [23]

Sanskrit Name	Botanical Name	Rasa (Taste)	Guna (Quality)	Vīrya (Potency)	Vipāka (Post- Digestive)	Karma (Action)
Haritakī	Terminalia chebula	Kaṣāya (Astringent), Amla (Sour), Madhura (Sweet)	Laghu, Rūkṣa (Light, Dry)	Uṣṇa (Hot)	Madhura (Sweet)	Tridoṣahara, Rasāyana, Anulomana (regulates Vāyu)
Bibhītakī	Terminalia bellirica	Kaṣāya (Astringent)	Laghu, Rūkṣa (Light, Dry)	Uṣṇa (Hot)	Madhura (Sweet)	Kaphahara, Lekhana
Amalakī	Emblica officinalis	Amla (Sour), Madhura (Sweet)	Laghu, Rūkṣa (Light, Dry)	Sita (Cold)	Madhura (Sweet)	Pittahara, Rasāyana
Musta	Cyperus rotundus	Tikta, Kaţu, Kaṣāya (Bitter, Pungent, Astringent)	Laghu, Rūkṣa (Light, Dry)	Sita (Cold)	Kaţu (Pungent)	Deepana, Pachana, Kaphapittahara

4. The Samana (Palliative) Phase: Restoring Homeostasis with Shuddha Guggulu

Once the *Sodhana* protocol has systemically cleansed the body, the patient enters the *Paschat Karma* (post-procedural) and *Samana* (palliative) phase. The body, now free from *Srotorodha*, is in a highly receptive state to restorative medicine. This is when the primary *Samana* drug for *Medoroga*, *Shuddha Guggulu* (purified *Commiphora mukul* resin), is administered [32]. *Shuddha Guggulu* is the quintessential *Lekhanā* (scraping) and *Medohara* (fat-reducing) drug in the Ayurvedic pharmacopeia [10], as detailed in Table 5.

Table 5: Pharmacological Properties of Shuddha Guggulu [23, 33]

Sanskrit Name	Botanical Name	Rasa (Taste)	Guna (Quality)	Vīrya (Potency)	Vipāka (Post- Digestive)	Karma (Action)
Guggulu	Commiphora mukul	Tikta, Kaṭu (Bitter, Pungent)	Laghu, Rūkṣa (Light, Dry)	Uṣṇa (Hot)	Kaţu (Pungent)	Lekhana, Medohara, Shothahara, Kapha- Vata hara

The hypolipidemic action of *Guggulu* is attributed to its bioactive guggulsterones (E and Z) [34, 35]. Its mechanisms are multifactorial and directly address the modern understanding of dyslipidemia:

- Nuclear Receptor Modulation: Guggulsterones interact with nuclear receptors (e.g., FXR) involved in bile acid signaling and cholesterol homeostasis [27].
- Enhanced LDL Clearance: Preclinical data suggest *Guggulu* may upregulate hepatic LDL receptor activity, enhancing the clearance of circulating LDL-C [36].
- Anti-inflammatory Action: Guggulsterone has been shown to inhibit the activation of NF-κB (nuclear factor-kappa B), directly targeting the low-grade inflammation that drives atherogenesis [37].
- Antioxidant Activity: The extracts demonstrate antioxidant properties, reducing lipid peroxidation and the formation of atherogenic oxidized LDL [37].

These mechanisms demonstrate that *Shuddha Guggulu* works on the *same pathways* implicated in modern atherogenesis, providing a clear molecular basis for its traditional use.

5. Review of Clinical Evidence

While the pharmacological rationale for this multi-step protocol is strong, a review of the clinical evidence for its individual components reveals a complex and heterogeneous picture.

5.1 Evidence for Sodhana (Virechana)

Clinical data on *Virechana Karma* as a standalone therapy for dyslipidemia is limited but promising. Pilot studies and controlled clinical trials have reported that *Panchakarma* procedures, including *Virechana*, can lead to significant reductions in lipid parameters. Notably, *Virechana* has been observed to be particularly effective in reducing serum triglyceride levels, lending modern clinical support to the classical concept of it clearing *Kapha* and *Meda* accumulation [38].

5.2 Evidence for Samana (Shuddha Guggulu)

The clinical evidence for *Shuddha Guggulu* monotherapy is more extensive but notably inconsistent. Early trials, primarily from India, reported significant hypolipidemic effects, with reductions in total cholesterol and

triglycerides [36, 39]. This led to the development and marketing of a standardized extract. However, a subsequent high-quality, randomized, double-blind, placebo-controlled trial conducted in the U.S. found no significant lipidlowering effect from the same standardized extract in a Western population [27]. This discrepancy highlights potential issues in standardization, population differences, or dietary contexts. The overall clinical evidence, therefore, remains equivocal, suggesting that Guggulu's efficacy may be dependent on other factors—a possibility that supports the Ayurvedic premise of preparatory *Sodhana*.

6. Integrative Rationale, Gaps in Research, and Future Directions

The true therapeutic power of this protocol, as conceptualized in Ayurveda, lies not in any single formulation, but in their *integrated*, *synergistic sequence*. The therapeutic logic is sequential:

- 1. **Ignite:** Trikatu corrects *Agni* to halt *Ama* production.
- 2. Mobilize: Guggulutiktaka Ghrita penetrates deep tissues to "dissolve" and mobilize lipid-soluble Ama.
- 3. **Expel:** Trivrit Avaleha purges these mobilized toxins from the gut-liver axis.
- 4. **Restore:** Shuddha Guggulu is then administered to the "cleansed" system.

The classical justification for this Sodhana-Samana sequence is that it is superior to Samana (palliative) therapy alone [8]. By first performing Virechana, the Srotorodha (channel obstruction) is cleared. This "cleansing" is hypothesized to dramatically enhance the bioavailability, tissue penetration, and ultimate therapeutic efficacy of the Shuddha Guggulu that follows [13].

Despite this strong sequential logic, significant gaps remain in the research. There is a lack of large, high-quality RCTs that directly compare Samana monotherapy (e.g., Shuddha Guggulu alone) against the complete Sodhana-Samana sequence. Furthermore, a lack of standardization in Panchakarma protocols and herbal preparations plagues the field.

A clear future direction for this research emerges: the need for well-designed, comparative clinical trials. Such trials should not only compare the two protocols (Samana vs. Sodhana + Samana) but also incorporate modern biomarkers to bridge classical concepts with modern pathophysiology. For instance, measuring Apolipoprotein B (ApoB) would offer a precise count of atherogenic particles (correlating with Meda), while high-sensitivity Creactive protein (hs-CRP) could serve as a direct surrogate for the inflammatory Ama component [40, 41]. Validating the Ayurvedic protocol using these advanced biomarkers would be a critical step in integrating this holistic approach into modern metabolic medicine.

7. Conclusion

This integrated Ayurvedic protocol for dyslipidemia is a sophisticated, multi-stage strategy designed to correct metabolic dysfunction from its root. It moves beyond simple palliation by employing a systematic sequence of metabolic priming, toxin mobilization, and systemic purgation before initiating restorative therapy. While the pharmacological rationale is robust and the preliminary clinical evidence is promising, the true additive benefit

of this Sodhana-Samana sequence remains to be definitively proven. Rigorous, comparative clinical trials are warranted to validate this holistic protocol and its potential as a comprehensive intervention for dyslipidemia and the prevention of cardiovascular disease [3, 42, 43, 44, 45, 46].

8. References

- 1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis. Lancet. 2020;396(10258):1204-22.
- 2. World Health Organization. Cardiovascular diseases (CVDs). Geneva: WHO; 2021.
- 3. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC Guideline on the management of blood cholesterol. Circulation. 2019;139(25):e1082-143.
- 4. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2533-61.
- 5. Keene D, Price C, Shun-Shin MJ, Francis DP. Lipid effects of nicotinic acid. BMJ. 2014;349:g4379.
- 6. Tenenbaum A, Fisman EZ. Fibrates in 2012: still essential drugs in the battle against atherogenic dyslipidemia. Cardiovasc Diabetol. 2012;11:1-11.
- 7. Dwivedi S, Aggarwal A. Ayurvedic concept of lipid metabolism. AYU. 2015;36(4):345–51.
- 8. Sharma PV, editor. Charaka Samhitā (Text with English Translation). Varanasi: Chaukhambha Orientalia; 2011.
- 9. Singh RH. The Ayurvedic concept of dyslipidemia (Medoroga). Anc Sci Life. 2008;28(2):10–5.
- Srikantha Murthy KR, editor. Aştānga Hrdaya (Text with English Translation). Varanasi: 10. Chaukhambha Krishnadas Academy; 2017.
- 11. Tripathi JS, Singh RH. Medoroga: Ayurvedic perspective of obesity. J Res Ayurveda Siddha. 1993;14(3):1–8.
- 12. Bhishagratna KK, editor. Suśruta Samhitā (Text with English Translation). Varanasi: Chaukhambha Sanskrit Series; 2014.
- Dwivedi S. Ayurvedic concept of dyslipidemia and its management with Guggulu. J Ayurveda 13. Integr Med. 2014;5(2):110-5.
- 14. Shukla R, Sharma V, Sinha A. Role of Virechana in dyslipidemia. AYU. 2020;41(4):245–50.
- 15. Gupta AK, Maheshwari RK. Modern relevance of Virechana therapy. AYU. 2017;38(2):125–33.
- 16. Chaturvedi G, editor. Charaka Samhita (Hindi Commentary). Delhi: Chaukhambha Publications; 2007.
- Vagbhata. Aṣṭāṅga Saṃgraha. Sharma PV, translator. Varanasi: Chaukhambha Orientalia; 2016. 17.

- Dwivedi S. Integration of Ayurveda with modern cardiology. J Res Ayurveda Siddha. 2017;38(1):7–13.
- 19. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.
- 20. Gogate SS, Kulkarni SD. Anti-inflammatory and lipid-lowering effects of Guggulu. AYU. 2019;40(3):190-7.
- 21. Swati R, Prasad H. Role of Ayurveda in metabolic disorders: a review. AYU. 2019;40(2):102–9.
- 22. Tripathi B. Madanapāla Nighantu. Varanasi: Chaukhambha Krishnadas Academy; 2012.
- Sharma PV. Dravyaguna Vigyana. Vol. II. Varanasi: Chaukhambha Bharati Academy; 2010. 23.
- 24. Dahanukar SA, Kulkarni RA, Rege NN. Pharmacology of medicinal plants and natural products. Indian J Pharmacol. 2000;32(4):81–118.
- 25. Sharma RK, Dash B, editors. Caraka Samhitā (Text with Commentary). New Delhi: Rashtriya Sanskrit Sansthan; 2010.
- 26. Gogate SS, Bhattacharya S, Kulkarni SD. Effect of Virechana Karma and Śuddha Guggulu in dyslipidemia. AYU. 2020;41(3):180-7.
- 27. Urizar NL, Moore DD. Guggulsterone: cholesterol and bile acid metabolism. Annu Rev Nutr. 2003;23:303-13.
- Sharangadhara Samhita. (as cited in thesis). 28.
- 29. Khare CP. Indian Medicinal Plants: An Illustrated Dictionary. New York: Springer; 2007.
- 30. Yoga Ratnakara. (as cited in thesis).
- 31. Mishra LC, editor. Scientific Basis for Ayurvedic Therapies. Boca Raton: CRC Press; 2004.
- Dwivedi S, Singh V, Verma S. Comparative evaluation of Suddha Guggulu with and without 32. Panchakarma in hyperlipidemia. J Res Ayurveda Siddha. 2015;36(1):25–33.
- 33. Kapoor LD. Handbook of Ayurvedic Medicinal Plants. Boca Raton: CRC Press; 2001.
- 34. Satyavati GV. Guggulipid: a promising hypolipidemic agent from Commiphora mukul. Econ Med Plant Res. 1991;5:47-82.
- 35. Dahanukar SA, Thatte UM. Ayurvedic pharmacology and pharmacodynamics of Guggulu. Indian Drugs. 1989;26(10):458-66.
- 36. Agarwal RC, Gupta SK. Clinical evaluation of Guggulipid in patients with hyperlipidemia. Indian J Med Res. 1986;83:90-4.
- 37. Singh RB, Niaz MA, Ghosh S. Hypolipidemic and antioxidant effects of guggulipid. Cardiovasc Drugs Ther. 1994;8(4):659-64.

- 38. Pooja BA, et al. A standard controlled clinical study on Virechana Karma and Lekhana Basti in the management of dyslipidemia. (As cited in thesis).
- 39. Nityanand S, Kapoor NK. Clinical trials with Guggulipid. J Assoc Physicians India. 1989;37(5):323–8.
- 40. Walldius G, Jungner I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med. 2004;255(2):188–205.
- 41. Ridker PM. A Test in Context: High-Sensitivity C-Reactive Protein. J Am Coll Cardiol. 2016;67(6):712–23.
- 42. Joshi S, Kulkarni SD. Panchakarma in dyslipidemia: an evidence-based approach. J Ayurveda Integr Med. 2020;11(4):482–91.
- 43. Patel KS, Acharya R, Shukla VJ. Clinical evaluation of Panchakarma therapy in hyperlipidemia. AYU. 2019;40(1):54–60.
- 44. Anand R, et al. Panchakarma in non-communicable disease prevention. AYU. 2021;42(2):110–8.
- 45. Kumar A, Khanna P. Integrating Ayurveda and modern lipid therapy. J Ayurveda Integr Med. 2021;12(3):425–35.
- 46. Bansal V, Singh R. Integrative approach to dyslipidemia. J Ayurveda Integr Med. 2020;11(4):465–71.