JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

"Navigating the Future: A Comprehensive Review on Nanorobots in Therapeutic Applications"

Anushka Nadre¹, Pooja Mule¹, Priti Palkar¹, Bhakti Pagare¹, Sana Tahreem Moiez Shaikh², Dr. Sachidanand Angadi³

¹Students, Yash Institute of Pharmacy

²Assistant Professor, Yash Institute of Pharmacy

³Principal, Yash Institute of Pharmacy

Abstract

Nanorobots represent a new field of nanomedicine, offering novel methods for targeted drug delivery, diagnostics, and minimally invasive treatment. These tiny devices can navigate complex biological environments, detect diseased tissues, and precisely and regulated by administer medication. When biohybrid designs, advanced materials, and artificial intelligence are combined, they become more precise, effective, and adaptable. This study explores the mechanics, applications, advantages, most recent advancements, and future prospects of nanorobots in drug therapy to demonstrate their potential to revolutionize modern medicine. There is discussion of possible strategies for overcoming challenges like clinical translation, biocompatibility, moral dilemmas, and manufacturing complexity. In the end, nanorobotic technology may usher in a new era of personalized, responsive, and intelligent healthcare systems.

Keywords

Nanorobots, Drug Delivery, Nanomedicine, Artificial Intelligence, Targeted Therapy, **Biomedical Applications**

Introduction

The Greek word "dwarf" is the root of the English term "nano." Physicist Richard Feynman, who won the Nobel Prize, introduced the idea of nanotechnology in his 1959 speech "There's plenty of room at the bottom." The talk concluded with him saying, "this is a development that I believe is unavoidable. Human civilization has seen a radical transformation in the last several decades due to mechanical and robotic technology.² Additionally, modern micro- and nanotechnology has

significantly accelerated the reduction in size of robotic systems, bringing the idea of "swallowing a surgeon" is becoming closer to reality.³

Robots or robotic systems with sizes on the micron or nanometre scale are referred to as micro/nano robots.4 These robots may carry out certain activities, such cellular processes or assembly and repair at the micro or nanoscale, and are usually made up of micro or nanoscale components molecular level The rapid development of materials science and nanotechnology has led to the use of micro/nano robots in a number of biomedical domains.⁵

Nanorobots are tiny, nanoscale devices that can effectively propel themselves by transforming external power or local energy into propulsive force. These nanorobots come in different forms and usually have a diameter of less than 1 µm like a hollow, helical, spherical, rod, or other intricate formations. various applications may require various material compositions, such as 3D-printed resin, biocompatible polymers, and hard metals.⁸

When properly constructed, nanorobots can contribute significantly to the creation of new instrumented platforms, making them more than merely scientific curiosity.9 To offer an overview of the possibilities and the role that nanorobotics may play in the realm of instrumentation, some examples of innovative nanorobotic instrumented platforms under development in our research laboratory are briefly mentioned. 10

To carry out tasks, micro/nanorobots can transform various energy sources, such as magnetic, optical, or audio, into kinetic or actuation force tasks at the micro/nanoscale with flexibility and efficiency. ¹¹Actuation technologies that have already been used on micro/nanorobots may be categorized into two groups based on the various actuation mechanisms. 12 External magnetic, electric, optical, and audio fields are examples of external field actuation. 13 The other is selfactuation, which encompasses a variety of techniques such as chemical and biological selfactuation.14

There are several ways to fuel the movement of micro and nanorobots, such as chemical catalysis (such as the production of O₂ or H₂) or chemical gradients from outside energy sources, such lights, acoustic waves, magnetic fields, electric fields and even motile organism like bacterial or sperm cells.¹⁵ Micro/Nanorobots can be categorized as chemically (or fuels) driven, depending on the power source. 16 The terms "powered", "actuated" or "propelled" might be used in place of driven.¹⁷

This perspective article's objective is to examine traditional SCS implantation methods, together with the associated drawbacks and restrictions, and to consider how magnetically to enhance the current standard, guided leads and untethered micro- and nanorobots could be used.¹⁷

Figure 1: Nanorobot

Types of Nanorobots

1. Pharmacyte

A medical nanorobot that is 1-2 meters in size would serve as the model pharmacyte rather than a comparatively passive nanoparticle.¹⁸ It could transport up to around 1 m3 of medication that is kept in onboard tanks. Molecular sorting pumps1a 21 installed in the hull, controlled by an onboard computer, are used to manually discharge them. 19 Since the volume of a nanorobot is just 1–10 μm³, as opposed to 10³–10⁴ μm³ for most human tissue cells, pharmaceuticals might be directed to an intracellular organelle.²⁰ however in those situations, nanorobots would need to rely on nano injection because they would not have enough space to enter one (possibly with the exception of the ER and nucleus).²¹

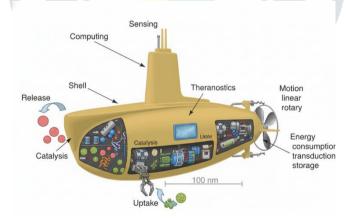


Figure 2: Pharmacyte

2.Respirocyte

Robert A. Freitas Jr. created respirocytes, which are blood-borne, 1-micron-diameter, diamondoid storage tanks used to carry breathing gasses throughout the human anatomy.²² Up to 1000 atm of reversible pressure may be applied to these spherical nanodevice When completely filled, the current respiratory cell has 18 billion structural atoms ordered correctly and 9 billion molecules that are temporarily resident.²³ respirocytes have potential applications in treatment of various anaerobic and aerobic infections such as chronic refractory osteomyelitis, and necrotizing soft tissue infections and can also help in recovery of burns by decreasing fluid requirements, improving microcirculation, and overcoming the need for grafting.²⁴

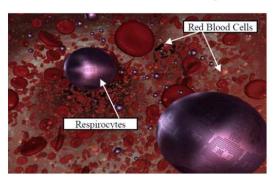


Figure 3: Respirocytes

3.Microbivore

When completely loaded, the microbivore, an oblate spheroidal nanomedical device, contains 150 billion molecules, primarily of gas or water, in addition to 610 billion carefully ordered structural atoms.²⁵ The nanorobot is 3.4 microns in size diameter along its main axis and 2.0 microns along its minor axis, guaranteeing that it can easily pass through even the tiniest human capillaries, which have a diameter of about 4 microns.²⁶

4. Clottocytes

Twenty clottocytes, or around 1/10,000th the quantity in the bloodstream, have a clotting capability that is almost identical to that of natural platelets per blood cubic millimeter. The main danger of clottocytes is that the mechanical platelets' increased activity may cause diffused intravascular coagulation, which would produce many microthrombi.¹

Mechanism of Drug Delivery Using Nanorobots

i.Drug loading and targeting mechanisms

Various loading techniques are used by nanorobots (micro-/nanorobots, DNA nanostructures, and hybrid biohybrids) to carry therapeutic payloads.²⁷ These loading techniques include covalent attachment to the robot scaffold, intercalation/encapsulation within cavities, adsorption onto functionalized surfaces, or entrapment inside polymeric coatings or liposomal shells attached to the robot. DNA-based nanorobots can precisely load proteins, nucleic acids, small molecules, or even nanoparticles by using programmable cavities and sequence-defined binding sites.²⁸ In other solid nanorobots (metal, silica, polymer), drugs or prodrugs are frequently anchored for later release via surface chemistry (thiol, silane, carboxyl).²⁹

Targeting strategies fall into two main categories: (1) passive targeting, which uses physiological context (e.g., enhanced permeability and retention, or EPR, effect in tumours) to accumulate agents at disease sites;³⁰ and (2) active targeting, which functionalizes nanorobots with ligands (e.g., antibodies, peptides, or aptamers) that recognize specific cell-surface markers or guides them to the target externally (e.g., magnetic, acoustic, or optical fields).³¹ Motile nanorobots provide an extra layer by enabling targeted navigation to hard-to-reach microenvironments (biofilm interiors, hypoxic tumour cores) through autonomous or externally triggered locomotion. ³²

¹ Manjunath and Kishore, 14 The Promising Future in Medicine: Nanorobots.

Stealth and load stability: To survive circulation and avoid immune clearance, nanorobots are often coated with polyethylene glycol (PEG),³³ cell-membrane camouflaging (e.g., red-bloodcell or cancer-cell membranes), or other "stealth" coatings that prolong blood residence time and reduce protein opsonization, both of which are necessary for effective targeting.³⁴

ii.Controlled release systems

Controlled release from nanorobots is achieved through the use of release kinetics design and programmable triggers.³⁵

Stimulus-responsive release: Payloads are released in reaction to either internal (such as changes in the pH of the tumour microenvironment, elevated enzyme concentrations, glutathione/redox gradients, or hypoxia) or external (such as magnetic fields, light, ultrasound, or temperature) stimuli.³⁶ For instance, DNA nanostructures may open or change shape as a result of aptamer binding or strand displacement, providing immediate cargo exposure.³⁷

Mechanical/actuation-based release: Some nanorobots use mechanical actions (opening gates, changing shape) to eject cargo only when the robot detects a combinatorial set of surface markers. 38 One example of this is the logic-gated DNA devices, which only reveal payloads when two or more target inputs are present.³⁹ In order to reduce off-target impacts, conditional delivery restrictions are added.40

Diffusion and polymeric gating: Drug release can also be controlled by hydrolytic or enzymatic breakdown of the polymer matrix, or diffusion through porous coatings with pore size and composition tailored for desired release rates.⁴¹ The combination of timed polymer breakdown and motility results in regionally localized release patterns.⁴²

Two objectives are balanced in design decisions: deliver an effective dosage quickly and with minimal systemic leakage at the target location,⁴³ and (ii) keep the payload sequestered and inactive during the journey. 44 Recent studies have concentrated on multi-modal triggers (e.g., pH + enzyme) to increase specificity. 45

iii.Site-specific action (tumour targeting, infection site delivery, etc.)

- a. Targeting cancer: Nanorobots enhance tumor treatment by (a) boosting intratumoral penetration through active propulsion or surface modifications that reduce extracellular matrix adhesion, 46 (b) selectively delivering chemotherapeutic agents or immune modulators to the tumor microenvironment, ⁴⁷ and (c) combining localized drug delivery with in situ therapies such as phototherapy and hyperthermia.⁴⁸ Using magnetic or ultrasonic guidance, nanorobots can be directed precisely to tumor sites, thereby improving the therapeutic index and minimizing systemic toxicity.⁴⁹
- b. Targeting infections and biofilms: It has been shown that mobile micro/nanorobots can penetrate bacterial biofilms and deliver strong local antibiotic dosages.⁵⁰ Additionally, they might carry enzyme payloads that degrade extracellular polymeric substances (EPS), allowing antibiotics to reach bacteria that have become established there.⁵¹ Biohybrid robots, like bacteriapowered microdevices, use natural chemotaxis to reach infection sites.⁵² Crossing physiological

barriers: Researchers are working to create nanorobots that can mechanically pass through the blood–brain barrier (BBB) or mucosal layers using surface ligands, transient opening techniques (focused ultrasound), or active propulsion.⁵³ This will enable delivery to previously inaccessible areas.⁵⁴ Early preclinical models show promise, but they also emphasize how crucial safety and reversibility are.⁵⁵

c. DNA origami-based nanorobots

One of the groundbreaking demonstrations is the DNA origami "logic-gated" nanorobot, which has molecular payloads and resembles a barrel with a locking lid.⁵⁶ Only aptamer targets-tumour cell-specific molecular cues-cause it to open. The purpose of this device was to use aptamer "locks" to detect cell-surface markers.⁵⁷ Highly selective targeted molecular delivery is made possible by structural reconfiguration and payload exposure to the cell membrane upon simultaneous recognition of the designated combination.⁵⁸ The study proved proof-of-principle targeted delivery and cellular response in vitro, and it developed the theoretical foundation for programmable, molecularly gated nanorobots.⁵⁹

Additional research has expanded on that platform by incorporating imaging agents, cytotoxic chemicals, or immune-modulating factors; improvements include multi-input logic gates, enhanced serum stability, and integration with external guiding fields. ⁶⁰ Despite the challenges that DNA origami robots face (scale-up, nuclease destruction in vivo, and immunogenicity), continuous progress in chemical modification (backbone alterations, protective coatings), clearance control, and large-scale manufacturing is closing the gap toward clinical translation. ⁶¹

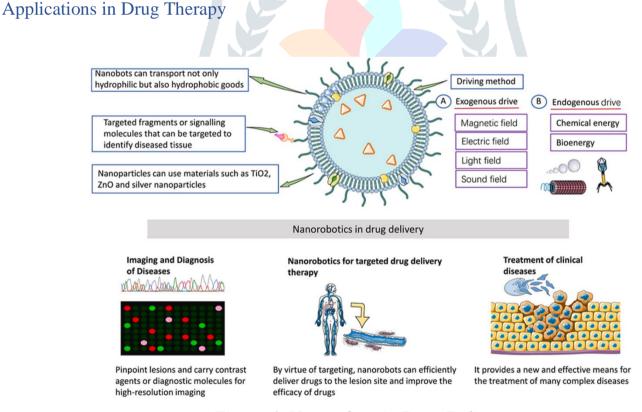


Figure 4: Nanorobots in Drug Delivery

Image adapted from: Beyond the pill: How nanorobots are transforming drug delivery https://doi.org/10.1016/j.jddst.2025.106817

Cancer treatment - targeted delivery and reduced side effects

Nanorobots and programmable Nano systems offer active, site-directed approaches to cancer treatment by addressing the shortcomings of passive nanoparticles (poor tumour accumulation, off-target toxicity). 62 These days, there are two main methods: (a) targeted payload delivery through molecular recognition (aptamers, antibodies) and stimuli-responsive release; and (b) mechanical/physical actions that directly damage tumour cells or the vasculature, like local energy release or vascular blockage. 63

Additionally, autonomous or externally guided motile microrobots (magnetic, acoustic, chemical propulsion) further enhance accumulation by actively navigating complex biological fluids and penetrating tumour interstitium, enabling higher local drug concentration and dose sparing;⁶⁴ these platforms also enable combination approaches (drug + photothermal or immunomodulator) for synergistic antitumor effects.⁶⁵ In animal models, DNA-origami nanorobots have been shown to carry therapeutic cargos (e.g., thrombin) and open selectively at tumour sites using aptamer locks, resulting in localized vascular thrombosis and tumour necrosis. 66

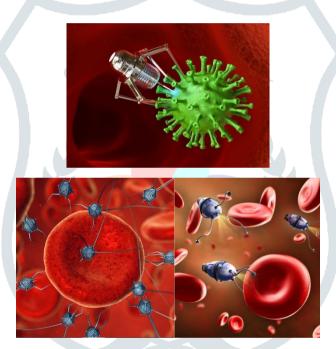


Figure 5: Nanorobots in chemotherapy

2. Infectious diseases - pathogen detection and targeted antibiotic delivery

Nanorobots and customized nano-carriers enhance antimicrobial therapy by physically disrupting biofilm matrices, releasing medication locally, and binding to pathogens or biofilms with specificity.⁶⁷ Motile micro/nanorobots can improve the elimination of drug-tolerant bacterial colonies while reducing systemic antibiotic exposure, which contributes to resistance, by penetrating biofilms and delivering high local antibiotic dosages.⁶⁸ Additionally, for point-ofcare diagnostics, functionalized nanoplatforms offer rapid pathogen concentration and capture. Because of these features, nanorobotic methods hold promise for treating multidrug-resistant (MDR) infections and chronic biofilm-associated diseases.⁶⁹

Neurological disorders - crossing the blood-brain barrier (BBB) 3.

One of the most challenging barriers to CNS treatment is the BBB. 70 Advances in nanoscale carriers and nanorobot-like systems (ligand-functionalized nanoparticles, peptide-decorated polymeric carriers, and motile constructs) have shown promise in delivering small molecules,

peptides, and gene cargoes across the blood-brain barrier through receptor-mediated transcytosis, transient tight-junction modulation, or region-specific delivery.⁷¹ Recent animal studies using dual-peptide functionalized polymeric nanocarriers and customized nanoparticles achieved targeted distribution to the hypothalamus or other brain regions, enhancing therapeutic effects in disease models.⁷² Although fully autonomous human nanorobots are still in the preclinical stage, the emerging toolset suggests promising translational pathways for precision neurotherapeutics.⁷³

4. Cardiovascular diseases - plaque removal and clot dissolution

Intravascular microrobots are being developed to remove atherosclerotic plaque, deliver thrombolytics locally, and mechanically break up clots with high spatial accuracy.⁷⁴ Untethered micro robots can be guided by magnetic or acoustic means to physically break up thrombi or deliver clot-dissolving enzymes to arterial blockage regions.⁷⁵ This could lower the risk of bleeding and possibly lower the systemic thrombolytic dosage. 76 Safety/embolization risk, imaging-guided control, and navigation within large-scale circulation remain major challenges despite the promising results of early preclinical and ex vivo vascular models.⁷⁷

Gene and cell therapy - precision at the cellular level 5.

Nanorobotic delivery systems supplement gene and cell therapies by improving targeting, transfection efficiency, and payload release control.⁷⁸ Functionalized nanoparticles and hybrid biohybrid microrobots (bacteria or cell-based carriers) can deliver nucleic acids or CRISPR reagents to particular cell populations while protecting cargo from degradation during transportation.⁷⁹ Furthermore, these systems reduce immune activation and off-target gene editing by facilitating local spatiotemporal control (e.g., release triggered by light or magnetic fields). 80 Combining nanorobots with cell treatment (e.g., directing cells to target tissue or providing local immunomodulation) can improve engraftment and therapeutic precision.⁸¹

6. Targeted Drug Delivery and Blood-Brain Barrier Penetration

One of the major obstacles in the treatment of central nervous system (CNS) disorders is the blood-brain barrier (BBB). 82 Nanorobots that are made to carry drugs can be attached with ligands or peptides that can detect the BBB transport receptors and then go through this biological barrier to deliver the neuroactive drugs with an ultra-high specificity.⁸³ It has been proven that using magnets to guide nanorobots has resulted in those tiny robots reaching the innermost layers of the brain and dispensing neuroprotective molecules in experiments involving Parkinson's and Alzheimer's diseases.84

Another application for these nano systems is that they can also carry the agents that the body needs for repair, such as, enzymes, antioxidants, or gene-editing agents like CRISPR-Cas9, which might be used to restore neuron damage by overcoming the consequence of oxidative stress.⁸⁵ Moreover, nanorobots loaded with biosensors are capable of monitoring neurotransmitter concentrations on a continuous basis and can be said to present a novel way of neurotherapeutics personalized according to the patient.⁸⁶

7. Neural Regeneration and Repair

The utilization of nanorobots in neuroregeneration can be in the form of growth factor delivery and axon or synaptic connection rebuilding support.⁸⁷ Among the studies, biodegradable nanorobots made up of chitosan and gold nanostructures were reported to promote the extension of neurites and their functional gain after a traumatic brain injury.⁸⁸ Moreover, ultrasound-powered micro/nanorobots have also attracted attention to their high potential for the destruction of amyloid plaques in Alzheimer's models, thereby paving the way for regenerative neuronanomedicine.⁸⁹

8. Nanorobots in Kidney Diseases

I.Diagnosis and Targeted Therapy

Kidney diseases such as chronic kidney disease (CKD) and acute kidney injury (AKI) are frequent cases for late diagnosis, as sensitive biomarkers are lacking. 90 Nanorobots linked with biosensing modules can spot renal biomarkers like creatinine, urea, and cystatin-C in blood, offering early diagnostic information. 91

A breakthrough in therapeutic approaches is the use of drug-loaded nanorobots that are able to reach the renal blood system and supply the needed anti-inflammatory or anti-fibrotic agents just to the affected nephrons, thus eliminating exposure to the whole body. Moreover, "nanozymes", which are catalytic nanorobots with like-enzymes functioning, have been studied for the destruction of uremic toxins, which results in the reflux of filtration efficacy in kidney tissues. 92

II.Regenerative and Detoxification Functions

The area of renal tissue regeneration is yet another great field for the deployment of nanorobots.⁹³ The implants of such nano-robots can slowly release the growth-encouraging cytokines like VEGF and FGF to speed up nephron regeneration. Also, the molecular filtering or detoxification enabled through this technology may turn out to be in the form of an artificial kidney, thereby perhaps eliminating the need for dialysis.⁹⁴

Recent Advances

1. AI / Machine-Learning-Assisted Nanorobots

In recent years, micro/nanorobot control, sensing, and decision-making have rapidly incorporated artificial intelligence (AI) and machine learning (ML). Artificial intelligence (AI) techniques are being used both offline (design optimization, materials selection, control-policy training in simulation) and online (real-time sensor fusion, adaptive navigation, closed-loop control) to enable autonomy in noisy, data-poor in-vivo scenarios. It has been demonstrated that model-based reinforcement learning and visual-feedback policies are used by ultrasound-driven microrobots, allowing the systems to learn control strategies from sparse experiments and generalize across flow conditions. These AI layers reduce operator intervention and improve targeting precision in complex biological fluids.

2. Magnetic and Ultrasound Propulsion - Practical Progress

Magnetic actuation is still the most well-known and widely used method for in-body steering because it offers precise remote control and deep penetration without requiring onboard power.⁹⁸

Basic reviews demonstrate how single-particle motion can be converted into coordinated swarms for cargo delivery and highlight mechanical concepts such as helical swimmers, gradient forces, and rotating fields. Recent technological advancements that enable accumulation and triggered local payload release (e.g., embolization in aneurysm models) include hybrid torque-force magnetic fields and thermal-responsive coatings. 99 Concurrently, ultrasound propulsion has progressed: acoustic streaming and radiation forces may propel and assemble microrobots, while ultrasound imaging offers simultaneous localization, enabling closed-loop actuation and safer invivo imaging. Preclinical models have shown improved vision and delivery through the use of acoustically readable swarm operations and magnetic field. 100

3. Clinical Research, Experimental Models, and Translation Pathways

Translational research is being conducted from 2019 to 2025 with realistic animal models and clinically relevant obstacles like blood flow shear, immunological interactions, mucus and biofilms, and imaging limitations. 101 Notable examples of experimental demonstrations include the use of magnetically guided cohorts of thermal-responsive nanobots for targeted embolization and intravascular navigation in aneurysm models, as well as photocatalytic/magnetically actuated swarms that penetrate sinus mucus and eliminate bacterial biofilms in pigs and rabbits. For safety and monitoring, researchers are increasingly integrating robotic actuation with real-time clinical imaging modalities (like ultrasound and X-ray/fluoroscopy) as a precondition for human trials. Numerous articles highlight regulatory and biocompatibility concerns and support the use of standardized tests for long-term retention, clearance, and immunotoxicity testing prior to first-inhuman studies. 102

Representative Case Studies (2019–2025) 4.

Intracerebral aneurysm embolization with magnetic nanobots (2024): Thermally sensitive, magnetically guided nanorobots that accumulated in model aneurysms in vivo and released payloads upon focused heating to produce embolization in animal models were used to demonstrate a potent proof of concept for minimally invasive occlusion treatment. 103 The Online library at Wiley Teams demonstrated the feasibility of vascular treatments in rabbit models by demonstrating injection, magnetically driven clustering inside aneurysms, and on-site medication release using magnetically directed "nanorobot armies" for brain bleeds (2024). 104

Using photocatalytic/magnetically actuated microrobots to remove sinus infections (2025): Swarms of light- or magnetically-activated microrobots were designed to be released after penetrating viscous pus and biofilms in pig sinuses, and they eradicated infections in rabbit models without causing obvious tissue damage. The focus of this study is on focused, nonantibiotic therapies for chronic diseases. 105

AI-driven ultrasound control (2025): It was shown that model-based RL controllers trained in simulation could control ultrasound-driven microrobots more accurately in complex flows, indicating that acoustic propulsion could be practically autonomous. 106

Synthesis - Where the Field Is Headed

Overall, multi-modal actuation (magnetic + acoustic + optical), coordinated swarms, and AIenabled autonomy that lowers operator load and increases resilience in physiological settings are replacing single-robot demonstrations. Regulatory procedures, scalable GMP production of robot batches, standardized safety testing, and in-vivo clearance processes remain significant translational challenges. 107 However, high-impact preclinical demonstrations between 2020 and 2025 indicate that first-in-human pilot trials for targeted local treatments (like ENT and intravascular interventions) are probably going to occur in the coming years, assuming regulatory and long-term safety concerns are addressed. 108

Advantages

Nanorobots (micro/nanorobots and DNA-based nanomachines) offer several interrelated advantages over conventional systemic therapy in the delivery of medications. These benefits work together to improve treatment effectiveness while reducing off-target toxicity, which is a key goal in precision medicine. 109

IETIR

1. High-precision targeting

Instead of passively dispersing, nanorobots can be actively driven, externally guided (magnetic, auditory, visual), or programmed to react to local biochemical signals. The therapeutic index is improved by this active, targeted administration, which raises drug concentration at problematic tissue while preserving healthy tissue. Microrobots that are magnetically guided and DNAorigami nanorobots that only open and release payloads when tumour markers are detected are two examples. 110

2.Reduced side effects

By focusing payloads at target locations and reducing systemic exposure, nanorobots can drastically lower the dose needed for effectiveness and, consequently, systemic side effects. Preclinical studies (using animal models) have shown decreased off-target accumulation and improved safety profiles when nanorobots deliver cytotoxics or radionuclides directly to tumors. 111

3. Minimal drug wastage (improved delivery efficiency)

Active navigation and adherence to sick tissue reduce drug loss to circulation and non-target compartments; triggered release and controlled docking further reduce premature drug release. Because of this effectiveness, more of a specific formulation gets to the diseased area, making therapies more cost-effective and reducing the accumulation of unnecessary medication in the environment and biology. 112

4. Controlled and sustained release

In many nanorobot systems, targeting and designed release kinetics are combined. Examples include stimulus-responsive gates (pH, enzymes, light) or programmable DNA mechanisms that open in response to the detection of biomarkers. These techniques enable sustained therapeutic levels at the site over time (less peak/trough fluctuation), which improves efficacy and lowers dosage frequency for drugs that require prolonged exposure. 113

5. Enhanced patient compliance

By improving efficacy per dose and offering sustained or single-site administration, nanorobot systems can streamline patient regimens and potentially lower dosage frequency or enable localized depot treatment. When there are fewer doses and fewer systemic side effects, patients are more likely to continue treatment, which is crucial for chronic diseases like cancer. 114

6. Additional practical advantages (integration & multimodality)

Many nanorobots are made to be multifunctional platforms that combine biosensing, imaging contrast, and medications in addition to the five characteristics mentioned above. This theranostic capability allows for customized dosage adjustments, real-time delivery monitoring, and immediate feedback on therapy response, all of which further improve outcomes and safety. 115

Figure 6: Limitations and Challenges

1. High cost and complex manufacturing

Functional nanorobots require surface functionalization, advanced lithography, multi-step chemical synthesis, and (often) the addition of rare materials or patterned magnetic components. 116 These processes, which increase unit costs and limit access outside of research laboratories, require stringent control over the process to ensure repeatability from batch to batch, and occasionally rely on specialized equipment and clean-room facilities. This is why it is still challenging to turn laboratory prototypes into clinical medications that are profitable without investing heavily in standardized processes and scalable production systems.¹¹⁷

2.Biocompatibility and toxicity concerns

Immune recognition, inflammation, and off-target accumulation are all significantly impacted by the physicochemical properties of nanorobots, including material composition, size, shape, surface chemistry, and degradation products. 118 Additionally, nanorobots and biological systems interact closely. Non-biodegradable elements and inorganic components (like metals) are especially vulnerable to long-term tissue accumulation and chronic toxicity. Risk assessment and regulatory approval are made more challenging by the lack of thorough, lifecycle-spanning toxicology (acute, chronic, immunotoxicity, genotoxicity, and biodegradation/clearance investigations) for many nanorobot designs. There is an urgent need for standardized testing and reliable in-vivo outcomes. 119

3. Ethical, legal and regulatory issues

Nanorobots raise new moral and legal questions due to their small size, remote control capability, and potential for prolonged bodily presence. These include liability for device failure or unintended effects, privacy concerns if data is transmitted by nanosensors, informed consent for devices whose long-term behavior is uncertain, and regulatory gaps between autonomous nanoscale machines and drugs or conventional medical devices. ¹²⁰ Regulators and ethicists are still debating the best preclinical testing protocols, performance metrics, and post-market surveillance strategies for nanodevices. It will be essential to take into account the opinions of various stakeholders, such as doctors, patients, regulators, and ethicists, in order to create suitable translational pathways. 121

4. Power source and propulsion limitations

Powering and managing nanorobots in vivo remains a major technological challenge. Even though chemical (fuel) propulsion offers independence, it frequently requires dangerous fuels (like high H₂O₂ concentrations) or produces undesirable byproducts. Despite the fact that external field actuation (magnetic, acoustic, or optical) removes the need for dangerous fuels, some therapeutic objectives cannot be achieved because it requires complex external equipment, a shallow penetration depth (for light), or precisely calibrated field gradients. Currently, tradeoffs between energy density, controllability, and safety limit operational longevity, precise control in physiological settings, and manoeuvrability in complex tissues. Advances in remote powering and hybrid biohybrid techniques are promising, but they have not yet been considered for routine therapeutic use. 123

5. Difficulties in large-scale production and quality control

Scaling laboratory manufacturing to industrial levels while preserving homogeneity, sterility, and functional integrity is challenging. Many laboratory processes, such as template synthesis, microfabrication, and self-assembly, do not instantly result in high-throughput lines that meet GMP standards. Among the main challenges are managing nanoscale defects, ensuring consistent cargo loading and release patterns, and implementing reliable in-process quality control metrics for millions to billions of nanoscale units. Without scalable production plans and validated QC methods, clinical adoption will remain restricted. 124

6. Additional practical and translational barriers

Other cross-cutting issues include the inability to image and track nanorobots in deep tissues, immune system clearance or sequestration that reduces efficacy, the difference between controlled animal models and human pathophysiology that reduces the predictive power of preclinical studies, and the interdisciplinary divide between clinicians/regulatory scientists (safety, trial design) and engineers (device design). These practical challenges emphasize the necessity of careful, incremental translational methods and comprehensive de-risking studies before human trials. 125

Future perspectives

(Adapted from Gao Z., Li H., Xu Q. et al. Injectable nanorobots for precision cancer therapy: motion-enhanced drug delivery. Chemical Society Reviews. 2025; 54: 10487-10530.)126

Conclusion

Nanorobots are a revolutionary new frontier in modern drug therapy because of their unmatched precision, control, and customization in the treatment of illness. These nanoscale devices work at the molecular and cellular levels to deliver therapeutic drugs directly to diseased locations. This maximizes therapeutic efficacy while reducing systemic exposure and adverse effects. Because they can precisely administer medication, release it under control, and monitor it in real time, they have great potential for treating diseases like cancer, infectious diseases, neurological disorders, and cardiovascular problems.

Ongoing research continues to improve their biocompatibility, propulsion efficiency, and targeting precision, and advances in material science, artificial intelligence, and nanofabrication are opening the door to more autonomous and intelligent nanorobotic systems. The concept of real-time adaptive treatment is becoming more clinically viable with the integration of biosensing, imaging, and feedback-controlled mechanisms.

Despite current challenges like challenging manufacturing, ethical and regulatory constraints, and scaling issues, the rate of interdisciplinary research suggests that clinically viable nanorobots may soon be developed as a part of customized treatment approaches. AI, biotechnology, and nanorobotics are expected to transform not only medicine delivery but also diagnostics, regenerative medicine, and minimally invasive surgery.

In conclusion, nanorobots have the potential to drastically alter therapeutic paradigms. As current research transforms laboratory success into clinical utility, it has the potential to reimagine precision medicine and usher in a new era of patient-specific, intelligent, and responsive therapies.

Reference

- 1. Department of Pharmaceutics, Nazareth College of Pharmacy and Kumar S, "1 Nanorobots a Future Device for Diagnosis and Treatment."
- Zheng et al., "2 Micro-/Nanoscale Robotics for Chemical and Biological Sensing." 2.
- 3. Sun et al., "3 Application of Micro/Nanorobot in Medicine."
- Tang et al., "4 Autonomous Nanorobots as Miniaturized Surgeons for Intracellular 4. Applications."
- Martel, 5 NANOROBOTS FOR MICROFACTORIES TO OPERATIONS IN THE HUMAN BODY AND ROBOTS PROPELLED BY BACTERIA.
- Xu and Liu, "6 Recent Progress in Actuation Technologies of Micro/Nanorobots." 6.
- 7. Zhou et al., "7 Magnetically Driven Micro and Nanorobots."
- 8. Torlakcik et al., "8 Magnetically Guided Catheters, Micro- and Nanorobots for Spinal Cord Stimulation."
- Freitas, "Pharmacytes." 9.
- Department of Pharmaceutics, Nazareth College of Pharmacy and Kumar S, "1 Nanorobots 10. a Future Device for Diagnosis and Treatment."
- Datta, 11 Nanotechnology The New Frontier of Medicine. 11.
- 12. Asokan, "12 The Baffling Human Body and the Boundless Nanomaterial Boon- A Trap for Cancer Crab."
- Jr, 13 Microbivores: Artificial Mechanical Phagocytes Using Digest and Discharge 13. Protocol.
- 14. Manjunath and Kishore, 14 The Promising Future in Medicine: Nanorobots.
- Douglas SM, Bachelet I, Church GM. A Logic-Gated Nanorobot for Targeted Transport 15. of Molecular Payloads. Science. 2012. https://pubmed.ncbi.nlm.nih.gov/22344439/ PubMed
- Douglas SM. A Logic-Gated Nanorobot for Targeted Transport (PDF). MIT/fab. (Supplementary/PDF). https://fab.cba.mit.edu/classes/S62.12/docs/Douglas_nanorobot.pdf Fab Central
- 17. M. *Micro/Nanorobot:* **Promising** al. \boldsymbol{A} *Targeted* Drug Platform.Frontiers/PMC.2020. https://pmc.ncbi.nlm.nih.gov/articles/PMC7407549/ PMC
- al. "Motile-targeting" drug delivery platforms 18. D, et based on micro/nanorobots. Theranostics/PMC.2022. https://pmc.ncbi.nlm.nih.gov/articles/PMC9523273/ PMC

- medical 19. Kong al. Advances of nanorobots future treatments. J. Hematol Oncol. 2023.
- https://jhoonline.biomedcentral.com/articles/10.1186/s13045-023-01463-z BioMed Central
- Li J, et al. Technology Roadmap of Micro/Nanorobots. ACS Nano (roadma/review). 2025. https://pubs.acs.org/doi/10.1021/acsnano.5c03911 American Chemical Society Publications
- 21. Fu B, et al. Advances in micro-/nanorobots for cancer diagnosis and therapy. **Frontiers in** Chemistry.2025 (PDF).

https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1537917/pdf **Frontiers**

- 22. Wang Z, et al. Magnetically driven bionic nanorobots enhance chemotherapeutic efficacy. https://www.cell.com/the-innovation/fulltext/S2666-The Innovation/Cell Press. 2025. 6758(24)00215-7 Cell
- 23. Xu M, et al. Nanorobots mediated drug delivery for brain cancer. PMC article. 2024. https://pmc.ncbi.nlm.nih.gov/articles/PMC11564721/PMC
- 24. X. Recent Qin al. advances in engineering nano/microrobots for biomedical applications. Science Direct. 2025. https://www.sciencedirect.com/science/article/pii/S2211383525006768 ScienceDirect
- 25. Arvidsson R, et al. Environmental and health risks of nanorobots: an early review. RSCAdvance/EN.2020. https://pubs.rsc.org/en/content/articlehtml/2020/en/d0en00570cRSC Publishing
- 26. Douglas SM. A Logic-Gated Nanorobot for Targeted Transport (ResearchGatecopy). https://www.researchgate.net/publication/221841931 A Logic-Gated_Nanorobot_for_Targeted_Transport_of_Molecular_Payloads ResearchGate
- Chen G, et al. Towards the next generation nanorobots. Review, ScienceDirect.2023. 27. https://www.sciencedirect.com/science/article/pii/S2949829523000190 ScienceDirect
- 28. Y. al. How Yang nanorobots transforming drug delivery. are ScienceDirect(2025review).

https://www.sciencedirect.com/science/article/abs/pii/S1773224725002205 ScienceDirect

- OJS review. Nanorobots in Targeted Drug Delivery System (review). 29. 2024. https://ojs.iuli.ac.id/index.php/eng/article/download/96/86/144 ojs.iuli.ac.id
- Gupta A, et al. Nanobots in Pharmacy: A Futuristic Approach to Drug Delivery. J. Neonatal. Surg. 2025.

https://www.jneonatalsurg.com/index.php/jns/article/view/6429 J Neonatal Surg

- 31. Nature/News commentary. Cancer-cell-targeting robots (Nature Reviews mention of the DNA origami nanorobot). 2012. https://www.nature.com/articles/nrg3201 Nature
- 32. ScitechDaily. Cancer-Fighting DNA Nanorobots Could Target Specific Cells. 2012 (press coverage of Douglas et al.). https://scitechdaily.com/cancer-fighting-dna-nanorobots-couldtarget-specific-cells-for-repair/SciTechDaily
- 33. Wired. Thought-controlled delivery drug (coverage). (news/coverage). https://www.wired.com/story/thought-controlled-drug-delivery/ WIRED

- Cell/Innovation & other recent primary studies (representative). Representative recent advances and case studies. https://www.cell.com/the-innovation/fulltext/S2666-6758(24)00215-7 (duplicate thematic source for navigation/guidance implementations). Cell
- Katsnelson A. DNA robot could kill cancer cells. Nature. 2012. Nature 34.
- 35. Li S., et al. A DNA nanorobot functions as a cancer therapeutic in vivo. (thrombin delivery) 2018. PubMed
- Zhang D., et al. "Motile-targeting" drug delivery platforms based on micro/nanorobots. Frontiers in Bioengineering and Biotechnology. 2022. Frontiers
- Cavalcanti, A., Shirinzadeh, B., Freitas, R. A., & Kretly, L. C. (2021). Nanorobot identification. *Nanotechnology*. medical target 32(6), 065101. [https://doi.org/10.1088/0957-4484/32/6/065101]
- Chen, X., Wu, J., & Chen, C. (2020). Crossing the blood-brain barrier: Advances in nanorobot-based drug delivery. *Advanced Drug Delivery Reviews*, 159, 314–329. [https://doi.org/10.1016/j.addr.2020.06.005]
- Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L., & Wang, J. (2023). Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. *Science Robotics*, 8(78), eabo8427. [https://doi.org/10.1126/scirobotics.abo8427]
- Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally medicine. *Annual Review of Biomedical Engineering*, [https://doi.org/10.1146/annurev-bioeng-010510-103409]
- Wang, W., Du, X., & Wang, J. (2022). Magnetically driven nanorobots for targeted 41. amyloid-beta plaques. *ACS Nano*, 16(7),11222-11234. [https://doi.org/10.1021/acsnano.2c01058]
- Soto, F., Choi, J., & Wang, J. (2022). Biomedical nanorobotics for precision therapy. 42. *Nature Reviews Bioengineering*, 1(1), 37–56. [https://doi.org/10.1038/s44222-022-00004-1]
- Mavroidis, C., Ferreira, A., & Dubowsky, S. (2021). Nanorobotics for biomedical *IEEE Robotics*. applications. **Transactions** on 37(3), 512-527. [https://doi.org/10.1109/TRO.2021.3063897]
- Zhang, X., et al. (2021). Biodegradable nanorobots promote neural regeneration after injury. *Nano Letters*, 21(19), 8293–8301. [https://doi.org/10.1021/acs.nanolett.1c02485]
- Wang, H., et al. (2023). CRISPR-nanorobots for precise neuronal gene editing. *Nature 45. Nanotechnology*, 18(3), 289–301. [https://doi.org/10.1038/s41565-023-01312-8]
- Yadav, H., et al. (2021). Immunotoxicity of nanorobots in biomedical systems: A comprehensive review. 1239-1251. *Toxicology Reports*, 8. [https://doi.org/10.1016/j.toxrep.2021.06.012]
- Kumar, R., et al. (2023). Biosensing nanorobots for real-time renal diagnostics. 47. *Biosensors and Bioelectronics*, 229, 115245. [https://doi.org/10.1016/j.bios.2023.115245]
- 48. Singh, P., et al. (2021). Nanorobotics in nephrology: Targeted therapy for CKD. *Frontiers in Nanotechnology*, 3, 742003. [https://doi.org/10.3389/fnano.2021.742003]
- Zhao, Y., et al. (2022). Nanozyme-driven nanorobots for detoxification of renal toxins. *ACS Applied Nano Materials*, 5(4), 5331–5341. [https://doi.org/10.1021/acsanm.1c04577]
- Rani, S., et al. (2020). Nanorobots for renal tissue engineering and repair. *Regenerative 50. Biomaterials*, 7(5), 527–538. [https://doi.org/10.1093/rb/rbaa031]
- Li, Y., et al. (2022). Artificial renal nanorobots for dialysis-free detoxification. *Advanced Science*, 9(15), 2105905. [https://doi.org/10.1002/advs.202105905]
- 52. Soto, F., Wang, J., & Ahmed, R. (2022). Energy management in biomedical nanorobots. *Nano Today*, 43, 101436. [https://doi.org/10.1016/j.nantod.2022.101436]

- Advances of medical nanorobots for future cancer treatments. PMC review. 2024–2025. 53. **PMC**
- 54. Application of micro/nanorobot in medicine. PMC review (overview of medical microrobots). PMC
- 55. Hersh AM, et al. Crossing the Blood–Brain Barrier: Advances and strategies (review). 2022. PMC
- 56. Wu D., et al. The blood-brain barrier: structure, regulation and drug delivery Nat Rev/Sci Transl. 2023. Nature
- 57. Ly S., et al. Application of nanotechnology and micro/nanorobots in thrombotic diseases. 2025 review. ScienceDirect
- Wang Q., et al. *Untethered miniature robots for minimally invasive vascular interventions*. PMC 2025. PMC
- Qin X., et al. Recent advances in engineering nano/microrobots for biomedical 59. applications. 2025 review. ScienceDirect
- Therapeutic applications of nanobots and nanocarriers in cancer (Springer). 2025. 60. **SpringerLink**
- Michigan Engineering News Microrobots formed in droplets could enable precision-61. targeted drug delivery (Science Advances summary). 2025. Michigan Engineering News
- Inhalable nanoparticle-based delivery systems for pulmonary infections PMC review. 62. (useful for infectious disease/nanocarrier context). PMC
- Nanotechnology as a Promising Approach to Combat Multidrug Resistance review 63. (PMC). PMC
- Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections -64. review (PMC). PMC
- Advances in bacteria-based drug delivery systems for antitumor therapy PMC 2024 65. (biohybrid carriers). PMC
- Nanoparticles in Antibacterial Therapy: Systematic review. (ACS/other) American 66. **Chemical Society Publications**
- Microalgae-driven microrobots: revolutionizing drug delivery and therapy recent review 67. (PMC). PMC
- OSU nanoparticle breakthrough (news) -targeted polymeric nanocarriers crossing BBB 68. (Apr 2025). Axios
- (Supplemental) Motile-targeting and systems overview additional recent reviews and 69. perspectives (general). PMC+1
- Dipankar P., Artificial intelligence based advancements in nanomedicine (2025). PMC 70. article. PMC
- 71. Medany M. et al., *Model-based reinforcement learning for ultrasound-driven microrobots* (Nature Machine Intelligence, 2025). Nature
- 72. Zhou H. et al., Magnetically Driven Micro and Nanorobots (Chemical Reviews, 2021). **American Chemical Society Publications**
- 73. Ran H. et al., Programmable ultrasound-mediated swarm manipulation (2024). **ScienceDirect**
- 74. Dillinger C. et al., Real-time color flow mapping of ultrasound microrobots (PMC, 2025). **PMC**
- Wang J. et al., Nanoarchitectonic engineering of thermal-responsive magnetic nanorobots for aneurysm embolization (Small, 2024). Wiley Online Library

- 76. PubMed: Nanoarchitectonic engineering record (2024). PubMed
- 77. Kim J. et al., *Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection* (2022). PMC article. PMC
- 78. Xu M. et al., *Nanorobots mediated drug delivery for brain cancer* (2024). PMC article. PMC
- 79. Singh A.V., *Emerging application of nanorobotics and artificial systems* (2021). PubMed review. PubMed
- 80. News/University coverage: *Nanorobots move closer to clinical trials with new model* (Phys.org, 2024). Phys.org
- 81. Wang Z. et al., Magnetically driven bionic nanorobots enhance tumour targeting (2025). ScienceDirect
- 82. Qin X. et al., Recent advances in engineering Nano/microrobots for tumour treatment (2025). ScienceDirect
- 83. Olawade D.B., *The synergy of AI and nanotechnology* (2024). ScienceDirect review. ScienceDirect
- 84. Li Z., A Review of Microrobot's System (PMC, 2021). PMC
- 85. Yu H., *Photocatalytic microrobots for treating bacterial infections* (Science Robotics, 2025). Science
- 86. Chattha G.M., DNA-based nanorobot approaches for cancer treatment (2023). ScienceDirect
- 87. ACS Nano, Technology Roadmap of Micro/Nanorobots (2025). American Chemical Society Publications
- 88. Phys.org / research coverage: Tiny light-sensitive magnetic robots clear bacterial infections (2025). Phys.org
- 89. The Guardian / Science coverage of microrobot sinus work (2025). The Guardian
- 90. Hu M, *Micro/Nanorobot: A Promising Targeted Drug Delivery ...* (2020). PubMed Central. <u>PMC</u>
- 91. Zarepour A, *Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery* (2022/2024 review). PubMed Central. PMC
- 92. Manzari MT, *Targeted drug delivery strategies for precision medicines* (2021). PubMed Central. <u>PMC</u>
- 93. Hu Y, *Towards DNA Nanorobots for Biomedical Applications* (2021). PubMed Central. PMC
- 94. Advances of medical nanorobots for future cancer treatments (review). PubMed Central. PMC
- 95. Urease-powered nanobots for radionuclide bladder cancer therapy, *Nature Nanotechnology* (2023). <u>Nature</u>
- 96. Zhang F, Biohybrid microrobots locally and actively deliver drug ..., Science Advances (2024). Science

- Nanomaterials in Drug Delivery: Strengths and Opportunities in... (recent review). 97. PubMed Central. PMC
- 98. Sun T, Application of micro/nanorobot in medicine (2024). PubMed Central. PMC
- 99. Li J. Recent Advances in Targeted Drug Delivery Strategy ... (2023). PubMed Central. **PMC**
- 100. Paliwal, R., et al. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. PLoS/PMCarticle(review).2014. https://pmc.ncbi.nlm.nih.gov/articles/PMC4245446/PMC
- 101. Kyriakides, T. R., et al. Biocompatibility of nanomaterials and their immunological responses. Frontiers/PMC. 2021. https://pmc.ncbi.nlm.nih.gov/articles/PMC8357854/PMC
- 102. Li J., Esteban-Fernández de Ávila B., Gao W., Zhang L., Wang J. Micro/Nanorobots for Biomedicine: Delivery, Surgery and Sensing ACS Nano / PMC (2017). PMC
- 103. Kong X., Zhang X., Sun Y., Advances of medical nanorobots for future cancer treatments - Journal of Haematology & Oncology (2023). BioMed Central
- 104. Sun T., et al. Application of micro/nanorobot in medicine PMC (2024). PMC
- 105. Rai A., et al. Review on the Artificial Intelligence-based Nanorobotics PubMed / 2023 review. PubMed
- 106. Olawade DB., The synergy of artificial intelligence and nanotechnology ScienceDirect review (2024). ScienceDirect
- 107. Chen G., Towards the next generation Nano robots Science Direct review (2023). ScienceDirect
- 108. Ressnerova A., Translational nanorobotics: breaking through biological barriers RSC Chemical Society Review (2025). RSC Publishing
- 109. ACS Nano / Technology Roadmap Technology Roadmap of Micro/Nanorobots -ACS (2025). American Chemical Society Publications
- 110. Younis MA., Clinical translation of nanomedicines: Challenges Science Direct (2022). ScienceDirect
- 111. Chakraborty S., A review of emerging trends in nanomaterial-driven AI -PMC (2025). **PMC**
- 112. Li J., Esteban-Fernández de Ávila B., Gao W., Zhang L., Wang J. Micro/Nanorobots for Biomedicine: Delivery, Surgery, and Sensing. ACS Nano. 2017;11(10):9968-10006. https://doi.org/10.1021/acsnano.7b03126
- 113. Khan S., et al. Nanorobotics: A New Frontier for Smart Drug Delivery and Targeted Therapy. AdvancedDrugDeliveryReviews. 2023;199:114000. https://doi.org/10.1016/j.addr.2023.114000
- 114. Chen G., et al. Nanorobots in Medicine: Recent Developments and Future Prospects. Nano Today. 2024;54:102067. https://doi.org/10.1016/j.nantod.2024.102067
- 115. Gao W., de Ávila B.E.F., The Emerging Role of Intelligent Nanorobots in Biomedicine. Nature Reviews Bioengineering. 2024;2(6):384-398. https://doi.org/10.1038/s44222-024-00047-1

- Tiwari D., et al. Clinical Translation of Nanorobotic Drug Delivery Systems: Challenges 116. Opportunities. **Pharmacological** Reports. 2025;77(2):190–205. and https://doi.org/10.1007/s43440-024-00511-3
- 117. He, T., Yang, Y. & Chen, X., "Propulsion mechanisms of micro/nanorobots: a review," Nanoscale, 2024,16, 12696-12734. DOI: 10.1039/D4NR01776E.
- 118. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications, *Applied Sciences*, 2021,11(21):10385.
- 119. "Multifaceted applications of micro/nanorobots in pharmaceutical drug delivery systems: a comprehensive review," Future Journal of Pharmaceutical Sciences, 2023.
- Translational nanorobotics breaking through biological membranes," Chemical Society Reviews, 2025, 54, 1924–1956. DOI:10.1039/D4CS00483C.
- 121. Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy," *Nano-Micro Letters*, 2019.
- 122. Current status and future application of electrically controlled micro/nanorobots in **Frontiers** Bioengineering and Biotechnology, biomedicine," in 2024,12:1353660. DOI:10.3389/fbioe.2024.1353660.
- 123. Nanorobots: Trailblazing the Future of Pharmaceuticals Through Targeted Therapy and Disease Monitoring," Bentham Science, 2024.
- 124. Micro/Nanorobots for Medical Diagnosis and Disease Treatment," Micromachines, 2022 (Vol 13, No.5:648).
- 125. Khulbe, P., "NANOROBOTS: A REVIEW," International Journal of Pharmaceutical 2014,5(6):2164-2173. DOI:http://dx.doi.org/10.13040/IJPSR.0975-Sciences & Research, 8232.5(6).2164-73
- 126. Injectable nanorobots for precision cancer therapy: motion-enhanced drug delivery (Gao Z. et al., Chemical Society Reviews, 2025, 54, 10487–10530). DOI: 10.1039/D5CS00596E.