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Abstract 

Data-driven polymer research is reshaping how macromolecules are conceived, synthesized, and deployed by 

linking curated, FAIR data to physics-informed machine learning and autonomous experimentation. 

Computational approaches are now an important part of polymer chemistry. They let scientists guess a 

material's bulk properties based on its molecular structure. The goal is to figure out which structural elements 

control certain behaviours so that new materials can be designed in a logical way. But this procedure is made 

more difficult by a number of real-world problems, such as short datasets, changing molecular weights, and 

complicated polymer topologies. As a result, generic computational models are typically not very useful unless 

they are heavily customised. To get over these problems, chemists and data scientists need to work together in a 

way that helps both groups. The chemist's job is to help define the problem by using their knowledge of the 

field, and the data scientist's job is to make models work in the unique chemical context. This research seeks to 

bridge the multidisciplinary divide by tackling issues related to data quality and emphasising how recent 

scientific progress has enhanced data accessibility. We look at how materials are used in the field, from 

anticipating how well they will work to designing them for drug delivery. Finally, we talk about how important 

it is to share data (FAIR Data Principles) and how powerful it is to combine conventional polymer theory with 

new, data-driven insights. 
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Introduction 

A significant transformation is underway in materials science, particularly in the polymer field, where the pace 

of discovery is accelerating. This change is driven by the adoption of data-driven informatics approaches [1,2], 

marking a shift towards research that is more predictive, efficient, and collaborative. The need for this shift is 

rooted in the immense complexity of polymers themselves. Despite being built from basic elements, polymers 

exhibit a vast range of structural variations at both microscopic and macroscopic levels[3]. These differences 

arise from atomic-level connectivity, the way chains pack together, and diverse morphological features like 

crystallinity, phase separation, porosity, and microstructure[4,5]. 

This enormous spectrum of chemical and structural possibilities poses a significant challenge. Identifying a 

polymer with properties tailored for a specific use requires exploring a vast design space[6]. Traditional 

experimental and computational methods are often inefficient for navigating such a complex, high-dimensional 
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domain. Moreover, the sheer volume of new knowledge in the polymer field makes it increasingly difficult to 

effectively harness existing information for future breakthroughs. 

The application of data-driven methods to polymer design has led to the emergence of “polymer informatics” 

[7,8]. This interdisciplinary field merges polymer science with data science and machine learning, creating 

powerful new tools to both develop novel polymers and better understand the properties of existing materials. 

The foundational topics of polymer informatics are already well-covered in existing literature. Numerous 

reviews explain the typical machine learning workflow [8-10,11,12-14].  

2. Fundamentals of Machine Learning in Polymer Science 

2.1. Data 

2.1.1. Challenges in Data Collection and Cleaning in Polymer Informatics 

Once a research problem in polymer science has been framed for a machine learning approach, the crucial next 

step in the pipeline is to gather and curate the necessary data. In today’s era of big data, one might assume that 

high-quality datasets are readily available, but this is rarely the case in polymer informatics. The difficulty 

arises from the intrinsic nature of polymers themselves. They are stochastic and hierarchical materials, and their 

final morphology is highly sensitive to the specific conditions under which they were prepared, making 

standardized data collection exceptionally challenging. 

A suite of polymer-focused databases—PoLyInfo [15], PI1M [16], Khazana [17], CROW [18], PubChem [19], 

and CAMPUS [20]—has pushed the field forward. Each resource is assembled through distinct curation 

workflows and therefore captures different kinds of information about monomers and their resulting polymers. 

Table 1 contrasts these databases along those dimensions. Efforts such as the Materials Project in the U.S. and 

Europe’s Novel Materials Discovery Laboratory have also reshaped how new functional polymers are found, 

pivoting from conventional bench experiments to data-driven discovery that leverages these extensive 

repositories. 

Even with numerous materials databases available, building a dataset that truly fits a specific research question 

remains difficult. Challenges include access restrictions and the relatively modest scale of polymer databases 

compared with major small-molecule repositories like ChemSpider [21], PubChem [22], and ChEMBL [23,24], 

which limits their utility in polymer informatics. The community’s call for FAIR data [25]—findable, 

accessible, interoperable, and reusable—highlights the need for well-structured, shareable datasets, yet broadly 

adopted mechanisms to implement FAIR principles at scale are still lacking. 

ML in Polymer Research 

Machine learning is a groundbreaking computational approach, providing a range of algorithms designed to 

derive actionable insights from intricate, high-dimensional datasets.  The main approaches involve supervised 

learning, which is highly effective at building predictive models by linking inputs (e.g., molecular descriptors) 

to established outputs (e.g., material properties) derived from labelled training data.  Unsupervised learning 

works with unlabelled data to reveal underlying structures, allowing for the independent clustering of materials 

and the discovery of concealed correlations within extensive chemical landscapes.  In addition to these, 

reinforcement learning offers a robust framework for enhancing sequential decision-making processes, 

demonstrating its worth in tasks like navigating synthetic pathways or managing autonomous experimental 

systems. 

 In the field of polymer research, the use of these ML frameworks is driving a transition from chance 

discoveries to systematic, purpose-driven design.  The main focus is on creating surrogate models that swiftly 

and precisely forecast intricate polymer properties—like glass transition temperature, tensile strength, or ion 

conductivity—straight from their chemical structure, thus avoiding the laborious experimental synthesis and 

characterisation process.  This advanced capability allows for extensive virtual screening of vast candidate 
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libraries.  More profoundly, machine learning enables the concept of inverse design, allowing algorithms to 

explore the extensive chemical landscape to create innovative macromolecular structures specifically designed 

to satisfy distinct, frequently conflicting, performance requirements.  This strategy is fast-tracking the creation 

of cutting-edge polymers for essential uses, such as eco-friendly packaging, high-performance composites, and 

innovative biomedical devices. 

 

Figure 1. Classification of Machine learning 

Table 1 Comparison of different databases containing information on polymers. 

Database Data Collection Method 
Chemical Structures and 

Composition 
Property Data 

CAMPUS 

Plastics 

Data supplied directly by raw 

material manufacturers. All 

testing follows strict, uniform 

ISO standards. 

Describes specific, 

commercial grades of 

polymers, often including 

fillers and additives. 

High-quality, 

comparable experimental data 

for engineering properties 

(mechanical, thermal, electrical). 

CROW 

Manual curation from 

scientific literature, 

handbooks, and historical 

sources. 

A comprehensive roster of 

polymer names, trade 

names, and basic 

structural representations. 

Contains basic physical properties 

(e.g., Tg, Tm); less focused on 

detailed engineering or 

performance data. 

Khazana 

Data generated from first-

principles computational 

methods (like Density 

Functional Theory - DFT). 

A large library of polymer 

repeating units 

represented in a format 

suitable for computation. 

Repository of computationally 

predicted properties 

(e.g., band gap, dielectric constant) 

for training ML models. 

PI1M 

Algorithmic generation of 

polymer structures followed 

by high-throughput 

property prediction using ML 

models. 

A vast library of one 

million hypothetical 

polymer structures, 

typically represented by 

SMILES. 

Predicted properties for a massive 

number of structures, 

designed to screen a broad 

chemical space for discovery. 

PoLyInfo 

Manual curation and expert 

extraction from peer-reviewed 

scientific literature. 

Detailed representations 

including repeating units, 

monomers, tacticity, and 

polymerization methods. 

Extensive experimental data: 

mechanical, thermal, 

electrical, optical, and physical 

properties. 

Polymer 

Genome 
Primarily computational (e.g., 

DFT simulations) and high-

Focuses on 

representations of 

repeating units suitable for 

Mainly computationally 

predicted properties, 
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Database Data Collection Method 
Chemical Structures and 

Composition 
Property Data 

throughput virtual screening. computational modeling. with a strong focus on dielectric 

and electronic properties. 

PubChem 

Aggregation from various 

sources including literature, 

patents, and data contributors 

(e.g., vendors). 

Stores polymers using 

standard chemical 

identifiers (SMILES, 

InChI). Polymer-specific 

details can be limited. 

Broad range of data, including 

physical properties, 

bioactivity, and safety. Can be 

sparse for specific material 

properties. 

SciFinderⁿ / 

CAS 

REGISTRY 

Expert human curation and 

indexing of global scientific 

literature, patents, and 

technical reports. 

Highly structured data 

including monomer 

composition, end-groups, 

and cross-linking via CAS 

Registry Numbers®. 

Vast collection of experimentally 

measured 

properties linked directly to the 

literature source. 

 

Application of Machine Learning in Polymer Science 

Machine learning now spans virtually all areas of polymer science, from informing synthesis to improving end-

use performance [26]. Here, we emphasize the prediction targets rather than the specific algorithms, 

concentrating on polymerization reaction rates and on polymer properties in both the solid state and in solution. 

In solids, common targets include the glass transition temperature (Tg), specific heat capacity (cp), 

decomposition temperature, mechanical performance, gas solubility, and electrical behavior. 

Table 2. Comparison of different machine learning models. 

Model Learning Task Common Applications Pros Cons 

Linear / 

Logistic 

Regression 

Regression / 

Classification 

- Predicting house prices, 

sales forecasts.- Spam 

detection, disease diagnosis, 

churn prediction. 

- Fast, simple, and 

highly interpretable.- 

Good baseline model.- 

Low computational cost. 

- Assumes a linear 

relationship between 

features.- Prone to 

underfitting complex 

data.- Sensitive to outliers. 

K-Nearest 

Neighbors 

(KNN) 

Classification & 

Regression 

- Recommendation systems.- 

Image recognition.- Anomaly 

detection. 

- Very simple to 

understand and 

implement.- No training 

phase ("lazy learning").- 

Effective for data with 

non-linear boundaries. 

- Computationally 

expensive during 

prediction.- Performance 

degrades with high-

dimensional data.- 

Requires feature scaling 

and is sensitive to the 

choice of 'K'. 

Support 

Vector 

Machine 

(SVM) 

Classification & 

Regression 

- Image classification (e.g., 

facial recognition).- Text 

classification.- 

Bioinformatics. 

- Effective in high-

dimensional spaces.- 

Memory efficient (uses 

a subset of training 

points).- "Kernel trick" 

allows for modeling 

non-linear data. 

- Can be slow to train on 

very large datasets.- 

Choosing the right kernel 

and hyperparameters is 

difficult.- Less 

interpretable than other 

models. 

Decision 

Tree 

Classification & 

Regression 

- Credit scoring.- Simple 

medical diagnosis.- Customer 

segmentation. 

- Highly interpretable 

and easy to visualize.- 

Requires little data 

preprocessing.- Can 

handle both numerical 

- Very prone to 

overfitting.- Can be 

unstable (small data 

changes can alter the 

tree).- Can create biased 
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Model Learning Task Common Applications Pros Cons 

and categorical data. trees if some classes 

dominate. 

Random 

Forest 

Classification & 

Regression 

- Fraud detection.- Predicting 

stock prices or patient 

outcomes.- E-commerce 

product recommendations. 

- High accuracy and 

robust to overfitting.- 

Handles missing values 

and maintains accuracy.- 

Can provide feature 

importance scores. 

- Less interpretable than a 

single decision tree.- Can 

be slow to train and 

predict with many trees.- 

Requires more memory. 

Gradient 

Boosting 

(XGBoost, 

LightGBM) 

Classification & 

Regression 

- Dominant model for tabular 

data competitions (Kaggle).- 

Search engine ranking.- 

Click-through rate prediction. 

- Often achieves the 

highest performance on 

structured data.- Highly 

flexible and handles 

missing values well.- 

Many tunable 

parameters for 

optimization. 

- Complex to tune and 

prone to overfitting if not 

careful.- Can be slow to 

train as it builds trees 

sequentially.- Can be 

considered a "black box" 

model. 

K-Means 

Clustering 

Unsupervised 

(Clustering) 

- Customer segmentation for 

marketing.- Document 

clustering for topic analysis.- 

Image compression. 

- Simple, fast, and 

scalable for large 

datasets.- Easy to 

implement and 

understand. 

- Must specify the number 

of clusters (K) 

beforehand.- Sensitive to 

initial centroid placement.- 

Assumes clusters are 

spherical and of equal size. 

Neural 

Networks 

(Deep 

Learning) 

Classification, 

Regression, and 

more 

- Image and speech 

recognition.- Natural 

Language Processing (NLP).- 

Self-driving cars. 

- State-of-the-art 

performance on 

unstructured data.- Can 

learn features 

automatically from raw 

data.- Can model 

extremely complex 

relationships. 

- Requires very large 

amounts of data.- 

Computationally 

expensive to train (often 

needs GPUs).- Highly 

complex and difficult to 

interpret ("black box"). 

 

Polymer Materials 

Smart Polymer 

Smart polymers are a type of sophisticated material that can change their properties when they come into 

contact with outside forces [27].  Shape-memory polymers are one of the most interesting types of polymers 

because they can return to a shape that was programmed into them when they are activated [28]. This makes 

them useful in biomedical devices and sensors [29].  Another big step forward is self-healing polymers, which 

can fix damage on their own. This is an important feature for making materials last longer [30].  Advanced 

sensing polymers can also detect and respond to changes in the environment, such strain. This makes them 

useful for monitoring the health of structures and wearable technology [31].  To make things safer, new flame-

retardant polymers are being made with complex molecular structures that stop fires. These polymers are very 

important for the construction, electronics, and transportation industries [32].  Machine learning has become a 

significant tool for developing these sectors in the last several years. It is a more efficient way to make these 

functional materials than traditional lab-based methods [33,34-36]. 

Polymers as Biological Imaging Agents 

¹⁹F MRI is a valuable biomedical imaging technique that produces clear, high-contrast images, making it 

possible to monitor cellular transport and quantify oxygenation over time. For this purpose, synthetic polymers 
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are appealing as contrast agents due to their flexible design and their capacity for holding many ¹⁹F atoms, 

which enhances the signal [37-40]. However, the field faces a significant hurdle. Even with numerous studies 

on copolymer-based agents, it remains difficult to create a material that successfully combines two essential 

properties: dissolving in water and carrying enough fluorine to be visible on standard hospital MRI equipment 

[41]. 

The study proposed using an automated machine learning (AutoML) approach to simplify model creation, 

allowing researchers who are not machine learning specialists to find high-performing models on their own 

[42]. This AutoML system was designed as a self-contained optimization process that operates in a continuous 

loop, automatically testing different methods and selecting the best parameters. It refines its models with each 

cycle, incorporating new data from both computer simulations and lab experiments to balance multiple 

performance goals at once. The system tested a range of established machine learning methods—including 

XGBoost [43], Neutral Gradient Boosting [44], GPR, and Random Forests from the scikit-learn library [45]—

in a supervised learning framework. The inputs for these models were standardized numerical data representing 

the polymer’s chemical composition and analytical measurements. 

Fair Data Principles 

The FAIR principles—Findable, Accessible, Interoperable, and Reusable—offer a vital set of standards for 

managing scientific data. Their real value comes from turning research data from forgotten, one-off files into a 

lasting resource for the entire scientific community. When data is easy to locate, use, and integrate, it 

strengthens both transparency and the ability to reproduce results. This approach not only prevents crucial 

findings from disappearing over time but also drives new discoveries by giving scientists the foundation to 

build upon previous work, saving time and encouraging teamwork between different fields. 

The FAIR principles provide a framework for managing research data to maximize its value. The goal is to 

make data: 

 Findable: Easy to discover with unique identifiers and clear descriptions. 

 Accessible: Simple to retrieve using standard, well-defined procedures. 

 Interoperable: Able to be combined and used with other data and systems. 

 Reusable: Well-described and licensed so it can be used for future studies. 

 

For research data to have real value, it must be stored in a way that other scientists can easily access and use it. 

The FAIR data principles formalise this idea by calling for adequate data stewardship to make it possible to 

reuse data [46]. In reality, FAIR says that data must have precise descriptions (Findable), clear rules for who 

may access it (Accessible), be kept in a standard format (Interoperable), and have clear usage licenses 

(Reusable).  

There is a rising push to use this standard method. The best method to do this is to get research groups to send 

their results to centralised platforms where the data can be organised in the same way.  

Conclusion 

The present study provides a useful insight on machine learning with a specific emphasis on its applications in 

polymer science. It aims to demystify the underlying mathematics and detail the end-to-end machine learning 

process. In order to convert large amounts of diverse experimental data into the reliable prediction models 

required to speed up materials discovery, we stress the importance of a quantitative framework. In order to 

successfully work on interdisciplinary research at the cutting edge of materials science, experimentalists must 

be given the conceptual tools necessary to traverse this data-driven paradigm. Due to the inherent complexity of 

polymers—whose stochastic topologies and polydispersity make them difficult to represent digitally—the area 
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lacks a common representational standard. Additionally, whereas high-throughput experimentation is 

accelerating the velocity of data, a corresponding cultural shift towards the acceptance of large-scale data 

analysis has not yet fully taken shape. In order to fully realise the transformative potential of machine learning, 

the community must work together to embrace FAIR data principles and, more importantly, to integrate core 

polymer theory with contemporary data science techniques. 
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