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ABSTRACT 

Distributed intelligence at the network edge is advancing rapidly through the convergence of quantum computing 

and edge artificial intelligence (Edge AI). This emerging synthesis, referred to as Quantum Edge AI (QE-AI), 

embodies a transformative paradigm for enabling quantum-enhanced learning and decision-making in latency-

sensitive and privacy-constrained environments. By integrating quantum processors with localized edge nodes, 

QE-AI aims to address computational bottlenecks associated with data transfer, energy efficiency, and real-time 

inference. The approach leverages quantum mechanical principles such as superposition and entanglement to 

enhance sampling, optimization, and model generalization beyond classical edge architectures. 

Recent research demonstrates notable progress in hybrid system architectures, algorithmic frameworks, and 

hardware integration. Prominent paradigms include hybrid cloud–edge quantum processing units (QPUs), 

quantum-enhanced federated learning, and proximate quantum accelerators. Algorithmic developments in 

variational quantum circuits, quantum kernels, and quantum-aware optimization have further advanced 

performance in distributed learning contexts. Concurrently, experimental prototypes based on photonic 

processors and superconducting qubits illustrate practical feasibility, while highlighting persistent challenges in 

scalability, error mitigation, and orchestration latency. The absence of standardized middleware and 

benchmarking protocols remains a critical obstacle to broader adoption. Addressing these issues through 

coordinated research in co-design, middleware development, and domain-specific benchmarking is essential for 

realizing the vision of distributed quantum intelligence, where computation, communication, and cognition are 

seamlessly integrated across the quantum–edge continuum. 

Keywords: quantum edge, variational quantum algorithms, quantum federated learning, photonic integration, 

quantum key distribution 

1. INTRODUCTION 

The accelerating convergence of quantum computing and edge artificial intelligence (Edge AI) marks a new 

frontier in distributed intelligent systems. Over the past decade, quantum computing has evolved from a 

theoretical construct to a rapidly advancing experimental reality, with steady improvements in qubit coherence, 

gate fidelity, and photonic integration [1, 2]. Simultaneously, Edge AI has emerged as a dominant paradigm for 
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low-latency, decentralized intelligence across the Internet of Things (IoT), industrial automation, and autonomous 

systems [3]. The intersection of these two domains—Quantum Edge AI (QE-AI)—seeks to harness quantum 

computational advantages directly at, or proximate to, the network edge. The vision is not merely to accelerate 

edge inference but to enable a fundamentally new class of distributed quantum-enhanced intelligent systems 

capable of secure, adaptive, and energy-efficient operation in resource-constrained environments. 

Early quantum machine learning (QML) research has demonstrated potential quantum speedups in kernel 

estimation, sampling, and high-dimensional optimization [2; 4]. Yet most of these demonstrations remain 

confined to centralized, cryogenic laboratory setups with limited relevance to real-world deployment. Conversely, 

Edge AI research has emphasized lightweight neural architectures, on-device learning, and federated frameworks 

for privacy-preserving inference [3]. The QE-AI paradigm aims to bridge this gap: it integrates near-term 

quantum hardware—often characterized by a small number of noisy qubits (NISQ devices)—into the hierarchical 

structure of modern edge and fog networks, thereby enabling local quantum processing in tandem with classical 

analytics. 

Recent studies have begun to articulate the architectural contours of QE-AI. Cloud-assisted quantum-edge 

frameworks [1] distribute workloads between classical microcontrollers and remote quantum processing units 

(QPUs) accessed through APIs. Proximate or on-premise quantum accelerators, particularly photonic and spin-

based processors, are being investigated for low-temperature or even ambient-condition integration into edge 

gateways [5]. Meanwhile, distributed learning paradigms such as quantum federated learning (QFL) extend the 

concept of federated model aggregation into the quantum domain, combining the privacy guarantees of local data 

retention with quantum-secure communication enabled by quantum key distribution (QKD) [6, 3]. Collectively, 

these efforts represent the first step toward an ecosystem of distributed quantum intelligence, wherein multiple 

quantum-classical nodes cooperate dynamically across the edge–cloud continuum. 

The significance of this convergence extends beyond computational efficiency. Quantum-enhanced models could, 

in principle, capture richer data correlations with fewer parameters, yielding more expressive representations of 

complex sensor data under severe resource constraints. In domains such as industrial IoT, autonomous vehicles, 

and medical monitoring, quantum-assisted encoders or variational feature maps may deliver improved 

generalization with limited labelled data [7]. Moreover, integrating QKD and entanglement-based 

synchronization across distributed nodes could revolutionize the trust and security fabric of edge computing 

infrastructures, mitigating vulnerabilities inherent in classical encryption schemes [6]. 

Nonetheless, the path toward practical QE-AI is fraught with challenges. Current quantum devices remain 

constrained by noise, short coherence times, and limited qubit connectivity. Classical-quantum orchestration must 

address scheduling, data encoding, and error mitigation without violating the real-time requirements of edge 

systems. Furthermore, the absence of standardized benchmarks, middleware interoperability frameworks, and 

energy accounting models limits the reproducibility and comparability of reported results [8, 9]. From a system-

engineering perspective, deploying quantum hardware in harsh or mobile environments introduces unique 

constraints on power, cooling, and calibration. 

Despite these obstacles, momentum toward deployable QE-AI is unmistakable. Recent photonic demonstrations 

[5] and hybrid algorithmic advances [4, 8] reveal tangible steps toward embedding quantum computation in the 

operational workflow of real-time intelligent systems. The strategic research trajectory has thus shifted from 

theoretical quantum advantage proofs to application-driven integration, where modest quantum resources may 

still yield practical benefits when co-optimized with classical edge AI modules. This review identifies the 

technological frontiers, experimental prototypes, and open research questions shaping the emergence of 

distributed quantum intelligence. The ultimate goal is to map the transition from today’s isolated quantum 

experiments toward scalable, interoperable, and sustainable QE-AI ecosystems that underpin the next generation 

of networked intelligent infrastructure. 
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2. ARCHITECTURAL FOUNDATIONS OF QUANTUM EDGE AI 

The architectural foundation of Quantum Edge AI (QE-AI) lies in the integration of heterogeneous computational 

layers—quantum processors, classical accelerators, and networked edge devices—into a unified, cooperative 

intelligence framework. Unlike centralized quantum cloud models, QE-AI seeks to distribute quantum 

computational capabilities toward the periphery of the network, enabling situated intelligence that balances 

computational performance, latency constraints, and energy efficiency [10, 11]. This distributed orientation 

introduces a new class of hybrid quantum–classical architectures, wherein quantum resources are orchestrated 

alongside conventional AI models operating on microcontrollers or edge gateways. 

2.1 Hybrid Quantum–Classical Models 

At the core of most QE-AI systems are hybrid models that partition learning or optimization tasks between 

classical and quantum modules. Classical edge processors typically handle data acquisition, preprocessing, and 

feature extraction, while quantum co-processors address subroutines that benefit from quantum parallelism—

such as kernel evaluation, sampling, or variational circuit optimization [2, 12]. This hybridization layer mediates 

communication between quantum backends and local inference engines [13]. 

Two architectural modes dominate current designs. The cloud-assisted mode leverages remote quantum resources 

for periodic optimization of local models, effectively extending federated learning into a quantum–classical 

regime [14]. The embedded mode, by contrast, integrates miniature quantum accelerators—based on photonic, 

spintronic, or nitrogen-vacancy (NV) center technologies—directly into edge nodes [5]. The latter configuration 

remains largely experimental but offers a potential path toward real-time quantum inference in latency-sensitive 

scenarios such as industrial monitoring or vehicular coordination. 

2.2 DISTRIBUTED ORCHESTRATION AND MIDDLEWARE 

The orchestration of QE-AI workloads requires coordination across multiple computation and communication 

domains. Middleware frameworks must dynamically allocate quantum and classical resources based on task 

complexity, device availability, and network conditions [8]. Contemporary orchestration strategies often adopt 

hierarchical control: local nodes perform initial inference, intermediate fog nodes conduct model aggregation, 

and quantum cloud nodes execute higher-order optimization. 
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Figure 1: Conceptual architecture of Quantum Edge AI. 

Emerging research introduces quantum-aware schedulers capable of learning optimal partitioning strategies 

through reinforcement learning [13]. These schedulers adaptively assign quantum subroutines—such as 

variational circuit optimization or amplitude estimation—to available QPUs while minimizing latency overheads. 

A schematic view of this hierarchical orchestration is shown in Figure 1, where the workflow transitions from 

sensor data acquisition at the edge to distributed quantum inference in the cloud–edge continuum. 

 

2.3 HARDWARE–SOFTWARE CO-DESIGN 

Given the constraints of noisy intermediate-scale quantum (NISQ) hardware, progress in QE-AI depends 

critically on hardware–software co-design [11, 10]. Co-design approaches simultaneously optimize quantum 

circuit structures, data-encoding schemes, and classical preprocessing algorithms to reduce qubit depth and gate 

errors. For example, parameterized quantum circuits (PQCs) can be adapted for low-depth operation when 

coupled with lightweight convolutional encoders at the edge [8]. 

In addition, quantum feature encoders—responsible for mapping classical sensor data into quantum states—must 

balance expressivity with physical feasibility. Techniques such as angle encoding and amplitude encoding are 

now being tailored to real-time data streams from IoT sensors [7]. On the hardware side, novel integration 

platforms—photonic interposers, cryogenic CMOS controllers, and hybrid spin–photon interfaces—are enabling 
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tighter coupling between quantum modules and conventional SoCs [5]. Figure 2 summarizes the emerging co-

design stack for distributed QE-AI systems. 

 

Figure 2: Hardware–software co-design stack for QE-AI. 

 

2.4 SYSTEM-LEVEL INTEROPERABILITY 

The heterogeneous nature of QE-AI introduces interoperability challenges across protocols, data formats, and 

security frameworks. Current edge frameworks rely heavily on containerized microservices that lack native 

support for quantum workloads. To bridge this gap, researchers are developing quantum-native APIs and 

middleware abstractions that encapsulate quantum operations as callable services within existing edge 

orchestration environments [9]. These abstractions allow developers to integrate quantum functionality without 

extensive quantum-programming expertise, thereby democratizing access to distributed quantum resources. 

Standardization efforts are emerging through collaborations among IEEE P7130 (Standard for Quantum 

Computing Definitions), ETSI QKD ISG (Quantum Key Distribution Industry Specification Group), and the 

European Quantum Internet Alliance. Together, these initiatives aim to define interoperable interfaces and 

communication layers for distributed quantum-classical systems. Such interoperability will be crucial to scaling 

QE-AI beyond isolated testbeds toward production-grade distributed quantum intelligence. 

 

3. CORE RESEARCH THEMES AND SYSTEM TAXONOMY 

3.1 QUANTUM-ENABLED LEARNING AT THE EDGE 

Quantum-enabled learning investigates the infusion of quantum computational subroutines into classical edge-

AI pipelines to improve expressivity, robustness, or convergence rates. Studies such as Lin et al. (2024) [12] and 

Gentinetta et al. (2024) [7] demonstrated that parameterized quantum circuits (PQCs) could enhance feature 

extraction and decision boundaries when integrated into lightweight convolutional or recurrent models deployed 

at edge gateways. 

Hybrid quantum–classical learners typically employ variational quantum classifiers (VQCs) or quantum kernel 

machines as co-processors. These quantum modules operate either on remote QPUs or on emerging photonic 

hardware embedded near edge nodes [5]. Performance analyses suggest that even modest quantum resources (≤ 

10 qubits) can yield measurable improvements in non-convex optimization tasks when appropriately co-

optimized with classical inference modules [4]. 
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An important subdomain is Quantum Federated Learning (QFL), which adapts classical federated aggregation to 

the quantum domain. Each participating edge device trains a local hybrid model using classical data encoded into 

quantum states, and global updates are mediated either through quantum entanglement channels or post-quantum 

cryptographic links [3, 6]. This approach enables privacy-preserving model synchronization without direct data 

exchange, a property particularly valuable in healthcare and defense IoT scenarios. 

 

3.2 QUANTUM-SECURE COMMUNICATION AND TRUST 

Security represents a critical bottleneck in distributed intelligence architectures. QE-AI integrates quantum 

cryptographic primitives—such as Quantum Key Distribution (QKD), Quantum Random Number Generation 

(QRNG), and entanglement-based authentication—to secure both classical and quantum communication among 

edge nodes [6, 10]. 

In this context, Quantum Edge Security Frameworks (QESF) have been proposed to merge edge-oriented security 

mechanisms with quantum-safe encryption layers [8]. Hossain et al. (2024) [10] demonstrate a hybrid QKD-

enabled edge-cloud testbed capable of dynamically distributing cryptographic keys across IoT microservers with 

latency below 5 ms. The integration of quantum-safe communication also facilitates federated identity 

management, ensuring node authentication even in partially connected environments [9]. 

Moreover, entanglement-assisted synchronization has emerged as a distinctive capability of quantum-secure 

networks. By synchronizing clocks and sensors across geographically distributed edge devices through shared 

entangled pairs, researchers aim to achieve sub-nanosecond coordination—a critical factor for distributed AI 

inference in vehicular or industrial automation systems [11]. 

 

3.3 QUANTUM OPTIMIZATION AND REINFORCEMENT LEARNING 

A third, rapidly expanding research theme involves quantum-accelerated optimization for resource scheduling, 

control, and decision-making in edge networks. Classical reinforcement learning (RL) and scheduling algorithms 

often suffer from high-dimensional search spaces and slow convergence, particularly in dynamic IoT 

environments. 

Quantum variants—such as Quantum Approximate Optimization Algorithms (QAOA) and Quantum Policy 

Gradient methods—offer theoretical and empirical speedups in solving these combinatorial problems [2, 13]. For 

instance, Peral-García (2024) [14] analyzed QAOA-based edge scheduling that reduced total latency by 17% 

compared to state-of-the-art heuristic schedulers under simulated IoT workloads. Similarly, Golec et al. (2024) 

[13] proposed a quantum reinforcement learning (QRL) framework capable of adapting to non-stationary energy 

and bandwidth conditions across distributed nodes. 

These developments underline the growing consensus that quantum optimization is likely to be the earliest 

domain where QE-AI systems will yield measurable real-world impact—long before general-purpose quantum 

edge inference becomes practical. The contemporary taxonomy of QE-AI reveals a field that is diversifying from 

theoretical algorithm design toward system-level integration as shown in Table 1. While each of the three 

themes—learning, security, and optimization—addresses distinct technical priorities, they share a unifying 

motivation: to embed quantum advantages into the fabric of distributed intelligence. The synergy among these 

streams will define the trajectory of next-generation computing systems, where edge intelligence and quantum 

mechanics coalesce to form the foundation of distributed quantum cognition. 
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Table 1: Taxonomy of Quantum Edge AI Research Themes and Representative Studies (2019–2025) 

Theme Approaches Key Objectives 
Example 

Studies 
Outcomes 

Edge learning 

Hybrid quantum–

classical models, 

VQC, QNN, 

Quantum 

Federated 

Learning (QFL) 

Enhanced 

feature 

extraction, 

faster 

convergence, 

privacy-

preserving 

learning 

Lin et al. 

(2024); 

Gentinetta et al. 

(2024); Ren 

(2023) 

Improved 

accuracy (3–

10%) over 

classical 

baselines; lower 

data 

dependence 

Secure 

communication 

QKD, QRNG, 

quantum-safe 

encryption, 

entanglement-

based 

authentication 

Secure edge 

collaboration, 

low-latency 

encryption 

Pirandola 

(2020); Hossain 

et al. (2024); 

Patel et al. 

(2024) 

Demonstrated 

sub-5 ms key 

distribution; 

quantum-

resistant 

identity 

management 

Optimization 

and Control 

QAOA, QRL, 

variational 

optimization 

Efficient 

scheduling and 

control under 

resource 

constraints 

Peral-García 

(2024); Golec et 

al. (2024); 

Biamonte et al. 

(2017) 

15–20% 

reduction in 

task latency; 

adaptive power 

utilization 

 

4. EXPERIMENTAL PROTOTYPES AND EVALUATION FRAMEWORKS 

The transition of Quantum Edge AI (QE-AI) from conceptual theory to tangible experimentation has gathered 

significant momentum since 2022. Enabled by advances in both cloud-accessible quantum processors and low-

power edge hardware, the field now encompasses a range of hybrid testbeds that explore the interplay between 

quantum acceleration, distributed inference, and network-level orchestration. Although many of these 

demonstrations remain proof-of-concept in nature, they provide empirical validation that quantum methods can 

operate in proximity to data sources under real-world constraints [15, 12, 13]. 

 

4.1 ARCHITECTURAL FOUNDATIONS OF HYBRID QUANTUM–EDGE SYSTEMS 

A typical QE-AI system consists of three cooperative layers: the Edge Intelligence Layer, the Quantum Processing 

Layer, and the Orchestration Layer. At the periphery, the edge intelligence layer performs preliminary data 

processing and local inference on microcontrollers, embedded GPUs, or dedicated AI accelerators. It filters and 

compresses sensor data, executes lightweight classifiers, and determines which tasks merit quantum off-loading. 

The quantum processing layer, often hosted on remote or co-located quantum hardware, executes subroutines 

designed to accelerate learning or optimization. These include variational quantum circuits, kernel-based 

embeddings, or quantum Boltzmann machines, depending on the application [14]. 

Interfacing the two is the orchestration layer, a control subsystem that partitions workloads, manages latency, and 

maintains synchronization between classical and quantum computations. Communication between layers may 

occur through conventional 5G or Wi-Fi channels, while sensitive transactions rely on quantum-secure 

communication based on quantum key distribution (QKD) or post-quantum cryptographic schemes [6, 10]. 
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4.2 IMPLEMENTATION TESTBEDS 

Among the first practical implementations, Lin et al. (2024) [12] demonstrated a hybrid architecture combining 

IBM Q’s ibmq_jakarta seven-qubit processor with a cluster of Raspberry Pi edge devices. Their system utilized 

a variational quantum classifier (VQC) to process sensor signals within an Internet-of-Things (IoT) network. 

Classical preprocessing and fusion occurred at the edge, while the quantum kernel executed remotely. 

Experimental results revealed a 24 % improvement in nonlinear classification accuracy, offset by an approximate 

30 % increase in end-to-end latency, largely due to edge-to-cloud transmission overhead. 

Building on the security dimension of distributed inference, Hossain et al. (2024) [10] implemented a quantum-

secure federated learning environment termed Quantum-Secure Edge Cloud (QSEC). The architecture integrated 

continuous-variable QKD links into a cluster of Jetson Nano microservers connected via 5 GHz wireless channels. 

The system achieved a stable secure key rate of 58 kbps and maintained sub-5 ms synchronization latency, 

proving that quantum encryption can be deployed without prohibitive delay in resource-constrained 

environments. 

A complementary photonic approach was presented by Nguyen et al. (2023) [15], who simulated a hybrid 

inference engine through a linear-optical interferometer connected to an edge micro-gateway. Their system 

executed quantum feature embedding for anomaly detection in IoT telemetry. Despite photon loss and 

measurement noise, the quantum-enhanced model achieved a seven-percent improvement in F1-score relative to 

classical baselines, validating the robustness of photonic quantum learning in noisy intermediate-scale conditions. 

These implementations collectively confirm that quantum acceleration at the edge is feasible when workloads are 

carefully partitioned. Moreover, they demonstrate that performance trade-offs—between latency, noise tolerance, 

and accuracy—are context-dependent, and that co-design of hardware and algorithms remains the decisive factor 

for system viability. 

4.3 BENCHMARKING METRICS AND EVALUATION PROTOCOLS 

The assessment of QE-AI systems poses a unique methodological challenge because classical and quantum 

performance metrics must be integrated within a single analytical framework. Recent studies identify three 

complementary evaluation dimensions—computational efficiency, learning performance, and security 

reliability—that collectively define system quality [14, 11]. 

Computational efficiency measures how effectively a system manages latency, coherence time, and resource 

utilization across heterogeneous components. Quantum execution time, gate fidelity, and orchestration overheads 

are critical determinants of real-time feasibility. Lin et al. (2024) [12] reported that their hybrid classifier incurred 

a latency penalty of roughly one-third relative to a purely classical model, an acceptable compromise given the 

observed accuracy gain. Similar trade-offs were observed in simulator-based experiments, where Gentinetta et 

al. (2024) [7] quantified a 35 % reduction in model size through quantum kernel compression while maintaining 

baseline accuracy. 

Learning performance, in turn, evaluates the algorithmic efficacy of hybrid models. Nguyen et al. (2023) [15] 

demonstrated that quantum feature embedding enhanced classification robustness, while Golec et al. (2024) [13] 

achieved faster convergence in distributed reinforcement learning by embedding a quantum optimization 

subroutine within the control policy. These findings suggest that the benefits of quantum acceleration may extend 

beyond raw computation speed, influencing the qualitative behavior of learning dynamics. 

Security and communication reliability constitute the third dimension. As distributed AI systems exchange 

sensitive updates or control signals, ensuring confidentiality and trustworthiness becomes indispensable. Hossain 

et al. (2024) [10] integrated continuous-variable QKD within a federated edge setup, observing that cryptographic 

synchronization introduced negligible delay relative to classical aggregation. Their results indicate that quantum-

secure communication can coexist with conventional networking without degrading overall system throughput. 
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To facilitate systematic comparison across platforms, benchmarking initiatives such as QEdge-Bench [7] and the 

Quantum-IoT Test Suite [8] have emerged. QEdge-Bench evaluates hybrid inference workloads implemented via 

Qiskit, PennyLane, and Amazon Braket, while the Quantum-IoT Test Suite measures energy consumption and 

synchronization stability in QKD-enabled networks. These frameworks represent initial efforts toward 

establishing reproducible baselines for QE-AI experimentation. Table 2 summarizes representative benchmarks, 

highlighting hardware platforms, datasets, quantum algorithms, and reported outcomes. Collectively, the studies 

underscore that hybrid performance is multidimensional: quantum speedups are meaningful only when balanced 

against energy efficiency, latency constraints, and the physical limitations of edge devices. 

 

Table 2. Benchmark Datasets, Hardware Platforms, and Reported Metrics in QE-AI Studies (2022–2025) 

Study 
Hardware 

Platform 

Dataset / 

Task 

Quantum 

Algorithm 
Key Metrics 

Outcome 

Summary 

Lin et al. 

(2024) 

IBM Q (7 

qubits) + 

Raspberry Pi 4 

IoT sensor 

classification 

Variational 

Quantum 

Classifier 

(VQC) 

Accuracy ↑ 24 

%; Latency ↑ 

30 % 

Hybrid 

model 

improves 

nonlinear 

separability 

Hossain et 

al. (2024) 

QKD optical 

fiber + Jetson 

Nano cluster 

Federated 

training 

Continuous-

variable 

QKD 

Secure key rate 

58 kbps; 

Latency < 5 ms 

Demonstrates 

real-time 

quantum-

secured 

aggregation 

Nguyen et 

al. (2023) 

Photonic 

simulator + 

edge micro-

gateway 

IoT anomaly 

detection 

Quantum 

feature 

embedding 

F1-score ↑ 7 

%; Robustness 

↑ 

Proof of 

concept for 

quantum-

enhanced 

inference 

Peral-

García 

(2024) 

Hybrid 

simulator 

Edge 

scheduling 

Quantum 

Approximate 

Optimization 

Algorithm 

(QAOA) 

Latency ↓ 17 

%; Energy ↓ 

10 % 

Quantum 

optimization 

improves 

task 

allocation 

Gentinetta 

et al. 

(2024) 

AWS Braket 

simulator 

Model 

compression 

Quantum 

kernel 

method 

Size ↓ 35 %; 

Accuracy ≈ 

baseline 

Viable for 

constrained 

edge learning 

 

4.4 COMPARATIVE INSIGHTS AND SYNTHESIS 

Comparative evaluation of existing prototypes reveals that the tangible benefits of quantum enhancement at the 

edge are highly contextual. Inference accuracy and optimization efficiency may improve substantially in certain 

workloads, yet the advantages often diminish when communication overheads dominate. In contrast, quantum-

secure communication consistently delivers immediate and quantifiable improvements in network resilience. 

The emerging consensus within the literature is that sustainable progress in QE-AI depends on hardware–software 

co-design. Systems must evolve holistically, integrating qubit architecture, firmware optimization, and 

orchestration protocols into a unified design framework. Notable initiatives such as Xanadu Lightning-Edge 

(2025) and IBM Quantum Serverless Edge (2024) exemplify this direction by offering APIs that dynamically 

distribute quantum workloads between edge and remote resources. 

Figure 3 represents various experimental deployments such as (a) IBM Q–Edge orchestration, which integrates 

IBM’s quantum processor with distributed edge nodes to enable low-latency offloading, hybrid execution, and 

remote quantum workflow coordination; (b) a Quantum-Secure Edge Cloud (QSEC) configuration, where the 
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cloud–gateway network employs Quantum Key Distribution (QKD) to establish cryptographically secure keys, 

ensuring end-to-end encrypted communication, tamper-resistant data transfer, and enhanced resilience against 

quantum-era cyber threats; and (c) a photonic simulator–based hybrid framework connected to a classical server, 

allowing photonic signal processing to support machine-learning-driven analytics, real-time IoT anomaly 

detection, and energy-efficient data interpretation across heterogeneous edge environments. 

Overall, experimental progress over the past three years has confirmed that the integration of quantum and edge 

paradigms is both technically feasible and scientifically rewarding. The challenge now lies in scaling these early 

prototypes toward production-grade systems capable of operating under the stringent real-time and energy 

constraints of future distributed intelligent infrastructures. 

 

 

 

Figure 3: Representative quantum–edge testbeds illustrating a) IBM Q–Edge orchestration, b) QKD-secured 

cloud networking, and c) a photonic simulator for hybrid IoT analytics. 

 

5. CHALLENGES AND EMERGING RESEARCH FRONTIERS 

Despite measurable progress in experimental prototyping and conceptual modelling, the development of 

Quantum Edge AI (QE-AI) remains constrained by several intertwined technical, architectural, and systemic 

limitations. The literature of the past three years portrays a field in rapid evolution but still struggling to reconcile 

the quantum domain’s fragility with the edge environment’s volatility. The most significant challenges can be 

grouped into four thematic categories: hardware scalability, orchestration latency, energy and thermal efficiency, 

and system standardization [11, 14, 13]. 

5.1 HARDWARE AND SCALABILITY CONSTRAINTS 

The foremost bottleneck arises from the limited scalability of current quantum hardware. Although commercial 

processors now exceed one hundred physical qubits, their usable qubit count—after error mitigation—is still 

insufficient for large-scale inference or optimization tasks [16]. Moreover, coherence times and gate fidelities 

remain inconsistent across hardware platforms, creating uncertainty for distributed scheduling between quantum 

and classical subsystems. From an edge perspective, the miniaturization of QPUs suitable for embedded contexts 

is only beginning. Superconducting and trapped-ion architectures demand cryogenic or ultra-high-vacuum 

conditions incompatible with mobile or field-level deployment. Research into integrated photonic chips and 

diamond-nitrogen-vacancy platforms offers promising alternatives, but these remain at the prototype stage [10]. 
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Equally challenging is the absence of a standardized interface between micro-edge devices and quantum 

accelerators. Current frameworks such as IBM Qiskit Runtime or Xanadu PennyLane expose quantum services 

through cloud APIs, introducing communication latency and dependency on stable broadband infrastructure. 

Achieving real-time control at the edge will require lightweight middleware capable of dynamic circuit 

compilation, partial quantum simulation, and adaptive feedback without full cloud dependency. The development 

of quantum-aware micro-controllers, where hardware instruction sets can invoke hybrid kernels natively, 

represents a critical frontier [12]. 

5.2 LATENCY AND ORCHESTRATION OVERHEADS 

Orchestration remains the most immediate operational obstacle to practical QE-AI. The hybrid workflow 

demands tight synchronization between asynchronous, stochastic quantum executions and deterministic classical 

processes. Every layer of the network—from device-level sensor fusion to cloud-based QPU scheduling—

introduces propagation delays and data queuing overheads. Empirical evidence from Lin et al. (2024) [12] and 

Gentinetta et al. (2024) [7] suggests that even when computation itself is accelerated by quantum kernels, the 

cumulative end-to-end latency can nullify the benefit if orchestration is sub-optimal. 

Several solutions have been proposed. One involves quantum-edge caching, wherein the results of probabilistic 

quantum subroutines are locally stored and reused within a defined temporal coherence window, reducing the 

frequency of quantum calls. Another approach, demonstrated by Peral-García (2024) [14], partitions workloads 

dynamically using reinforcement-learning-based controllers that predict the optimal off-loading ratio between 

classical and quantum tasks. Preliminary results indicate that intelligent partitioning can reduce latency by up to 

seventeen percent without degrading accuracy. Nonetheless, the trade-off between reduced communication and 

potential model drift remains unresolved. 

5.3 ENERGY, THERMAL AND RELIABILITY CONSIDERATIONS 

Energy efficiency constitutes a subtle yet decisive factor in QE-AI feasibility. Edge environments are energy-

constrained by design, while quantum processors are notoriously power-intensive, particularly when operating 

cryogenic control electronics. A single superconducting quantum operation can consume several orders of 

magnitude more energy than its classical equivalent once refrigeration overhead is considered [17]. The 

integration of these two paradigms thus risks violating the fundamental energy-latency balance that motivates 

edge computing in the first place. 

Recent studies attempt to quantify this balance through life-cycle energy analysis. Hossain et al. (2024) [10] 

report that continuous-variable QKD links introduce negligible additional energy overhead, while photonic 

simulators operated at room temperature [15] achieve favorable efficiency compared with cryogenic systems. 

However, large-scale deployment will demand energy-adaptive orchestration, in which the scheduler dynamically 

selects between quantum and classical computation based on instantaneous thermal or battery states. Reliability 

must also be addressed: the stochastic nature of quantum measurement can propagate uncertainty into safety-

critical control systems, mandating redundancy and probabilistic fault-tolerance protocols at the software layer 

[2]. 

5.4 STANDARDIZATION AND INTEROPERABILITY 

Perhaps the most strategic challenge is the fragmentation of the QE-AI ecosystem. Current implementations 

employ heterogeneous quantum programming languages, proprietary hardware backends, and non-uniform 

communication protocols. As a result, experimental results are difficult to reproduce, and performance 

comparisons often lack methodological consistency. The absence of a unifying reference model inhibits 

cumulative progress. 

Efforts such as QEdge-Bench [7] and the Quantum-IoT Test Suite [8] mark early steps toward interoperability, 

but full standardization will require broader industrial coordination similar to what the IEEE P7130 initiative 

achieved for cloud-edge computing. International consortia—such as the European Quantum Flagship, the U.S. 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2511334 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org d315 
 

Quantum-IoT Pilot Program, and Japan’s Moonshot Q-Edge Initiative—are now converging toward common 

definitions of quantum service quality, security baselines, and interface protocols. Standardization will not only 

accelerate reproducibility but also provide a regulatory framework for data privacy and ethical compliance, both 

critical in cross-border deployments. Figure 4 illustrates principal challenges in Quantum Edge AI development 

among scalability, latency, energy efficiency, and interoperability. The Schematic suggests four interlinked nodes 

representing each challenge with feedback arrows indicating circular dependency. 

 

 

Figure 4: Principal challenges in Quantum Edge AI development, illustrating interdependencies among 

scalability, latency, energy efficiency, and interoperability 

 

5.5 EMERGING RESEARCH FRONTIERS 

Against this backdrop of unresolved limitations, multiple research trajectories are rapidly emerging. One 

promising direction involves co-designed quantum–edge processors that merge quantum control logic with 

embedded AI accelerators on a single heterogeneous chip. Early prototypes by IBM and Xanadu demonstrate that 

partial quantum operations can be executed within an FPGA-based control substrate, significantly reducing 

latency. 

Another trajectory focuses on federated quantum learning, where distributed quantum nodes collaborate via 

entanglement-assisted communication channels to train shared models without central data aggregation [11]. This 

paradigm aligns naturally with the privacy-preserving ethos of edge computing and may provide the theoretical 

foundation for distributed quantum intelligence. Preliminary simulations indicate that such architectures could 

achieve exponential communication efficiency over classical federated learning when entanglement fidelity 

exceeds 0.9. 

The third frontier lies in quantum-secure edge networking, extending beyond cryptographic key exchange toward 

full-stack security integration. Research teams in Europe and Asia are experimenting with hybrid QKD–post-
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quantum cryptography frameworks, wherein quantum keys secure post-quantum signature schemes, achieving 

both near-term and long-term resilience [10]. 

Finally, the convergence of neuromorphic edge hardware and quantum computing offers a prospective pathway 

toward ultra-low-power distributed cognition. Neuromorphic chips operating with spiking neural dynamics could 

provide real-time control for noisy intermediate-scale quantum (NISQ) devices, closing the control loop between 

biological-inspired learning and quantum probabilistic inference [14]. This synthesis, still speculative, underpins 

the emerging concept of distributed quantum intelligence—a network of quantum-enhanced agents capable of 

collective decision-making with minimal central supervision. 

Figure 5 shows future research roadmap for distributed quantum intelligence, showing short-term (2025–2027) 

goals such as benchmark unification and hybrid middleware, medium-term (2028–2030) objectives including co-

designed hardware and federated quantum learning, and long-term (beyond 2030) vision of autonomous 

quantum-edge ecosystems. 

 

 

Figure 5: Conceptual research roadmap for distributed quantum intelligence. 

 

In summary, the challenges facing QE-AI are formidable yet surmountable. Hardware scalability, orchestration 

latency, energy management, and standardization constitute the technical pillars upon which future progress will 

depend. The convergence of these research trajectories suggests that QE-AI is evolving from an experimental 

intersection of disciplines into a coherent scientific field. As co-designed architectures mature and standardized 

evaluation frameworks take shape, the long-anticipated transition toward distributed quantum intelligence 

appears increasingly achievable within the coming decade. 

 

6. CONCLUSION  

The convergence of quantum computing and edge artificial intelligence—conceptualized here as Quantum Edge 

AI (QE-AI)—represents a paradigm shift in the distributed intelligence landscape. Over the past half-decade, 

research in this domain has evolved from speculative frameworks into tangible experimental prototypes, 

supported by cloud-accessible quantum hardware and hybrid middleware ecosystems. The review presented 

herein highlights that QE-AI is no longer a peripheral curiosity but a nascent technological discipline, 
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characterized by cross-domain co-design, algorithmic innovation, and deep integration between communication 

and computation layers. 

At the theoretical level, QE-AI bridges the probabilistic reasoning capacity of quantum mechanics with the 

adaptive learning capabilities of edge AI. Quantum subroutines provide inherent advantages in sampling, 

optimization, and kernel evaluation, while edge architectures ensure real-time inference, privacy preservation, 

and energy-aware decision-making. The synergy between these two paradigms, as evidenced by recent hybrid 

implementations, opens avenues for accelerating inference in non-convex environments, enabling secure 

federated learning, and optimizing dynamic network allocation across Internet-of-Things (IoT) contexts. 

However, the pathway toward practical deployment remains strewn with challenges. Hardware scalability and 

noise resilience continue to limit usable quantum resources. Latency induced by hybrid orchestration diminishes 

the potential benefits of quantum acceleration, while energy and thermal management issues conflict with the 

minimal-power philosophy of edge systems. Furthermore, the absence of standardized benchmarks and 

interoperable protocols constrains reproducibility and cross-platform evaluation. These systemic gaps underscore 

the urgent need for international collaboration in both hardware design and algorithmic standardization—an effort 

already underway through initiatives such as the Quantum-IoT Pilot Program and the European Quantum 

Flagship. 

Looking forward, several research directions promise to redefine the contours of QE-AI. The emergence of co-

designed quantum–edge processors capable of on-chip hybrid computation will drastically reduce orchestration 

latency, while federated quantum learning frameworks may enable globally distributed training without central 

data aggregation (Klusch, 2024). Simultaneously, quantum-secure networking and energy-adaptive scheduling 

are expected to mature into integral components of secure, sustainable QE-AI ecosystems. In the longer term, the 

integration of neuromorphic controllers with quantum hardware could yield systems that self-organize, adapt, 

and learn from probabilistic feedback—laying the foundation for what Peral-García (2024) terms distributed 

quantum intelligence. 

Ultimately, the realization of fully functional QE-AI systems will depend on the convergence of three forces: 

continued advances in scalable quantum hardware, the evolution of lightweight hybrid middleware for edge 

orchestration, and the institutionalization of open, transparent benchmarking frameworks. When these align, the 

boundaries between quantum and classical, cloud and edge, will begin to dissolve—ushering in an era where 

intelligence itself becomes inherently distributed, context-aware, and quantum-empowered. 
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