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Abstract

Data-driven polymer research is reshaping how macromolecules are conceived, synthesized, and deployed by
linking curated, FAIR data to physics-informed machine learning and autonomous experimentation.
Computational approaches are now an important part of polymer chemistry. They let scientists guess a
material's bulk properties based on its molecular structure. The goal is to figure out which structural elements
control certain behaviours so that new materials can be designed in a logical way. But this procedure is made
more difficult by a number of real-world problems, such as short datasets, changing molecular weights, and
complicated polymer topologies. As a result, generic computational models are typically not very useful unless
they are heavily customised. To get over these problems, chemists and data scientists need to work together in a
way that helps both groups. The chemist's job is to help define the problem by using their knowledge of the
field, and the data scientist's job is to make models work in the unique chemical context. This research seeks to
bridge the multidisciplinary divide by tackling issues related to data quality and emphasising how recent
scientific progress has enhanced data accessibility. We look at how materials are used in the field, from
anticipating how well they will work to designing them for drug delivery. Finally, we talk about how important
it is to share data (FAIR Data Principles) and how powerful it is to combine conventional polymer theory with
new, data-driven insights.
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Introduction

A significant transformation is underway in materials science, particularly in the polymer field, where the pace
of discovery is accelerating. This change is driven by the adoption of data-driven informatics approaches [1,2],
marking a shift towards research that is more predictive, efficient, and collaborative. The need for this shift is
rooted in the immense complexity of polymers themselves. Despite being built from basic elements, polymers
exhibit a vast range of structural variations at both microscopic and macroscopic levels[3]. These differences
arise from atomic-level connectivity, the way chains pack together, and diverse morphological features like
crystallinity, phase separation, porosity, and microstructure[4,5].

This enormous spectrum of chemical and structural possibilities poses a significant challenge. Identifying a
polymer with properties tailored for a specific use requires exploring a vast design space[6]. Traditional
experimental and computational methods are often inefficient for navigating such a complex, high-dimensional
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domain. Moreover, the sheer volume of new knowledge in the polymer field makes it increasingly difficult to
effectively harness existing information for future breakthroughs.

The application of data-driven methods to polymer design has led to the emergence of “polymer informatics”
[7,8]. This interdisciplinary field merges polymer science with data science and machine learning, creating
powerful new tools to both develop novel polymers and better understand the properties of existing materials.

The foundational topics of polymer informatics are already well-covered in existing literature. Numerous
reviews explain the typical machine learning workflow [8-10,11,12-14].

2. Fundamentals of Machine Learning in Polymer Science
2.1. Data
2.1.1. Challenges in Data Collection and Cleaning in Polymer Informatics

Once a research problem in polymer science has been framed for a machine learning approach, the crucial next
step in the pipeline is to gather and curate the necessary data. In today’s era of big data, one might assume that
high-quality datasets are readily available, but this is rarely the case in polymer informatics. The difficulty
arises from the intrinsic nature of polymers themselves. They are stochastic and hierarchical materials, and their
final morphology is highly sensitive to the specific conditions under which they were prepared, making
standardized data collection exceptionally challenging.

A suite of polymer-focused databases—PoLylInfo [15], PI1M [16], Khazana [17], CROW [18], PubChem [19],
and CAMPUS [20]—has pushed the field forward. Each resource is assembled through distinct curation
workflows and therefore captures different kinds of information about monomers and their resulting polymers.
Table 1 contrasts these databases along those dimensions. Efforts such as the Materials Project in the U.S. and
Europe’s Novel Materials Discovery Laboratory have also reshaped how new functional polymers are found,
pivoting from conventional bench experiments to data-driven discovery that leverages these extensive
repositories.

Even with numerous materials databases available, building a dataset that truly fits a specific research question
remains difficult. Challenges include access restrictions and the relatively modest scale of polymer databases
compared with major small-molecule repositories like ChemSpider [21], PubChem [22], and ChEMBL [23,24],
which limits their utility in polymer informatics. The community’s call for FAIR data [25]—findable,
accessible, interoperable, and reusable—highlights the need for well-structured, shareable datasets, yet broadly
adopted mechanisms to implement FAIR principles at scale are still lacking.

ML in Polymer Research

Machine learning is a groundbreaking computational approach, providing a range of algorithms designed to
derive actionable insights from intricate, high-dimensional datasets. The main approaches involve supervised
learning, which is highly effective at building predictive models by linking inputs (e.g., molecular descriptors)
to established outputs (e.g., material properties) derived from labelled training data. Unsupervised learning
works with unlabelled data to reveal underlying structures, allowing for the independent clustering of materials
and the discovery of concealed correlations within extensive chemical landscapes. In addition to these,
reinforcement learning offers a robust framework for enhancing sequential decision-making processes,
demonstrating its worth in tasks like navigating synthetic pathways or managing autonomous experimental
systems.

In the field of polymer research, the use of these ML frameworks is driving a transition from chance
discoveries to systematic, purpose-driven design. The main focus is on creating surrogate models that swiftly
and precisely forecast intricate polymer properties—Ilike glass transition temperature, tensile strength, or ion
conductivity—straight from their chemical structure, thus avoiding the laborious experimental synthesis and
characterisation process. This advanced capability allows for extensive virtual screening of vast candidate
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libraries. More profoundly, machine learning enables the concept of inverse design, allowing algorithms to
explore the extensive chemical landscape to create innovative macromolecular structures specifically designed
to satisfy distinct, frequently conflicting, performance requirements. This strategy is fast-tracking the creation
of cutting-edge polymers for essential uses, such as eco-friendly packaging, high-performance composites, and
innovative biomedical devices.
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Figure 1. Classification of Machine learning

Table 1 Comparison of different databases containing information on polymers.
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Application of Machine Learning in Polymer Science

Machine learning now spans virtually all areas of polymer science, from informing synthesis to improving end-
use performance [26]. Here, we emphasize the prediction targets rather than the specific algorithms,
concentrating on polymerization reaction rates and on polymer properties in both the solid state and in solution.
In solids, common targets include the glass transition temperature (Tg), specific heat capacity (cp),
decomposition temperature, mechanical performance, gas solubility, and electrical behavior.

Table 2. Comparison of different machine learning models.
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Polymer Materials
Smart Polymer

Smart polymers are a type of sophisticated material that can change their properties when they come into
contact with outside forces [27]. Shape-memory polymers are one of the most interesting types of polymers
because they can return to a shape that was programmed into them when they are activated [28]. This makes
them useful in biomedical devices and sensors [29]. Another big step forward is self-healing polymers, which
can fix damage on their own. This is an important feature for making materials last longer [30]. Advanced
sensing polymers can also detect and respond to changes in the environment, such strain. This makes them
useful for monitoring the health of structures and wearable technology [31]. To make things safer, new flame-
retardant polymers are being made with complex molecular structures that stop fires. These polymers are very
important for the construction, electronics, and transportation industries [32]. Machine learning has become a
significant tool for developing these sectors in the last several years. It is a more efficient way to make these
functional materials than traditional lab-based methods [33,34-36].

Polymers as Biological Imaging Agents

YF MRI is a valuable biomedical imaging technique that produces clear, high-contrast images, making it
possible to monitor cellular transport and quantify oxygenation over time. For this purpose, synthetic polymers

JETIR2511410 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | e72


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

are appealing as contrast agents due to their flexible design and their capacity for holding many "“F atoms,
which enhances the signal [37-40]. However, the field faces a significant hurdle. Even with numerous studies
on copolymer-based agents, it remains difficult to create a material that successfully combines two essential
properties: dissolving in water and carrying enough fluorine to be visible on standard hospital MRI equipment
[41].

The study proposed using an automated machine learning (AutoML) approach to simplify model creation,
allowing researchers who are not machine learning specialists to find high-performing models on their own
[42]. This AutoML system was designed as a self-contained optimization process that operates in a continuous
loop, automatically testing different methods and selecting the best parameters. It refines its models with each
cycle, incorporating new data from both computer simulations and lab experiments to balance multiple
performance goals at once. The system tested a range of established machine learning methods—including
XGBoost [43], Neutral Gradient Boosting [44], GPR, and Random Forests from the scikit-learn library [45]—
in a supervised learning framework. The inputs for these models were standardized numerical data representing
the polymer’s chemical composition and analytical measurements.

Fair Data Principles

The FAIR principles—Findable, Accessible, Interoperable, and Reusable—offer a vital set of standards for
managing scientific data. Their real value comes from turning research data from forgotten, one-off files into a
lasting resource for the entire scientific community. When data is easy to locate, use, and integrate, it
strengthens both transparency and the ability to reproduce results. This approach not only prevents crucial
findings from disappearing over time but also drives new discoveries by giving scientists the foundation to
build upon previous work, saving time and encouraging teamwork between different fields.

The FAIR principles provide a framework for managing research data to maximize its value. The goal is to
make data:

. Findable: Easy to discover with unique identifiers and clear descriptions.
. Accessible: Simple to retrieve using standard, well-defined procedures.

. Interoperable: Able to be combined and used with other data and systems.
. Reusable: Well-described and licensed so it can be used for future studies.

For research data to have real value, it must be stored in a way that other scientists can easily access and use it.
The FAIR data principles formalise this idea by calling for adequate data stewardship to make it possible to
reuse data [46]. In reality, FAIR says that data must have precise descriptions (Findable), clear rules for who
may access it (Accessible), be kept in a standard format (Interoperable), and have clear usage licenses
(Reusable).

There is a rising push to use this standard method. The best method to do this is to get research groups to send
their results to centralised platforms where the data can be organised in the same way.

Conclusion

The present study provides a useful insight on machine learning with a specific emphasis on its applications in
polymer science. It aims to demystify the underlying mathematics and detail the end-to-end machine learning
process. In order to convert large amounts of diverse experimental data into the reliable prediction models
required to speed up materials discovery, we stress the importance of a quantitative framework. In order to
successfully work on interdisciplinary research at the cutting edge of materials science, experimentalists must
be given the conceptual tools necessary to traverse this data-driven paradigm. Due to the inherent complexity of
polymers—whose stochastic topologies and polydispersity make them difficult to represent digitally—the area
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lacks a common representational standard. Additionally, whereas high-throughput experimentation is
accelerating the velocity of data, a corresponding cultural shift towards the acceptance of large-scale data
analysis has not yet fully taken shape. In order to fully realise the transformative potential of machine learning,
the community must work together to embrace FAIR data principles and, more importantly, to integrate core
polymer theory with contemporary data science techniques.
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