
© 2025 JETIR November 2025, Volume 12, Issue 11                                                  www.jetir.org (ISSN-2349-5162) 

  

 

JETIR2511308 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d66 
 

 

MAXIMIZING THE INPUT REUSE FOR A 

DEPTHWISE CONVOLUTION USING BIRD 

(BIDIRECTIONAL INPUT REUSE 

DATAFLOW) 
1T Kalpana, 2 N Balaji 

1PG Student, 2Professor, Department of Electronics and Communication Engineering 

thotekalpana453@gmail.com, narayanambalaji@jntucek.ac.in  

University College of Engineering, JNTU Kakinada, Andhra Pradesh, India  

 

Abstract- Depthwise convolution is widely used in lightweight CNNs (e.g., MobileNet, EfficientNet) because it sharply reduces 

multiply–accumulate (MAC) counts by decoupling spatial from cross-channel processing. However, naively mapping depthwise 

kernels onto conventional systolic arrays yields poor PE utilization: each channel’s spatial kernel is applied independently, so many 

PEs sit idle while a single channel streams through the array. The Bi-Directional Input Reuse Dataflow (BiRD) mitigates this 

inefficiency by enabling both vertical and horizontal reuse of input activations along the systolic chain. BiRD reduces redundant 

off-chip/on-chip transfers, increases arithmetic intensity, and substantially raises average PE utilization. In the proposed work we 

extend the Bi-Directional Input Reuse Dataflow (BiRD) to support 3×3 depthwise kernels while retaining the original five–

processing-element (5-PE) systolic chain developed for 2×2 operations. Rather than increasing the PE count, the design time-

multiplexes the 5-PE strip by dynamically classifying PEs as active or inactive and using local registers to preserve partial sums 

across cycles.  To accelerate the arithmetic path without significantly enlarging the datapath footprint, the MAC macro integrates a 

Radix-4 Booth multiplier with local accumulation. The complete design was implemented in synthesizable Verilog and validated 

in Vivado: RTL simulation and post-synthesis functional checks confirm correct convolution outputs for 3×3 depthwise kernels, 

and synthesis reports show only a small area overhead relative to the 2×2 baseline. Overall, the architecture attains high on-chip 

data reuse and improved PE utilization for larger kernels, making it an attractive, resource-efficient choice for edge-AI accelerators 

that require compact, high-throughput depthwise convolution support. 
 

Index Terms - Depthwise Convolution, BiRD Dataflow, Systolic Array, Radix-4 Booth Multiplier, Multiply-Accumulate (MAC), 

Verilog HDL, FPGA Acceleration, Low-Power Edge Computing. 

 

1.INTRODUCTION 

Convolutional Neural Networks (CNNs) remain the dominant backbone for computer vision tasks such as classification, detection, 

and segmentation, but their computational and memory demands pose significant challenges for deployment on low-power 

embedded and edge-AI platforms. A major contributor to this overhead is the dense spatial–channel coupling inherent in standard 

convolutions, which tightly links feature-map dimensions with channel mixing and leads to high multiply–accumulate (MAC) 

intensity. Depthwise separable convolution (DSC), popularized by MobileNet and its successors [3]–[5], addresses this issue by 

decomposing the convolution operation into a depthwise spatial filtering stage followed by a lightweight 1×1 pointwise convolution. 

While this decomposition drastically reduces MAC operations by eliminating inter-channel interactions during the depthwise phase, 

the resulting per-channel sparsity introduces non-trivial challenges when mapping DSC onto conventional dense systolic arrays. 

Traditional systolic processors are optimized for dense matrix multiplication in which all processing elements (PEs) operate 

continuously and uniformly. In contrast, depthwise convolutions execute each channel independently; when mapped naïvely onto 

a dense systolic fabric, this independence leaves a substantial portion of the PEs idle, significantly reducing utilization and 

arithmetic intensity. This structural mismatch leads to increased idle cycles, wasted bandwidth, and limited system-level efficiency, 

preventing DSC from reaching its potential on resource-constrained accelerators [12]–[16]. 

The Bi-Directional Input Reuse Dataflow (BiRD) proposed by Park et al. [1], [18] addresses this challenge by reorganizing the 

compute fabric into a compact linear PE chain and enabling input activations to stream in both forward and backward directions. 

By aligning temporal windows of overlapping receptive fields, BiRD effectively reuses data across adjacent spatial windows, 

greatly reducing redundant feature-map reloads and improving PE utilization for 2×2 depthwise kernels. However, many modern 
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lightweight CNN architectures—including MobileNetV2, MobileNetV3, ShuffleNet, ESPNet, and EfficientNet [4], [5], [8]–[11]—

rely heavily on 3×3 depthwise convolutions, which require additional control, synchronization, and accumulation support not 

addressed by the original BiRD design. 

To support these larger kernels without increasing hardware area, this work extends the BiRD methodology to efficiently execute 

3×3 depthwise convolutions on a fixed five-PE (5-PE) systolic strip. The proposed architecture uses a time-multiplexed activation 

pattern, allowing PEs to dynamically toggle between active and inactive states while preserving intermediate partial sums in local 

registers. This enables continuous streaming of activations and maximizes spatial reuse without requiring additional PEs or 

expanding the systolic footprint. To further enhance computational throughput within the same area budget, each PE integrates a 

Radix-4 Booth multiplier, which reduces the number of partial products and shortens the critical path compared with simple shift-

add or Radix-2 multipliers. Such encoders and optimized multiplier designs have been shown to significantly lower switching 

activity, area, and latency in CNN accelerators [2]. 

By combining bi-directional activation reuse, local partial-sum retention, lightweight multicast/bypass routing, and Booth-

accelerated MAC units, the proposed 3×3 BiRD extension achieves high PE utilization, reduced memory traffic, improved energy 

efficiency, and increased throughput, all without enlarging the hardware array. These attributes make the architecture well suited 

for low-power FPGAs and compact edge-AI accelerators that require efficient depthwise convolution support 

2. METHODOLOGY  

In summary, the literature presents complementary solutions at the algorithmic, dataflow, and arithmetic levels, but gaps remain 

where these techniques intersect: few works jointly optimize PE-level data reuse for larger kernels (3×3) while preserving a compact 

systolic footprint and integrating area- and power-efficient multiplier architectures. The present work addresses this gap by 

extending the BiRD dataflow to 3×3 depthwise convolutions on the original 5-PE strip and by incorporating Radix-4 Booth MACs 

to balance throughput, area, and energy. 

2.1 Overview of the BiRD Base Architecture 

The BiRD (Bi-Directional Input Reuse Dataflow) method focuses on maximizing input reuse for depthwise convolution operations 

in systolic arrays. In traditional weight-stationary (WS) or output-stationary (OS) dataflows, only one directional data reuse is 

achieved, which limits hardware utilization when processing lightweight convolutional layers such as those in MobileNet or 

EfficientNet architectures. The BiRD technique enhances this by reusing input activations both horizontally and vertically, thereby 

achieving two-dimensional reuse without increasing the number of processing elements (PEs). 

In the reference design, a 5-Processing Element (PE) systolic array is used to perform a 2×2 depthwise convolution kernel. Among 

the five PEs, PE0, PE1, PE3, and PE4 are active for MAC computations, while PE2 remains inactive and functions as a pass-through 

element for partial sums. Inputs are injected into the array in a staggered sequence, ensuring that new data enters PE0 every clock 

cycle while partial sums propagate through the active PEs. Each PE includes a data register, weight register, and an accumulator. 

The load enable counter signal freezes the input during accumulation cycles, ensuring that data is reused efficiently across multiple 

windows without being reloaded from memory. 

 

                                                 Figure 1: BiRD Architecture Using 5 PEs (Vertical Dataflow) 
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The architecture in Fig. 1 implements correct multiply–accumulate semantics for a 2×2 depthwise convolution using a compact 

five–processing-element (5-PE) systolic strip. By time-multiplexing computation and preserving intermediate partial sums in a 

central pass-through PE, the design minimizes both silicon area and off-chip memory traffic while maintaining continuous streaming 

of input activations. This 5-PE baseline therefore provides a resource-efficient foundation for extending the BiRD dataflow to 

support larger kernels (e.g., 3×3) through additional reuse coordination and partial-sum preservation mechanisms. 

2.2 Extension to 3×3 Depthwise Convolution 

The proposed enhancement scales the BiRD 5-PE strip to execute 3×3 depthwise kernels without increasing the PE count or 

fundamentally changing the linear dataflow. The core idea is to preserve the original time-multiplexing and staggered streaming 

philosophy while adding precise partial-sum preservation and scheduling so the larger receptive field can be materialized across 

time. 

2.2.1 Mapping and streaming 

Each 3×3 receptive field is injected into the chain by streaming nine input activations into PE0 over nine sequential clock cycles. 

The staggered injection aligns overlapping windows so adjacent outputs reuse the same activations in both forward and reverse 

directions along the chain. Temporal alignment through the stagger schedule, by the nth cycle the set of activations required by 

each active PE for its portion of the 3×3 window is resident in that PE’s local register set; this enables MAC operations to execute 

without additional global memory fetches.PE roles preserved PE0, PE1, PE3, and PE4 remain the active MAC engines; PE2 remains 

a dedicated pass-through / partial-sum buffer. Rather than performing a MAC, PE2 holds intermediate partial sums and forwards 

them at the correct time so later MAC stages can accumulate them to completion. 

2.2.2 Partial-sum preservation and accumulation 

Each PE retains a small partial-sum register that preserves intermediate results across cycles. When a MAC produces a partial result 

that cannot be immediately reduced to the final output, it is latched and propagated through PE2 as required. a minimal bypass/hold 

control lets PE2 either forward partial sums or hold them until downstream operands arrive. This avoids extra PEs while ensuring 

correctness of the multi-cycle reduction required by 3×3 kernels. 

   2.2.3 Control and timing 

 A lightweight finite-state machine sequences injection, accumulation, shift, and write-back phases. The FSM asserts a load-

enable/freeze signal to each PE’s input register during accumulation windows, preventing reloads and enabling reuse. the prologue 

(pipeline fill) requires nine cycles to load a full 3×3 window; after fill, the schedule produces valid output(s) with only a small 

additional reduction latency (the final output is registered one cycle after the last required accumulation in the reduction chain). In 

steady state, overlapping reuse and pipelined operation yield a near-continuous stream of outputs (approaching one output per 

spatial step, subject to the chosen tiling and boundary conditions). the controller handles boundary conditions (image edges) and 

pipeline drain with simple enable masks so correctness is preserved without complex control expansion. 

2.2.4 Buffering and area considerations 

 The extension leverages existing PE input registers and partial-sum registers; no additional global PEs are added. Small window 

buffers or extra register stages (already present for the 2×2 design) are reused to hold the extra rows required for 3×3 reuse, keeping 

area and routing overhead minimal. idle lanes are clock-gated during cycles where a PE is inactive for the current window to reduce 

dynamic power. 

2.2.5 Correctness and verification 

 

The time-multiplexed schedule preserves exact MAC semantics — partial sums are preserved and reduced in the same order as a 

spatially expanded implementation — and is verified via RTL simulation and test vectors that compare results against a cycle-

accurate software reference. pipelining of the MAC datapath and careful placement of register stages ensure timing closure at target 

frequencies without increasing PE count. 

Figure. 2 illustrates an efficient dataflow for a 3×3 convolution kernel using input streaming and partial-sum reuse. As input 

activations stream through the PE chain, each PE performs a multiply–accumulate operation with its assigned kernel weight, reusing 

and updating the partial sum rather than recomputing it. The accumulated psum is forwarded to the output, while the input loader 

continuously supplies new data. The cycle-by-cycle view (Cycles 5–9) shows how inputs and partial sums move through the PE 

array in a pipelined manner, maximizing data reuse, reducing memory access, and improving overall computational efficiency. 

 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                  www.jetir.org (ISSN-2349-5162) 

  

 

JETIR2511308 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d69 
 

 

Figure:2: Input Streaming and Partial Sum Reuse for 3×3 Kernel 

2.3 Integration of Radix-4 Booth Multiplier 

While dataflow optimization improves PE utilization, the performance and energy efficiency of the overall accelerator are ultimately 

constrained by the MAC unit—specifically by the multiplier, which is the dominant source of switching activity, delay, and silicon 

area in each PE. To address this bottleneck, the conventional binary multiplier inside each MAC is replaced with a Radix-4 Booth 

multiplier, providing a more power-efficient and timing-optimized arithmetic core without altering the surrounding PE architecture. 

The Radix-4 Booth algorithm recodes the multiplier operand in groups of three bits (overlapping by one bit), generating signed-

digit representations that encode multiples of {0, ±1, ±2}. This transformation effectively halves the number of partial products 

relative to a standard shift-and-add multiplier. The reduction yields Lower dynamic power ,Shorter critical paths, Smaller area 

footprint. These advantages directly accelerate convolution throughput since each MAC operation consists of one multiplication 

followed by accumulation. 

 

Figure 3. Block Diagram of Booth-Based MAC Architecture 

 

The figure 3. shows the basic flow of a Booth multiplier, where the multiplier and multiplicand inputs are first buffered and then 

processed to generate partial products efficiently. The Booth Encoder reduces the number of partial products by recoding the 

multiplier, after which the Partial Product Generator produces the necessary values. Finally, all partial products are combined in the 

adder stage to produce the final multiplication result. 

3. Results and Analysis 

The enhanced 3×3 BiRD-based depthwise convolution systolic array, integrated with a Radix-4 Booth multiplier, was designed, 

synthesized, and simulated using Xilinx Vivado 2022.1. The main objective of this enhancement is to optimize the Multiply-and-

Accumulate (MAC) stage in terms of power efficiency, resource utilization, and throughput, without disturbing the existing BiRD 

dataflow architecture. 

 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                  www.jetir.org (ISSN-2349-5162) 

  

 

JETIR2511308 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d70 
 

All evaluations — including behavioral simulation, post-synthesis analysis, on-chip power measurement, and resource comparison 

— confirm that the Booth-optimized architecture achieves significant hardware savings while maintaining accuracy and stable 

timing performance. 

3.1 Functional Verification through Simulation 

Functional simulation was carried out to verify the correct operation of the top-level module, BiRD_DWConv_3x3_Top. The 

simulation waveform, shown in Figure 3.1, confirms the accurate generation of the expected convolution output and the proper 

transition of FSM control signals. 

 

Figure 3.1 : Vivado Simulation Waveform of the 3×3 Convolution Top Module 

The functional simulation verified the correctness and timing integrity of the Radix-4 Booth-integrated MAC array within the 3×3 

BiRD systolic structure. The Vivado simulation waveform (Fig. 3.2) confirmed the proper progression of the finite-state machine 

(FSM) through all defined control states and the accurate generation of the convolution output. 

 

Figure 3.2: RTL Simulation Waveform for Booth-Optimized 3×3 Convolution Module 

The waveform confirms proper sequential FSM operation, where nine input pixels are loaded into registers before the Booth-based 

MAC computation begins. All nine multipliers work in parallel, generating partial products that are summed through a pipelined 

adder tree. The output signal out_valid appears one cycle after in_valid, producing the expected result of 687 with accurate t iming 

and stable synchronization across all processing elements. 

 3.2 FPGA Synthesis and Resource Utilization 

The post-synthesis analysis was performed on an Artix-7 FPGA device to measure the hardware impact of integrating the Booth 

multiplier. The results are compared against the baseline design (without Booth) under identical synthesis constraints. 
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TABLE 3.1: Synthesis Comparison Between Conventional and Booth-Enhanced 3×3 Modules 

Metric Without Booth With Booth % Change 

LUT 107 92 ↓ 14.0 % 

FF 287 99 ↓ 65.5 % 

IO 20 24 ↑ 20.0 % 

BUFG 1 1 – 

Total On-Chip Power (W) 0.246 0.243 ↓ 1.2 % 

Delay (ns) 4.229 4.631 ↑ 9.5 % 

The synthesis results show on Table 3.1. That the Booth-based implementation offers a more efficient hardware design. It uses 14% 

fewer LUTs due to reduced partial-product generation and simpler combinational logic, while the flip-flop count drops by 65.5%, 

minimizing intermediate storage. A slight increase in I/O (from 20 to 24) is caused by additional Booth control signals, with 

negligible area effect. Although delay rises marginally by 9.5% (≈ 0.4 ns), it remains within timing limits. Overall, the Booth-

optimized BiRD architecture achieves an excellent balance between area, speed, and power efficiency, confirming the effectiveness 

of multiplier-level optimization. 

3.3 On-Chip Power analysis  

Power analysis using the Vivado Power Analyzer quantified static and dynamic power consumption post-synthesis. The results 

show that static leakage dominates total power, while Booth encoding considerably reduces the dynamic switching component 

TABLE 3.2: Comparison of Power Analysis Report of with  Booth-Optimized 3×3 Design and without Booth Design 

Power Component Without Booth (W) With Booth (W) Improvement 

Dynamic Power 0.002 0.0017 ↓ 15 % 

Static Power 0.244 0.241 ↓ 1.2 % 

Total Power 0.246 0.243 ↓ 1.2 % 

The Booth multiplier achieves about a 15% reduction in dynamic power by minimizing switching activity in the partial-product 

stage. Static power also decreases by roughly 1% due to reduced active logic area, leading to an overall 1.2% drop in total power. 

This improvement lowers the switching energy per MAC operation and enhances performance-per-watt efficiency in large-scale 

CNN accelerators. 

4.CONCLUSION 

Depthwise convolutions on standard systolic arrays suffer from low PE utilization due to their sparse input-reuse patterns. The 

proposed accelerator overcomes this by extending the BiRD (bi-directional input reuse) approach to 3×3 kernels without adding 

PEs. Using a fixed five-PE systolic chain, inputs are streamed in a staggered schedule and partial sums are passed through the array 

so that all nine multiplies of the 3×3 window are computed with only five PEs. Crucially, each multiply uses a radix-4 Booth unit 

so that weights are pre-encoded; this halves the number of partial-product terms and allows many encoder circuits to be merged 

into a single module, significantly cutting arithmetic logic and switching activity. In the FPGA implementation, enabling the Booth 

multiplier yielded a leaner design: LUT count dropped from 107 to 92 (≈14% reduction) and flip-flops from 287 to 99 (≈65% 

reduction). The total on-chip power remained essentially unchanged (about 0.246 W vs 0.243 W) while the critical-path delay grew 

modestly (~9.5%). These results show a very compact, energy-efficient accelerator: the area and power savings from Booth 

encoding offset the small speed penalty, yielding a high MAC-efficiency design. Overall, the Booth-optimized BiRD accelerator 

demonstrates that large-kernel depthwise convolutions can be supported with minimal hardware. The combination of BiRD’s reuse 

strategy and Booth multiplication eliminates the DWConv utilization bottleneck in a lightweight implementation. Such a design—

with dramatically reduced LUT/FF usage and low power draw—is well suited to FPGA deployment and edge-AI workloads where 

tight area/power budgets demand high energy and area efficiency. The evaluation confirms that this approach achieves a balanced 

mix of throughput and efficiency, making it an attractive solution for compact CNN accelerators 

. 
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