JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Color Class Dominating Sets on Regular graphs of degree 3 and 4

Dr. A. Vijayalekshmi,

Associate Professor, Department of Mathematics,
S.T. Hindu College, Nagercoil – 629002,
Tamil Nadu, India
(Affiliated to Manonmaniam Sundaranar University, Tirunelveli – 627012)

S. G. Vidhya,

Research Scholar, Reg.No: 19223152092017,

Department of Mathematics,

S.T. Hindu College, Nagercoil – 629002,

Tamil Nadu, India

(Affiliated to Manonmaniam Sundaranar University, Tirunelveli – 627012)

Abstract

Let G = (V, E) be a graph. A color class dominating set of G is a proper coloring

 \mathcal{C} of G with extra property that every color class in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\chi}(G)$. Here we also obtain $\gamma_{\chi}(G)$ of regular graph degree 3 and degree 4.

Keywords: Chromatic number, Domination number, Color Class Dominating set, Color Class Domination number.

Mathematics subject classification: 05C15, 05C69

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory [2]. Let G = (V, E) be a graph of order p. The open neighborhood

N(v) of vertex $v \in V(G)$ consist of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood N(S) is defined to be $\bigcup_{v \in S} N(v)$, and the closed neighborhood

JETIR2511328 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d24

of S is $N[S] = N(S) \cup S$ for any subset H of vertices of

G, the induced sub graph $\langle H \rangle$ is the maximal sub graph of G with vertex set H. A subset S of

V is called a dominating set if every vertex in V-S is adjacent to some vertex in S. A dominating set S is called a minimal dominating set if no proper subset of S is a dominating set of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of G. A γ - set is any minimal dominating set with cardinality γ . A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$. A color class dominating set of G is a proper coloring C of G with the extra property that every color class in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating set of G and is denoted by $\gamma_{\chi}(G)$. This concept was introduced by Vijayalekshmi et al [2]. A graph G is said to be r- regular if degree of each vertex of G is r. A 3-regular graph is also called a cubic graph. In this paper we obtain color class domination of regular graphs of degree 3 and degree 4.

2. Main Results

Theorem 2.1

Let G be a regular graph of degree 3 without triangles, then

$$\frac{n}{\gamma_{\chi}(G)} = \{ 2 \}$$

if $n \equiv 0 \pmod{4}$

$$)-1 if n \equiv 2 (mod 4)$$

Proof:

Let G be the regular graph of degree 3 with order n = 2p

Let
$$V(G) = \{v_1, v_2, v_3, \dots, v_p, v_{p+1}, \dots, v_n\}$$
 where

$$N(v_i) = \{v_{i-1}, v_{i+1}, v_{(p+i)-1} / i = 2,4....(p-1)\}$$

$$N(v_i) = \{v_{i-1}, v_{i+1}, v_{(p+i)+1} / i = 3,5 \dots (p-1)\}$$

$$N(v_1) = \{v_2, v_p, v_{p+2}\}$$

$$N(v_p) = \{v_{p-1}, v_1, v_{(n-1)}\}\$$

$$N(v_{p+1}) = \{v_2, v_{p+2}, v_n\}$$
 and $N(v_n) = \{v_{n-1}, v_{p-1}, v_{p+1}\}$

$$N(v_i) = \{v_{i-1}, v_{i+1}, v_{i-p-1} / i = (p+2), (p+4), \dots, (n-1)\}$$

$$N(v_i) = \{v_{i-1}, v_{i+1}, v_{i-p+1} / i = (p+3), (p+5), \dots, (n-1)\}$$

We consider 2 cases

Case (i) $n \equiv 0 \pmod{4}$

Assign distinct colors say $i(i = 2, 4 \dots (p-2))$ and p $\{v_i, \ v_{p+i}\}$ to the vertices $\{v_n\}$ respectively. Also assign distinct colors, say, and $i(i = 5,7 \dots (p-3), (p-1))$ to the vertices $\{v_i, v_{p+i+2}\}$ and $\{v_{v-1}\}\$ respectively. Assign colors 1 and 3 to the vertices $\{v_1, v_3, v_{p+1}\}$ and $\{v_{p+3}, v_{p+5}\}$ respectively, we get γ $(G) = \frac{n}{2}$

Illustration: (G_{20})

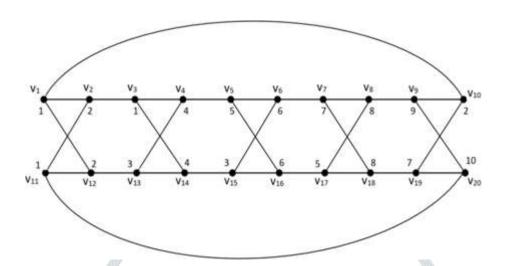


Figure 1

$$\gamma_{\chi}(G_{20})=10$$

Case (ii)

When $n \equiv 2 \pmod{4}$

Assign colors 1 and 3 to the vertices $\{v_1, v_3, v_{p+1}\}$ and $\{v_{p+3}, v_{p+5}\}$ respectively. Assign distinct colors, say $2i \ (1 \le i \le p^{-1})$ to the vertices, say,2

$$\{v_{2i}\}$$

, v_{p+2i} . Also assign distinct colors, say, (2i-1) ($3 \le i \le p^{-1}$) to the_vertices, say2 , v $\}$, we obtain γ coloring of G. Hence $\gamma(G) = {n \choose 2} - 1$ p+2i+2χ 2

Illustration: (G_{22})

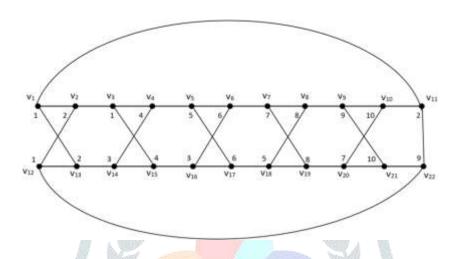


Figure 2

$$\gamma_{\gamma}(G_{22})=10$$

Theorem 2.2

ⁿ if n is even If G is a regular graph of degree 4 then $\gamma_{\chi}(G) = \{^2\}$ [**-**] *if n is odd*

Proof

Let G be a regular graph of degree 4 with order n = 2p

Let $V(G) = \{v_1, v_2, v_3, v_3, v_3, v_n\}$ we consider two cases Case (i) when n is even

Let
$$N(v_i) = \{v_2, v_p, v_{2p-1}, v_{2p}\}$$

$$N(v_p) = \{v_1, v_{p-1}, v_{(p+1)}, v_{(p+2)}\}$$

$$N(v_{p+1}) = \{v_{p-2}, v_{p-1}, v_{p+1}\}$$

$$N(v_n) = \{v_1, v_2, v_{p+1}, v_{n-1}\}$$

Assign distinct colors 1 and 2 to the vertices $\{v_1\}$, $\{v_{p+1}\}$ and $\{v_p, v_n\}$ respectively. Also assign distinct colors, say 3 $(3 \le i \le n^n)$ to the vertices $\{v_i\}$ we obtain the

$$\gamma_{\chi}$$
 coloring of G. Thus $\gamma_{\chi}(G) = {n \over 2}$

Illustration: (G_{26})

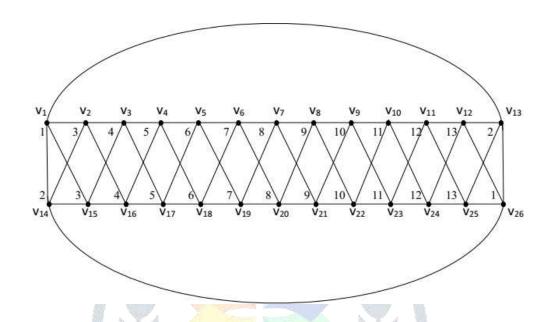


Figure 3

$$\gamma_{\gamma}(G_{26}) = 13$$

Case (ii) when n is odd

Let
$$N(v_1) = \{v_2, v_3, v_n, v_{n-1}\}$$

$$N(v_2) = \{v_3, v_4, v_1, v_n\}$$

$$N(v_{p+1}) = \{v_{p-2}, v_{p-1}, v_{p+1}\}$$

$$N(v_n) = \{v_1, v_2, v_{n-1}, v_{n-2}\}$$

$$N(v_{n-1}) = \{v_1, v_n, v_{n-2}, v_{n-3}\}$$

$$N(v_i) = \{v_{i+1}, v_{i+2}, v_{i-1}, v_{i-2}\}, i = 3,4....(n-2)$$
 respectively

Assign distinct colors $i(1 \le i \le^n)$ and 2_

 $[v_i]$ to the vertices say $[v_i]$

 v_{i+3}

and v_{n-2}

respectively we get γ_{χ} coloring of G. Thus $\gamma_{\chi}(G) = \lceil^n \rceil$.

Illustration: (G_{15})

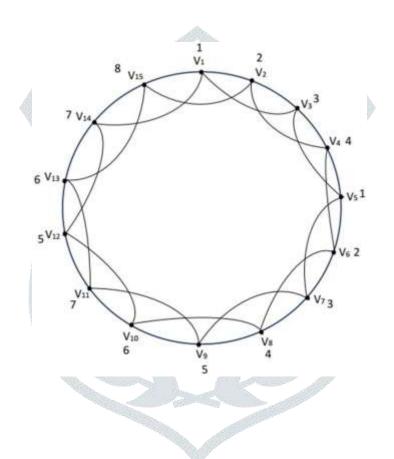


Figure 4

$$\gamma_{\chi}(G_{15})=8$$

References

- [1] A. Vijayalekshmi, Total dominator colorings in graphs, International Journal of Advancements in Research Technology, Vol. 1, No. 4, pp. 1-6, 2012.
- [2] A. Vijayalekshmi and A.E. Prabha, Introduction of color class dominating set in Graphs, Malaya Journal of Mathematik, Vol. 8, No. 4, pp. 2186-2189, 2020.
- [3] A. Vijayalekshmi and S.G. Vidhya, Color class dominating sets in path and cycle related graphs Malaya Journal of Matematik, Vol. 09, No. 01, 1237-1240, 2021
- [4] A. Vijayalekshmi and P. Niju, An Introduction of Dominator color class dominating sets in Graphs, Malaya

d255

Journal of Matematik, Vol.9, No.1, pp. 1015-1018, 2021.

- [5] A. Vijayalekshmi and J. Virjin Alangara Sheeba, Total Dominator Chromatic Number of Paths Cycles and Ladder graphs, International Journal of Contemporary Mathematical Sciences, Vol. 13, No. 5, pp. 199–204, 2018.
- [6] A. Vijayalekshmi and S. Anusha, Dominator Chromatic Number on Various Classes of Graphs, International Journal of Scientific Research and Reviews, Vol. 9, No. 3, pp. 91–01, 2020.
- [7] A. Vijayalekshmi and S.G. Vidhya, Dominator color class dominating sets in triangular ladder and mobius ladder graphs, Malaya Journal of Matematik, Vol. 09, No. 01, 1241-1243, 2021
- [8] F. Harrary, Graph Theory, Addition Wesley Reading Mass, 1969.
- [9] A. Vijayalekshmi and S.G. Vidhya, Dominator color class dominating sets in Grid graphs Journal of Computational Analysis and Applications, Vol. 33, No. 08, 385-389, 2024
- [10] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J Slater, Determination in Graphs, Maral Dekker, New York, 1998.
- [11] A. Vijayalekshmi and A.E.Prabha, Color class dominations sets in various classes of Graphs, Malaya Journal of Matematik, Vol. 9, No. 1, pp. 195-198, 2021
- [12] A.E. Prabha and A. Vijayalekshmi, 'Color class dominating sets in ladder and grid Graphs, Malaya Journal of Matematik, Vol. 9, No. 1, 993-995, 2021
- [13] A.E. Prabha and A. Vijayalekshmi, Color Class Dominating Sets on Cartesian Product of Path and Cycle Related Graphs, Adalya Journal, Vol. 9, No. 7, pp. 16-25, 2022
- [14] P. Niju and A. Vijayalekshmi, Color Class Dominating sets in Open Ladder and Slanting Ladder Graphs, International Journal of New Innovations in Engineering and Technology, Vol. 17, No. 1, pp. 57-61, 2021.
- [15] A. Vijayalekshmi and P. Niju, Color Class Dominating sets in Umbrella Graph and Dutch Windmill Graphs, Infokara research, Vol. 10, No. 12, pp. 38-48, 2021