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ABSTRACT

Distributed intelligence at the network edge is advancing rapidly through the convergence of quantum computing
and edge artificial intelligence (Edge AI). This emerging synthesis, referred to as Quantum Edge Al (QE-AI),
embodies a transformative paradigm for enabling quantum-enhanced learning and decision-making in latency-
sensitive and privacy-constrained environments. By integrating quantum processors with localized edge nodes,
QE-AI aims to address computational bottlenecks associated with data transfer, energy efficiency, and real-time
inference. The approach leverages quantum mechanical principles such as superposition and entanglement to
enhance sampling, optimization, and model generalization beyond classical edge architectures.

Recent research demonstrates notable progress in hybrid system architectures, algorithmic frameworks, and
hardware integration. Prominent paradigms include hybrid cloud—edge quantum processing units (QPUs),
quantum-enhanced federated learning, and proximate quantum accelerators. Algorithmic developments in
variational quantum circuits, quantum kernels, and quantum-aware optimization have further advanced
performance in distributed learning contexts. Concurrently, experimental prototypes based on photonic
processors and superconducting qubits illustrate practical feasibility, while highlighting persistent challenges in
scalability, error mitigation, and orchestration latency. The absence of standardized middleware and
benchmarking protocols remains a critical obstacle to broader adoption. Addressing these issues through
coordinated research in co-design, middleware development, and domain-specific benchmarking is essential for
realizing the vision of distributed quantum intelligence, where computation, communication, and cognition are
seamlessly integrated across the quantum—edge continuum.

Keywords: quantum edge, variational quantum algorithms, quantum federated learning, photonic integration,
quantum key distribution

1. INTRODUCTION

The accelerating convergence of quantum computing and edge artificial intelligence (Edge AI) marks a new
frontier in distributed intelligent systems. Over the past decade, quantum computing has evolved from a
theoretical construct to a rapidly advancing experimental reality, with steady improvements in qubit coherence,
gate fidelity, and photonic integration [1, 2]. Simultaneously, Edge Al has emerged as a dominant paradigm for
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low-latency, decentralized intelligence across the Internet of Things (IoT), industrial automation, and autonomous

systems [3]. The intersection of these two domains—Quantum Edge Al (QE-AI)—seeks to harness quantum
computational advantages directly at, or proximate to, the network edge. The vision is not merely to accelerate
edge inference but to enable a fundamentally new class of distributed quantum-enhanced intelligent systems
capable of secure, adaptive, and energy-efficient operation in resource-constrained environments.

Early quantum machine learning (QML) research has demonstrated potential quantum speedups in kernel
estimation, sampling, and high-dimensional optimization [2; 4]. Yet most of these demonstrations remain
confined to centralized, cryogenic laboratory setups with limited relevance to real-world deployment. Conversely,
Edge Al research has emphasized lightweight neural architectures, on-device learning, and federated frameworks
for privacy-preserving inference [3]. The QE-AI paradigm aims to bridge this gap: it integrates near-term
quantum hardware—often characterized by a small number of noisy qubits (NISQ devices)—into the hierarchical
structure of modern edge and fog networks, thereby enabling local quantum processing in tandem with classical
analytics.

Recent studies have begun to articulate the architectural contours of QE-AIl. Cloud-assisted quantum-edge
frameworks [1] distribute workloads between classical microcontrollers and remote quantum processing units
(QPUs) accessed through APIs. Proximate or on-premise quantum accelerators, particularly photonic and spin-
based processors, are being investigated for low-temperature or even ambient-condition integration into edge
gateways [5]. Meanwhile, distributed learning paradigms such as quantum federated learning (QFL) extend the
concept of federated model aggregation into the quantum domain, combining the privacy guarantees of local data
retention with quantum-secure communication enabled by quantum key distribution (QKD) [6, 3]. Collectively,
these efforts represent the first step toward an ecosystem of distributed quantum intelligence, wherein multiple
quantum-classical nodes cooperate dynamically across the edge—cloud continuum.

The significance of this convergence extends beyond computational efficiency. Quantum-enhanced models could,
in principle, capture richer data correlations with fewer parameters, yielding more expressive representations of
complex sensor data under severe resource constraints. In domains such as industrial IoT, autonomous vehicles,
and medical monitoring, quantum-assisted encoders or variational feature maps may deliver improved
generalization with limited labelled data [7]. Moreover, integrating QKD and entanglement-based
synchronization across distributed nodes could revolutionize the trust and security fabric of edge computing
infrastructures, mitigating vulnerabilities inherent in classical encryption schemes [6].

Nonetheless, the path toward practical QE-AI is fraught with challenges. Current quantum devices remain
constrained by noise, short coherence times, and limited qubit connectivity. Classical-quantum orchestration must
address scheduling, data encoding, and error mitigation without violating the real-time requirements of edge
systems. Furthermore, the absence of standardized benchmarks, middleware interoperability frameworks, and
energy accounting models limits the reproducibility and comparability of reported results [8, 9]. From a system-
engineering perspective, deploying quantum hardware in harsh or mobile environments introduces unique
constraints on power, cooling, and calibration.

Despite these obstacles, momentum toward deployable QE-AI is unmistakable. Recent photonic demonstrations
[5] and hybrid algorithmic advances [4, 8] reveal tangible steps toward embedding quantum computation in the
operational workflow of real-time intelligent systems. The strategic research trajectory has thus shifted from
theoretical quantum advantage proofs to application-driven integration, where modest quantum resources may
still yield practical benefits when co-optimized with classical edge Al modules. This review identifies the
technological frontiers, experimental prototypes, and open research questions shaping the emergence of
distributed quantum intelligence. The ultimate goal is to map the transition from today’s isolated quantum
experiments toward scalable, interoperable, and sustainable QE-AI ecosystems that underpin the next generation
of networked intelligent infrastructure.
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2. ARCHITECTURAL FOUNDATIONS OF QUANTUM EDGE Al

The architectural foundation of Quantum Edge AI (QE-AI) lies in the integration of heterogeneous computational
layers—quantum processors, classical accelerators, and networked edge devices—into a unified, cooperative
intelligence framework. Unlike centralized quantum cloud models, QE-AI seeks to distribute quantum
computational capabilities toward the periphery of the network, enabling situated intelligence that balances
computational performance, latency constraints, and energy efficiency [10, 11]. This distributed orientation
introduces a new class of hybrid quantum—classical architectures, wherein quantum resources are orchestrated
alongside conventional Al models operating on microcontrollers or edge gateways.

2.1 Hybrid Quantum-Classical Models

At the core of most QE-AI systems are hybrid models that partition learning or optimization tasks between
classical and quantum modules. Classical edge processors typically handle data acquisition, preprocessing, and
feature extraction, while quantum co-processors address subroutines that benefit from quantum parallelism—
such as kernel evaluation, sampling, or variational circuit optimization [2, 12]. This hybridization layer mediates
communication between quantum backends and local inference engines [13].

Two architectural modes dominate current designs. The cloud-assisted mode leverages remote quantum resources
for periodic optimization of local models, effectively extending federated learning into a quantum—classical
regime [14]. The embedded mode, by contrast, integrates miniature quantum accelerators—based on photonic,
spintronic, or nitrogen-vacancy (NV) center technologies—directly into edge nodes [5]. The latter configuration
remains largely experimental but offers a potential path toward real-time quantum inference in latency-sensitive
scenarios such as industrial monitoring or vehicular coordination.

2.2 DISTRIBUTED ORCHESTRATION AND MIDDLEWARE

The orchestration of QE-AI workloads requires coordination across multiple computation and communication
domains. Middleware frameworks must dynamically allocate quantum and classical resources based on task
complexity, device availability, and network conditions [8]. Contemporary orchestration strategies often adopt
hierarchical control: local nodes perform initial inference, intermediate fog nodes conduct model aggregation,
and quantum cloud nodes execute higher-order optimization.
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Figure 1: Conceptual architecture of Quantum Edge Al

Emerging research introduces quantum-aware schedulers capable of learning optimal partitioning strategies
through reinforcement learning [13]. These schedulers adaptively assign quantum subroutines—such as
variational circuit optimization or amplitude estimation—to available QPUs while minimizing latency overheads.
A schematic view of this hierarchical orchestration is shown in Figure 1, where the workflow transitions from
sensor data acquisition at the edge to distributed quantum inference in the cloud—edge continuum.

2.3 HARDWARE-SOFTWARE CO-DESIGN

Given the constraints of noisy intermediate-scale quantum (NISQ) hardware, progress in QE-AI depends
critically on hardware—software co-design [11, 10]. Co-design approaches simultaneously optimize quantum
circuit structures, data-encoding schemes, and classical preprocessing algorithms to reduce qubit depth and gate
errors. For example, parameterized quantum circuits (PQCs) can be adapted for low-depth operation when
coupled with lightweight convolutional encoders at the edge [8].

In addition, quantum feature encoders—responsible for mapping classical sensor data into quantum states—must
balance expressivity with physical feasibility. Techniques such as angle encoding and amplitude encoding are
now being tailored to real-time data streams from IoT sensors [7]. On the hardware side, novel integration
platforms—photonic interposers, cryogenic CMOS controllers, and hybrid spin—photon interfaces—are enabling

JETIR2511334 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | d307


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)
tighter coupling between quantum modules and conventional SoCs [5]. Figure 2 summarizes the emerging co-

design stack for distributed QE-AI systems.
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Figure 2: Hardware—software co-design stack for QE-AL

2.4 SYSTEM-LEVEL INTEROPERABILITY

The heterogeneous nature of QE-AI introduces interoperability challenges across protocols, data formats, and
security frameworks. Current edge frameworks rely heavily on containerized microservices that lack native
support for quantum workloads. To bridge this gap, researchers are developing quantum-native APIs and
middleware abstractions that encapsulate quantum operations as callable services within existing edge
orchestration environments [9]. These abstractions allow developers to integrate quantum functionality without
extensive quantum-programming expertise, thereby democratizing access to distributed quantum resources.

Standardization efforts are emerging through collaborations among IEEE P7130 (Standard for Quantum
Computing Definitions), ETSI QKD ISG (Quantum Key Distribution Industry Specification Group), and the
European Quantum Internet Alliance. Together, these initiatives aim to define interoperable interfaces and
communication layers for distributed quantum-classical systems. Such interoperability will be crucial to scaling
QE-AI beyond isolated testbeds toward production-grade distributed quantum intelligence.

3. CORE RESEARCH THEMES AND SYSTEM TAXONOMY
3.1 QUANTUM-ENABLED LEARNING AT THE EDGE

Quantum-enabled learning investigates the infusion of quantum computational subroutines into classical edge-
Al pipelines to improve expressivity, robustness, or convergence rates. Studies such as Lin et al. (2024) [12] and
Gentinetta et al. (2024) [7] demonstrated that parameterized quantum circuits (PQCs) could enhance feature
extraction and decision boundaries when integrated into lightweight convolutional or recurrent models deployed
at edge gateways.

Hybrid quantum—classical learners typically employ variational quantum classifiers (VQCs) or quantum kernel
machines as co-processors. These quantum modules operate either on remote QPUs or on emerging photonic
hardware embedded near edge nodes [5]. Performance analyses suggest that even modest quantum resources (<
10 qubits) can yield measurable improvements in non-convex optimization tasks when appropriately co-

optimized with classical inference modules [4].
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An important subdomain is Quantum Federated Learning (QFL), which adapts classical federated aggregation to
the quantum domain. Each participating edge device trains a local hybrid model using classical data encoded into

quantum states, and global updates are mediated either through quantum entanglement channels or post-quantum
cryptographic links [3, 6]. This approach enables privacy-preserving model synchronization without direct data
exchange, a property particularly valuable in healthcare and defense loT scenarios.

3.2 QUANTUM-SECURE COMMUNICATION AND TRUST

Security represents a critical bottleneck in distributed intelligence architectures. QE-AI integrates quantum
cryptographic primitives—such as Quantum Key Distribution (QKD), Quantum Random Number Generation
(QRNG), and entanglement-based authentication—to secure both classical and quantum communication among
edge nodes [6, 10].

In this context, Quantum Edge Security Frameworks (QESF) have been proposed to merge edge-oriented security
mechanisms with quantum-safe encryption layers [8]. Hossain et al. (2024) [10] demonstrate a hybrid QKD-
enabled edge-cloud testbed capable of dynamically distributing cryptographic keys across loT microservers with
latency below 5 ms. The integration of quantum-safe communication also facilitates federated identity
management, ensuring node authentication even in partially connected environments [9].

Moreover, entanglement-assisted synchronization has emerged as a distinctive capability of quantum-secure
networks. By synchronizing clocks and sensors across geographically distributed edge devices through shared
entangled pairs, researchers aim to achieve sub-nanosecond coordination—a critical factor for distributed Al
inference in vehicular or industrial automation systems [11].

3.3 QUANTUM OPTIMIZATION AND REINFORCEMENT LEARNING

A third, rapidly expanding research theme involves quantum-accelerated optimization for resource scheduling,
control, and decision-making in edge networks. Classical reinforcement learning (RL) and scheduling algorithms
often suffer from high-dimensional search spaces and slow convergence, particularly in dynamic IoT
environments.

Quantum variants—such as Quantum Approximate Optimization Algorithms (QAOA) and Quantum Policy
Gradient methods—offer theoretical and empirical speedups in solving these combinatorial problems [2, 13]. For
instance, Peral-Garcia (2024) [14] analyzed QAOA-based edge scheduling that reduced total latency by 17%
compared to state-of-the-art heuristic schedulers under simulated IoT workloads. Similarly, Golec et al. (2024)
[13] proposed a quantum reinforcement learning (QRL) framework capable of adapting to non-stationary energy
and bandwidth conditions across distributed nodes.

These developments underline the growing consensus that quantum optimization is likely to be the earliest
domain where QE-AI systems will yield measurable real-world impact—Ilong before general-purpose quantum
edge inference becomes practical. The contemporary taxonomy of QE-Al reveals a field that is diversifying from
theoretical algorithm design toward system-level integration as shown in Table 1. While each of the three
themes—Iearning, security, and optimization—addresses distinct technical priorities, they share a unifying
motivation: to embed quantum advantages into the fabric of distributed intelligence. The synergy among these
streams will define the trajectory of next-generation computing systems, where edge intelligence and quantum
mechanics coalesce to form the foundation of distributed quantum cognition.
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Table 1: Taxonomy of Quantum Edge Al Research Themes and Representative Studies (2019-2025)

.. Example
Theme Approaches Key Objectives Studies Outcomes
Enhanced Improved
Hybrid quantum— feature Lin et al acculr)ac (3-
classical models, extraction, - o y
VQC, QNN faster (2024); 10%) over
Edge learning Qua:n fum ’ cOnVersence Gentinetta et al. classical
Federated privagcy- ’ (2024); Ren baselines; lower
Learning (QFL) preserving (2023) data
learning dependence
Demonstrated
QKD, QRNG, :
quantum-safe Secure edge Pirandola . Su.b_s. ms key
. . (2020); Hossain distribution;
Secure encryption, collaboration, ]
. L. et al. (2024); quantum-
communication entanglement- low-latency ) 1 .
based encryption Ralecta, r'esmtgnt
authentication (2024) identity
management
Efficient Peral-Garcia 15-20%
Obtimization QAOA, QRL, scheduling and | (2024); Golec et reduction in
II: dl ClZn t11~ I variational control under al. (2024); task latency;
a ontro optimization resource Biamonte et al. | adaptive power
constraints (2017) utilization

4. EXPERIMENTAL PROTOTYPES AND EVALUATION FRAMEWORKS

The transition of Quantum Edge Al (QE-AI) from conceptual theory to tangible experimentation has gathered
significant momentum since 2022. Enabled by advances in both cloud-accessible quantum processors and low-
power edge hardware, the field now encompasses a range of hybrid testbeds that explore the interplay between
quantum acceleration, distributed inference, and network-level orchestration. Although many of these
demonstrations remain proof-of-concept in nature, they provide empirical validation that quantum methods can
operate in proximity to data sources under real-world constraints [15, 12, 13].

4.1 ARCHITECTURAL FOUNDATIONS OF HYBRID QUANTUM-EDGE SYSTEMS

Atypical QE-Al system consists of three cooperative layers: the Edge Intelligence Layer, the Quantum Processing
Layer, and the Orchestration Layer. At the periphery, the edge intelligence layer performs preliminary data
processing and local inference on microcontrollers, embedded GPUs, or dedicated Al accelerators. It filters and
compresses sensor data, executes lightweight classifiers, and determines which tasks merit quantum off-loading.

The quantum processing layer, often hosted on remote or co-located quantum hardware, executes subroutines
designed to accelerate learning or optimization. These include variational quantum circuits, kernel-based
embeddings, or the  application  [14].
Interfacing the two is the orchestration layer, a control subsystem that partitions workloads, manages latency, and
maintains synchronization between classical and quantum computations. Communication between layers may

quantum  Boltzmann  machines, depending on

occur through conventional 5G or Wi-Fi channels, while sensitive transactions rely on quantum-secure
communication based on quantum key distribution (QKD) or post-quantum cryptographic schemes [6, 10].
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4.2 IMPLEMENTATION TESTBEDS

Among the first practical implementations, Lin et al. (2024) [12] demonstrated a hybrid architecture combining
IBM Q’s ibmq_jakarta seven-qubit processor with a cluster of Raspberry Pi edge devices. Their system utilized
a variational quantum classifier (VQC) to process sensor signals within an Internet-of-Things (IoT) network.
Classical preprocessing and fusion occurred at the edge, while the quantum kernel executed remotely.
Experimental results revealed a 24 % improvement in nonlinear classification accuracy, offset by an approximate
30 % increase in end-to-end latency, largely due to edge-to-cloud transmission overhead.

Building on the security dimension of distributed inference, Hossain et al. (2024) [10] implemented a quantum-
secure federated learning environment termed Quantum-Secure Edge Cloud (QSEC). The architecture integrated
continuous-variable QKD links into a cluster of Jetson Nano microservers connected via 5 GHz wireless channels.
The system achieved a stable secure key rate of 58 kbps and maintained sub-5 ms synchronization latency,
proving that quantum encryption can be deployed without prohibitive delay in resource-constrained
environments.

A complementary photonic approach was presented by Nguyen et al. (2023) [15], who simulated a hybrid
inference engine through a linear-optical interferometer connected to an edge micro-gateway. Their system
executed quantum feature embedding for anomaly detection in IoT telemetry. Despite photon loss and
measurement noise, the quantum-enhanced model achieved a seven-percent improvement in F1-score relative to
classical baselines, validating the robustness of photonic quantum learning in noisy intermediate-scale conditions.

These implementations collectively confirm that quantum acceleration at the edge is feasible when workloads are
carefully partitioned. Moreover, they demonstrate that performance trade-offs—between latency, noise tolerance,
and accuracy—are context-dependent, and that co-design of hardware and algorithms remains the decisive factor
for system viability.

4.3 BENCHMARKING METRICS AND EVALUATION PROTOCOLS

The assessment of QE-AI systems poses a unique methodological challenge because classical and quantum
performance metrics must be integrated within a single analytical framework. Recent studies identify three
complementary evaluation dimensions—computational efficiency, learning performance, and security
reliability—that collectively define system quality [14, 11].

Computational efficiency measures how effectively a system manages latency, coherence time, and resource
utilization across heterogeneous components. Quantum execution time, gate fidelity, and orchestration overheads
are critical determinants of real-time feasibility. Lin et al. (2024) [12] reported that their hybrid classifier incurred
a latency penalty of roughly one-third relative to a purely classical model, an acceptable compromise given the
observed accuracy gain. Similar trade-offs were observed in simulator-based experiments, where Gentinetta et
al. (2024) [7] quantified a 35 % reduction in model size through quantum kernel compression while maintaining
baseline accuracy.

Learning performance, in turn, evaluates the algorithmic efficacy of hybrid models. Nguyen et al. (2023) [15]
demonstrated that quantum feature embedding enhanced classification robustness, while Golec et al. (2024) [13]
achieved faster convergence in distributed reinforcement learning by embedding a quantum optimization
subroutine within the control policy. These findings suggest that the benefits of quantum acceleration may extend
beyond raw computation speed, influencing the qualitative behavior of learning dynamics.

Security and communication reliability constitute the third dimension. As distributed Al systems exchange
sensitive updates or control signals, ensuring confidentiality and trustworthiness becomes indispensable. Hossain
etal. (2024) [10] integrated continuous-variable QKD within a federated edge setup, observing that cryptographic
synchronization introduced negligible delay relative to classical aggregation. Their results indicate that quantum-
secure communication can coexist with conventional networking without degrading overall system throughput.
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To facilitate systematic comparison across platforms, benchmarking initiatives such as QEdge-Bench [7] and the
Quantum-IoT Test Suite [8] have emerged. QEdge-Bench evaluates hybrid inference workloads implemented via
Qiskit, PennyLane, and Amazon Braket, while the Quantum-IoT Test Suite measures energy consumption and
synchronization stability in QKD-enabled networks. These frameworks represent initial efforts toward
establishing reproducible baselines for QE-AI experimentation. Table 2 summarizes representative benchmarks,
highlighting hardware platforms, datasets, quantum algorithms, and reported outcomes. Collectively, the studies
underscore that hybrid performance is multidimensional: quantum speedups are meaningful only when balanced
against energy efficiency, latency constraints, and the physical limitations of edge devices.

Table 2. Benchmark Datasets, Hardware Platforms, and Reported Metrics in QE-AI Studies (2022-2025)

Hardware Dataset / Quantum . Outcome
Study Platform Task Algorithm Key Metrics Summary
_ Hybrid
Variational
Lin et al. IBM. Q7 IoT sensor Quantum z?c.curacy 124 . model
qubits) + . . . %; Latency 1 improves
(2024) . classification | Classifier . .
Raspberry Pi 4 30 % nonlinear
(VQC) .
separability
Demonstrates
Hossain et QKD optical Federated Contlpuous- Secure key .rate real-time
al. (2024) fiber + Jetson training variable 58 kbps; quantum-
' Nano cluster QKD Latency <5 ms secured
aggregation
. Proof of
Photonic Quantum Fl-score 17 concept for
Nguyen et simulator + IoT anomaly o p
: . feature %; Robustness quantum-
al. (2023) edge micro- detection y
tewa embedding 1 enhanced
& Y inference
Quantum Quantum
Peraly- Hybrid Edge App'r0>‘(1m‘ate I;atency 117 optimization
Garcia simulator schedulin Optimization | %; Energy | improves
(2024) £ | Algorithm 10 % task
(QAOA) allocation
- - v -
Gentinetta AWS Braket Model Quantum Size | 35 %; Vlable.for
et al. simulator compros i kernel Accuracy = constrained
(2024) p method baseline edge learning

4.4 COMPARATIVE INSIGHTS AND SYNTHESIS

Comparative evaluation of existing prototypes reveals that the tangible benefits of quantum enhancement at the
edge are highly contextual. Inference accuracy and optimization efficiency may improve substantially in certain
workloads, yet the advantages often diminish when communication overheads dominate. In contrast, quantum-
secure communication consistently delivers immediate and quantifiable improvements in network resilience.

The emerging consensus within the literature is that sustainable progress in QE-AI depends on hardware—software
co-design. Systems must evolve holistically, integrating qubit architecture, firmware optimization, and
orchestration protocols into a unified design framework. Notable initiatives such as Xanadu Lightning-Edge
(2025) and IBM Quantum Serverless Edge (2024) exemplify this direction by offering APIs that dynamically
distribute quantum workloads between edge and remote resources.

Figure 3 represents various experimental deployments such as (a) IBM Q—Edge orchestration, which integrates
IBM’s quantum processor with distributed edge nodes to enable low-latency offloading, hybrid execution, and
remote quantum workflow coordination; (b) a Quantum-Secure Edge Cloud (QSEC) configuration, where the
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cloud—gateway network employs Quantum Key Distribution (QKD) to establish cryptographically secure keys,
ensuring end-to-end encrypted communication, tamper-resistant data transfer, and enhanced resilience against
quantum-era cyber threats; and (c) a photonic simulator—based hybrid framework connected to a classical server,
allowing photonic signal processing to support machine-learning-driven analytics, real-time IoT anomaly
detection, and energy-efficient data interpretation across heterogeneous edge environments.

Overall, experimental progress over the past three years has confirmed that the integration of quantum and edge
paradigms is both technically feasible and scientifically rewarding. The challenge now lies in scaling these early
prototypes toward production-grade systems capable of operating under the stringent real-time and energy
constraints of future distributed intelligent infrastructures.

@ Classical

Gateway server

3 -
Photonic
IBM Q oD simulator

Figure 3: Representative quantum—edge testbeds illustrating a) IBM Q—Edge orchestration, b) QKD-secured
cloud networking, and c¢) a photonic simulator for hybrid IoT analytics.

5. CHALLENGES AND EMERGING RESEARCH FRONTIERS

Despite measurable progress in experimental prototyping and conceptual modelling, the development of
Quantum Edge AI (QE-AI) remains constrained by several intertwined technical, architectural, and systemic
limitations. The literature of the past three years portrays a field in rapid evolution but still struggling to reconcile
the quantum domain’s fragility with the edge environment’s volatility. The most significant challenges can be
grouped into four thematic categories: hardware scalability, orchestration latency, energy and thermal efficiency,
and system standardization [11, 14, 13].

5.1 HARDWARE AND SCALABILITY CONSTRAINTS

The foremost bottleneck arises from the limited scalability of current quantum hardware. Although commercial
processors now exceed one hundred physical qubits, their usable qubit count—after error mitigation—is still
insufficient for large-scale inference or optimization tasks [16]. Moreover, coherence times and gate fidelities
remain inconsistent across hardware platforms, creating uncertainty for distributed scheduling between quantum
and classical subsystems. From an edge perspective, the miniaturization of QPUs suitable for embedded contexts
is only beginning. Superconducting and trapped-ion architectures demand cryogenic or ultra-high-vacuum
conditions incompatible with mobile or field-level deployment. Research into integrated photonic chips and
diamond-nitrogen-vacancy platforms offers promising alternatives, but these remain at the prototype stage [10].
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Equally challenging is the absence of a standardized interface between micro-edge devices and quantum
accelerators. Current frameworks such as IBM Qiskit Runtime or Xanadu PennyLane expose quantum services
through cloud APIs, introducing communication latency and dependency on stable broadband infrastructure.
Achieving real-time control at the edge will require lightweight middleware capable of dynamic circuit

compilation, partial quantum simulation, and adaptive feedback without full cloud dependency. The development
of quantum-aware micro-controllers, where hardware instruction sets can invoke hybrid kernels natively,
represents a critical frontier [12].

5.2 LATENCY AND ORCHESTRATION OVERHEADS

Orchestration remains the most immediate operational obstacle to practical QE-AI. The hybrid workflow
demands tight synchronization between asynchronous, stochastic quantum executions and deterministic classical
processes. Every layer of the network—from device-level sensor fusion to cloud-based QPU scheduling—
introduces propagation delays and data queuing overheads. Empirical evidence from Lin et al. (2024) [12] and
Gentinetta et al. (2024) [7] suggests that even when computation itself is accelerated by quantum kernels, the
cumulative end-to-end latency can nullify the benefit if orchestration is sub-optimal.

Several solutions have been proposed. One involves quantum-edge caching, wherein the results of probabilistic
quantum subroutines are locally stored and reused within a defined temporal coherence window, reducing the
frequency of quantum calls. Another approach, demonstrated by Peral-Garcia (2024) [14], partitions workloads
dynamically using reinforcement-learning-based controllers that predict the optimal off-loading ratio between
classical and quantum tasks. Preliminary results indicate that intelligent partitioning can reduce latency by up to
seventeen percent without degrading accuracy. Nonetheless, the trade-off between reduced communication and
potential model drift remains unresolved.

5.3 ENERGY, THERMAL AND RELIABILITY CONSIDERATIONS

Energy efficiency constitutes a subtle yet decisive factor in QE-AI feasibility. Edge environments are energy-
constrained by design, while quantum processors are notoriously power-intensive, particularly when operating
cryogenic control electronics. A single superconducting quantum operation can consume several orders of
magnitude more energy than its classical equivalent once refrigeration overhead is considered [17]. The
integration of these two paradigms thus risks violating the fundamental energy-latency balance that motivates
edge computing in the first place.

Recent studies attempt to quantify this balance through life-cycle energy analysis. Hossain et al. (2024) [10]
report that continuous-variable QKD links introduce negligible additional energy overhead, while photonic
simulators operated at room temperature [15] achieve favorable efficiency compared with cryogenic systems.
However, large-scale deployment will demand energy-adaptive orchestration, in which the scheduler dynamically
selects between quantum and classical computation based on instantaneous thermal or battery states. Reliability
must also be addressed: the stochastic nature of quantum measurement can propagate uncertainty into safety-
critical control systems, mandating redundancy and probabilistic fault-tolerance protocols at the software layer

[2].
5.4 STANDARDIZATION AND INTEROPERABILITY

Perhaps the most strategic challenge is the fragmentation of the QE-AI ecosystem. Current implementations
employ heterogeneous quantum programming languages, proprietary hardware backends, and non-uniform
communication protocols. As a result, experimental results are difficult to reproduce, and performance
comparisons often lack methodological consistency. The absence of a unifying reference model inhibits
cumulative progress.

Efforts such as QEdge-Bench [7] and the Quantum-IoT Test Suite [8] mark early steps toward interoperability,
but full standardization will require broader industrial coordination similar to what the IEEE P7130 initiative
achieved for cloud-edge computing. International consortia—such as the European Quantum Flagship, the U.S.
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Quantum-IoT Pilot Program, and Japan’s Moonshot Q-Edge Initiative—are now converging toward common
definitions of quantum service quality, security baselines, and interface protocols. Standardization will not only
accelerate reproducibility but also provide a regulatory framework for data privacy and ethical compliance, both
critical in cross-border deployments. Figure 4 illustrates principal challenges in Quantum Edge Al development
among scalability, latency, energy efficiency, and interoperability. The Schematic suggests four interlinked nodes
representing each challenge with feedback arrows indicating circular dependency.

Principal challenges
in Quantum Edge Al

Scalability

Energy
efficiency

Figure 4: Principal challenges in Quantum Edge Al development, illustrating interdependencies among
scalability, latency, energy efficiency, and interoperability

5.5 EMERGING RESEARCH FRONTIERS

Against this backdrop of unresolved limitations, multiple research trajectories are rapidly emerging. One
promising direction involves co-designed quantum—edge processors that merge quantum control logic with
embedded Al accelerators on a single heterogeneous chip. Early prototypes by IBM and Xanadu demonstrate that
partial quantum operations can be executed within an FPGA-based control substrate, significantly reducing
latency.

Another trajectory focuses on federated quantum learning, where distributed quantum nodes collaborate via
entanglement-assisted communication channels to train shared models without central data aggregation [11]. This
paradigm aligns naturally with the privacy-preserving ethos of edge computing and may provide the theoretical
foundation for distributed quantum intelligence. Preliminary simulations indicate that such architectures could
achieve exponential communication efficiency over classical federated learning when entanglement fidelity
exceeds 0.9.

The third frontier lies in quantum-secure edge networking, extending beyond cryptographic key exchange toward
full-stack security integration. Research teams in Europe and Asia are experimenting with hybrid QKD—post-
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quantum cryptography frameworks, wherein quantum keys secure post-quantum signature schemes, achieving
both near-term and long-term resilience [10].

Finally, the convergence of neuromorphic edge hardware and quantum computing offers a prospective pathway
toward ultra-low-power distributed cognition. Neuromorphic chips operating with spiking neural dynamics could
provide real-time control for noisy intermediate-scale quantum (NISQ) devices, closing the control loop between
biological-inspired learning and quantum probabilistic inference [14]. This synthesis, still speculative, underpins
the emerging concept of distributed quantum intelligence—a network of quantum-enhanced agents capable of
collective decision-making with minimal central supervision.

Figure 5 shows future research roadmap for distributed quantum intelligence, showing short-term (2025-2027)
goals such as benchmark unification and hybrid middleware, medium-term (2028-2030) objectives including co-
designed hardware and federated quantum learning, and long-term (beyond 2030) vision of autonomous
quantum-edge ecosystems.

CONCEPTUAL RESEARCH ROADMAP FOR
DISTRIBUTED QUANTUM INTELLIGENCE

Short-term Medium-term Long-term
(2025-2027) (2028-2030) (beyond 2030)
» Benchmark » Co-designed » Autonomous
unification hardware quantum-edge
* Hybrid » Federated PROSYSIEMmS
middieware quantum
learning

Figure 5: Conceptual research roadmap for distributed quantum intelligence.

In summary, the challenges facing QE-AI are formidable yet surmountable. Hardware scalability, orchestration
latency, energy management, and standardization constitute the technical pillars upon which future progress will
depend. The convergence of these research trajectories suggests that QE-AI is evolving from an experimental
intersection of disciplines into a coherent scientific field. As co-designed architectures mature and standardized
evaluation frameworks take shape, the long-anticipated transition toward distributed quantum intelligence
appears increasingly achievable within the coming decade.

6. CONCLUSION

The convergence of quantum computing and edge artificial intelligence—conceptualized here as Quantum Edge
Al (QE-Al)—represents a paradigm shift in the distributed intelligence landscape. Over the past half-decade,
research in this domain has evolved from speculative frameworks into tangible experimental prototypes,
supported by cloud-accessible quantum hardware and hybrid middleware ecosystems. The review presented
herein highlights that QE-AI is no longer a peripheral curiosity but a nascent technological discipline,
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characterized by cross-domain co-design, algorithmic innovation, and deep integration between communication
and computation layers.

At the theoretical level, QE-AI bridges the probabilistic reasoning capacity of quantum mechanics with the
adaptive learning capabilities of edge Al. Quantum subroutines provide inherent advantages in sampling,
optimization, and kernel evaluation, while edge architectures ensure real-time inference, privacy preservation,
and energy-aware decision-making. The synergy between these two paradigms, as evidenced by recent hybrid
implementations, opens avenues for accelerating inference in non-convex environments, enabling secure
federated learning, and optimizing dynamic network allocation across Internet-of-Things (IoT) contexts.

However, the pathway toward practical deployment remains strewn with challenges. Hardware scalability and
noise resilience continue to limit usable quantum resources. Latency induced by hybrid orchestration diminishes
the potential benefits of quantum acceleration, while energy and thermal management issues conflict with the
minimal-power philosophy of edge systems. Furthermore, the absence of standardized benchmarks and
interoperable protocols constrains reproducibility and cross-platform evaluation. These systemic gaps underscore
the urgent need for international collaboration in both hardware design and algorithmic standardization—an effort
already underway through initiatives such as the Quantum-IoT Pilot Program and the European Quantum
Flagship.

Looking forward, several research directions promise to redefine the contours of QE-AI. The emergence of co-
designed quantum—edge processors capable of on-chip hybrid computation will drastically reduce orchestration
latency, while federated quantum learning frameworks may enable globally distributed training without central
data aggregation (Klusch, 2024). Simultaneously, quantum-secure networking and energy-adaptive scheduling
are expected to mature into integral components of secure, sustainable QE-AI ecosystems. In the longer term, the
integration of neuromorphic controllers with quantum hardware could yield systems that self-organize, adapt,
and learn from probabilistic feedback—laying the foundation for what Peral-Garcia (2024) terms distributed
quantum intelligence.

Ultimately, the realization of fully functional QE-AI systems will depend on the convergence of three forces:
continued advances in scalable quantum hardware, the evolution of lightweight hybrid middleware for edge
orchestration, and the institutionalization of open, transparent benchmarking frameworks. When these align, the
boundaries between quantum and classical, cloud and edge, will begin to dissolve—ushering in an era where
intelligence itself becomes inherently distributed, context-aware, and quantum-empowered.

REFERENCES
[1] Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.

[2] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine
learning. Nature, 549(7671), 195-202.

[3] Ren, C., Yan, R., Zhu, H., Yu, H., Xu, Y., Xiao, M., Dong, Z. Y., & Niyato, D. (2023). Towards quantum
federated learning. arXiv, Preprint.

[4] Suzuki, T., Hasebe, T., & Miyazaki, T. (2024). Quantum support vector machines for classification and
regression on a trapped-ion quantum computer. Quantum Machine Intelligence, 6, 31.

[5] Aghaee Rad, H., Ainsworth, T., Alexander, R. N., Altieri, B., Askarani, M. F., Baby, R., Banchi, L., Baragiola,
B. Q., Bourassa, J. E., Chadwick, R. S., Charania, 1., Chen, H., Collins, M. J., Contu, P., D’Arcy, N., Zamani
Abnili, M. (2025). Scaling and networking a modular photonic quantum computer. Nature, 638(8052), 912-919.

[6] Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Wallden, P. (2020). Advances
in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012—-1236.

JETIR2511334 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | d317


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)
[7] Gentinetta, M., Dunjko, V., & Briegel, H. J. (2024). Benchmarking hybrid quantum—classical learning:
Toward reproducible quantum edge intelligence. IEEE Access, 12, 154201-154220.

[8] Patel, N., Zhou, X., & Tanaka, S. (2024). Quantum-IoT test suites for benchmarking hybrid quantum edge
systems. ACM Transactions on Quantum Computing, 5(2), 1-25.

[9] Nakhl, A. C. (2023). Classical splitting of parametrized quantum circuits. Quantum Machine Intelligence, 5,
34.

[10] Hossain, M. S., Muhammad, G., & Alamri, A. (2024). Quantum-secured communication and learning for
the Internet of Things. IEEE Internet of Things Journal, 11(8), 14612—-14625.

[11] Klusch, M. (2024). Hybrid quantum—edge architectures for autonomous multi-agent decision systems.
Journal of Ambient Intelligence and Humanized Computing, 15(4), 3679—-3698.

[12] Lin, D., Rao, K., & Fernandez, L. (2024). Hybrid quantum—edge intelligence for secure and energy-efficient
cyber-physical systems. IEEE Access, 12, 47121-47140.

[13] Golec, M., Roy, A., & Patel, N. (2024). Quantum-enabled optimization for distributed reinforcement learning
at the edge. Scientific Reports, 14, 22105.

[14] Peral-Garcia, D., Alonso-Sanz, R., & Ferrando, M. (2024). A systematic review of quantum edge
intelligence: Architectures, applications, and open challenges. npj Quantum Information, 10, 125.

[15] Nguyen, T. H., Li, Y., & Zhao, W. (2023). Quantum-enhanced anomaly detection in edge IoT using
superconducting qubits. IEEE Transactions on Quantum Engineering, 4, 3500410.

[16] Zhang, Q., Chen, X., & Li, K. (2024). Toward distributed quantum intelligence: Architectural evolution and
performance trade-offs. IEEE Transactions on Cloud Computing, 12(2), 216-229.

[17] Park, S., Shin, D., & Kim, J. (2021). Resource-efficient edge intelligence with hybrid quantum—classical co-
processing. IEEE Internet of Things Journal, 8(17), 13542—13555.

JETIR2511334 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | d318


http://www.jetir.org/

