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Abstract:  Modern enterprises today have networks that are vulnerable to quickly changing threats, face attacks where thousands of 

discovered vulnerabilities interact with each other in a system, and thus need both probabilistic risk assessments, combined with 

adaptive planning for possible courses of action. Traditional vulnerability scoring models (such as CVSS and EPSS) provide 

potentially useful benchmarks, but fail to capture the evolution or propagation of attack scenarios across interconnected network 

assets.In this paper, we examine early work on network-level vulnerability assessment frameworks involving everything from 

deterministic scoring and adaptive learning to stochastic modeling, and we outline a broad pattern of failure and identify research 

gaps that tie together the two essential activities of risk measurement and decision making.To help resolve these gaps, we present a 

Hybrid Absorbing Markov Chain–Markov Decision Process (AMC–MDP) framework that estimates longterm compromise 

probabilities while learning optimal defensive actions over time.The model displays certain structural features based on graph paths 

and incorporates risk, cost, and reward into a unified action decision loop.The work synthesizes earlier literature that indicates this 

sort of hybridization can bridge the analytical transparencies needed for risk measures and adaptive controls, which can provide the 

basis for scaling up economically sustainable, interpretable cyber defense approaches. 

 

IndexTerms - Vulnerability Assessment, Attack Graphs, Markov Decision Process (MDP), Absorbing Markov Chain 

(AMC), Reinforcement Learning, Cybersecurity Automation. 

 

________________________________________________________________________________________________________ 

I. INTRODUCTION  

Modern enterprise networks are experiencing an historic increase in both quantity and sophistication of cyberattacks. Studies 

report that new vulnerabilities appear every few minutes, creating an expanding attack surface that far exceeds the remediation 

capabilities of most organizations [1]. The 2025 Verizon-style breach analyzes consistently indicate that a significant fraction of 

breaches still arise from known unpatched vulnerabilities, while the average global breach cost remains high [2]. These numbers 

indicate a consistent disparity in the discovery of vulnerabilities, and how we prioritize them. Despite the maturity of scanning 

technologies, organizations still struggle to identify the most critical vulnerabilities within dynamic interconnected infrastructures 

[3], [4]. Earlier studies on biometric based cryptographic systems also show how strong authentication forms an important base for 

building reliable security models[5] 

 

 Conventional vulnerability management workflows— summarized as “scan → list → patch by severity”—rely primarily on the 

Common Vulnerability Scoring System (CVSS) [1]. Although CVSS provides a standardized method of determining the severity, it 

does not take into account the influence of topological placement, reachability or exploit chaining as a measure of risk in practice. 

The Exploit Prediction Scoring System (EPSS) extends CVSS by introducing short-term exploit probability [6], reflecting a shift 

towards data-driven prioritization. However, EPSS remains static and pointwise, evaluating each vulnerability independently without 

considering the movement of the attacker between the states of the network or the dependencies among the vulnerabilities [7]. 

Consequently, defenders still lack an analytical model that captures both exploit likelihood and attack progression within enterprise 

topology. 

 

 Research in network-level vulnerability assessment has progressed through three frameworks: static, adaptive, and stochastic 

frameworks. Static approaches focus on simplicity but lack temporal or contextual understanding. Adaptive or ML-driven models 

leverage threat intelligence and telemetry to dynamically estimate exploitability [8], [9], improving responsiveness but remaining 

primarily reactive and asset-specific. Lightweight encryption techniques like homomorphic encryption with elliptical curve methods 

have also been explored for protection mobile and fast charging networks[10]. In contrast, stochastic and graph-based frameworks—

employing attack graphs, Bayesian networks, and Markov-based formulations— introduce probabilistic reasoning to represent 

sequential attacker behavior [3], [11], [12]. These models provide a deeper understanding of risk propagation, yet they often struggle 

with real-time adaptability and operational scalability. 
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 This paper examines the evolution from static severity scoring to adaptive learning and stochastic decision frameworks, evaluates 

their contributions and shortcomings, and propose a hybrid AMC-MDP model ,drawing from related works [13], [14]. The remainder 

of the paper is organized as follows. Section II reviews prior work. Section III outlines gaps and requirements. Section IV presents 

the conceptual hybrid methodology. Section V discusses future directions, and Section VI concludes.. 

II. LITERATURE SURVEY 

 

A. Static and Deterministic Vulnerability Scoring 

Novice vulnerability assessment frameworks were mainly static or deterministic scoring systems such as those implemented 

in Nessus and OpenVAS, backed by CVSS at its core [1]. CVSS provided standardized means of calculating exploitability and 

impact but it focused on inherent attributes of each vulnerability. Organizations usually prioritized vulnerabilities through 

organised CVSS scores, that produced long lists of remediations and were a major cause of inefficient resource utilization . To 

tackle this inefficiency, EPSS framework was developed that estimated the probability of a vulnerability being exploited within a 

30-day time limit. [6]. EPSS marked a shift toward predictive prioritization, but both CVSS and EPSS treat vulnerabilities 

independently and do not represent them as a part of a chronological sequence or as a dependence across systems [2]. Without 

modeling multistep attack path, these static approaches cannot capture the structured nature of enterprise risk [4]. Limitations: (1) 

No dynamic or sequential attack behavior. (2) Neglect of topology, reachability, and attacker pathways. (3) No modeling of 

longterm cost–benefit trade-offs.  

 

B. Adaptive and Machine Learning–Based Approaches 
The limitations of static systems lead to the adaptation of ML-based frameworks that leverage statistical learning and pattern 

recognition for real-time detection and response. Turukmane and Devendiran introduced M-MultiSVM with adaptive resampling 

and dimensionality reduction to handle class imbalance, achieving high accuracy [8]. Dugar-LSTM employed chaotic 

optimization with LSTMs for intrusion detection [15]. Robustness work examined adversarial perturbations in deep IDS and 

proposed defenses [16]. Data augmentation in SDN with GANs improved generalization [17]. Probabilistic learners and hybrid 

HMM/GMM pipelines were also explored for real-time detection. Collectively, these methods showcased significant 

improvement in adaptivity and accuracy but highly relied on supervised data and controlled experimental setups.[18], [19]. 

Limitations: (1) Optimization for local detection metrics rather than long-term network resilience. (2) Topology treated as 

features, not as the governing substrate of attack progression. (3) Heavy dependence on labeled data and batch retraining, limiting 

adaptivity [9], [20].  

 

C. Stochastic and Graph-Based Framework 

The shift from adaptive to stochastic modeling represented a change from frameworks based on reactive decisions to the ones 

based on probabilistic reasoning and decision optimization . Stochastic frameworks treat the enterprise network as a dynamic 

system in which both attackers and defenders operate under uncertainty. Essential work synthesized by comprehensive surveys 

on attack graphs revealed the concept of logical paths an attacker can follow through interconnected vulnerabilities, providing 

fundamental support to understand accessibility, lateral movement, and cumulative attack probability [21]. Further research 

connected probabilities and transition costs with graph edges, enabling quantitative evaluation of multi-step attacks paths and the 

spatiotemporal transformation of compromise [11], [12]. This probabilistic methodology allowed researchers to calculate not only 

whether an attack is possible but also its likelihood, expected duration, and most probable path to success.  

 

In this stochastic framework, several mathematical models capture system interactions and support defense optimization. 

Absorbing Markov Chains (AMCs) interpret attack graphs as state-transition systems in which absorbing states represent attacker 

goals and transient states represent the connections between vulnerable and normal states in a network. By calculating the 

fundamental matrix N = (I − Q) −1 , defenders can estimate expected time-to-compromise, state visit counts, and steady-state risk 

probabilities [22], [13]. AMC-based analysis produces interpretable and verifiable quantification of longterm exposure; however, 

it is intrinsically passive and does not explicitly advise defensive actions.  

 

To incorporate decision-making, a framework known as Markov Decision Process (MDP) was developed in which states 

represent network posture, actions represent steps taken to transit between states , transitions evolve stochastically, and rewards 

justify operational objectives. Luo et al. proposed MDP-AD for real-time adaptive responses to variable and unknown attacks 

[23]. Liu et al. modelled defender action for partial observability by a POMDP and by deep Q-learning [24]. Optimizing proactive 

defence schemes such as Moving Target Defense (MTD) has utilized factored and receding-horizon MDPs to further mitigate 

scalability and anticipatory control challenges [14], [25]. Complementary probabilistic learners such as Hidden Markov Models 

(HMMs) and Gaussian Mixture Models (GMMs) model hidden phases of attack and traffic blends for purposes of anomaly 

detection and prediction but lack the sequential control aspect that characterizes the MDPs [19]. Collectively, the stochastic 

frameworks—AMCs, HMMs, GMMs, MDPs/POMDPs—lead to core principle of quantifying and reasoning of risk over time  

 

To empirically evaluate decision-theoretic approaches, Luo et al. [23] compared MDP-AD against SVM, CNN, RNN, 

Transformer-IDS, and GNN across four simulated attack scenarios using KDD-Cup99 and UNSW-NB15. Experiments on a GPU-

accelerated Ubuntu server reported accuracy, precision, recall, and F1-score. The MDP-based model achieved the highest average 

accuracy of about 94% in low-intensity settings and maintained > 91% accuracy under unseen attacks, outperforming the neural 

baselines by roughly 5–8%. These results demonstrate the adaptability and stability of reinforcement-learning–driven defense 

across varying attack intensities, quantifying the advantages of real-world decisiontheoretic policies over temporal dependencies 

and sequential decision dynamics that static or purely ML-based alternatives lack. Limitations: (1) Many stochastic approaches 

face scalability challenges, as attack graphs and MDP state spaces grow rapidly with network size. (2) Reward and transition 

functions in MDPs may overlook structural dependencies or economic costs of defensive actions , influencing policies that lack 
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foresight. (3) Most methods either quantify risk (AMC) or select actions (MDP) but rarely integrate both efficiently. These 

limitations motivate hybrid methodologies that combine efficient probabilistic quantification with interpretable and adaptive 

decision control [23], [13], [24], [14]..  

 

 

 
III. IDENTIFIED RESEARCH CHALLENGES AND FRAMEWORK DESIGN OBJECTIVES 

 

Although the evolution into adaptive and stochastic based defense frameworks , current research remains divided between 

risk quantification and decision-making. Markov Decision Process (MDP) and reinforcement learning (RL) based systems achieve 

real time responsiveness and circumstantial control but they still lack network topological awareness and long-term economic 

trade-offs. [23], [24]. On the contrary , probabilistic quantification methodologies such as Absorbing Markov Chains (AMCs) 

provide audit-able estimates of compromise probabilities but cannot inherently determine optimal defense actions [13], [22]. This 

gap between quantifying risk and deciding optimal actions defines the theoretical shortfall that a next-generation network-level 

vulnerability assessment framework must address. 

 

 A common limitation in many adaptive systems is structural blindness. Countless MDP or DRL-based frameworks define 

states using packet-level or flow-based measurable features, neglecting the graph structure of the network that governs attack 

propagation paths. [28], [29], [8]. Research in attack graphs and Bayesian network quantification demonstrates that topology—

particularly centrality measures such as degree, betweenness, and eigenvector importance—determines lateral movement and 

systemic risk [3], [27], [11], [21]. However, in most adaptive systems, topology remains outlying rather than intrinsic to decision 

modeling. For network defense to be effective, topology must influence both transition probabilities and policy selection, enabling 

prioritization of actions on structurally critical assets. 

 

 Another recurring challenge is reward myopia, where reinforcement-based systems aim to maximize short-term cri- teria 

such as accuracy or false-alarm reduction while ignoring long-horizon defender utility. Many MDP and DRL frameworks define 

rewards only in terms of detection correctness [17], [18], [24], often overlooking the economic cost of remediation and the 

collective impact of risk reduction in critical nodes [28], [14]. The theory of reinforcement learning postulates that reward design 

directly governs policy optimality [30], [31]; suboptimal reward shaping yields locally effective but globally inefficient defenses. 

An efficient reward function should combine three aspects: (1) expected reduction in risk, (2) structural importance of the defended 

node, and (3) economic cost of the chosen action. Balancing these aspects allows policies to align with real-world return-on-

investment (ROI) objectives. 
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 Scalability and tractability also remain major limitations. With the growth in size in enterprise networks, state-action 

matrices and attack graphs exponentially increase and result in the "state explosion" issue in MDPs and AMCs [21], [24]. Recent 

advances also consider factored and hierarchical MDPs for scalable decomposition in policies and modular decision learning in 

POMDPs [14], [25]. AMC-based quantification can also use sparse-matrix approximations or probabilistic sampling in order to 

stay efficient [13]. Inclusion of AMCgenerated abstractions in MDP state modeling can reduce dimensionality and maintain 

structural semantics and therefore guarantee interpretability and computational tractability.  

 

Another crucial prerequisite is managing uncertainty and partial observability. Network states and attack progression are 

rarely fully visible to real-world defenders. Although POMDP and belief-based RL frameworks make an effort to tackle this 

uncertainty, they are still constrained by computational overhead and static observation models [24]. Robustness under incomplete 

information can be improved by combining these with probabilistic inference mechanisms like Bayesian updating, Hidden Markov 

Models (HMMs), or Gaussian Mixture Models (GMMs) [19], [32]. Defenders can predict attacker behaviour, infer hidden states, 

and dynamically modify mitigation strategies thanks to this hybridisation.  

 

Deployment is made more difficult by adaptation and nonstationarity. Static transition probabilities soon become 

outdated, and attack tactics are constantly changing. The need for continuous policy learning is emphasised by dynamic 

reinforcement learning and stochastic optimisation frameworks [28], [16], [33], [14]. Adaptability is naturally supported by a 

hybrid AMC–MDP framework: MDP layers use temporaldifference learning to improve decision policies, while AMC layers 

update risk probabilities as vulnerabilities change. Realtime responsiveness and analytical stability are both preserved by this 

interaction, which is essential for enterprise-scale defence. 

 

    From this analysis, several key requirements emerge for a next-generation framework: 

  1) Dual quantification and control: Combine AMC-based risk estimation with MDP-driven action optimization 

. 2) Structural and topological awareness: Ensure network connectivity and node centrality influence transitions, rewards,      

and state representation. 

 3) Reward alignment with long-horizon ROI: Integrate cost, criticality, and long-term risk reduction.  

 4) Scalability and abstraction: Employ hierarchical or factored MDPs and graph compression to handle largescale networks. 

5) Uncertainty modeling: Consider the use of probabilistic estimators or POMDP variants to improve the accuracy of the 

decision under incomplete observability. 

 6) Continuous adaptation: Enable dynamic risk reconfiguration and policy learning to address evolving vulnerabilities. 

 

 A hybrid Absorbing Markov Chain–Markov Decision Process (AMC–MDP) model satisfies these objectives by combining 

the quantitative capability of AMC-based network modeling with the decision optimization capabilities of MDPs [23], [13], [14].The 

AMC component mathematically evaluates the likelihood of system compromise and the expected time until absorption, while the 

MDP part identifies strategies that reduce the long-term expected risk. This combination transforms vulnerability assessment from a 

reactive and analytic task into a proactive one, where its decision driven mechanisms ensure a sustainable and a topologically aware 

resilient network.. 

 

 

IV. METHODOLOGY  

The proposed framework combines the strength of Absorbing Markov Chains to quantify the long-term probabilities with the 

adaptive, decision-optimizing nature of Markov Decision Processes (MDP). This integration allows the system to evaluate both 

the probability of network compromise and the expected duration before a successful attack, while simultaneously learning the 

most effective defense strategies. To ensure structural awareness of the graph, node central metrics such as be-tweeness and 

eigenvectors are incorporated, to ensure that the policies derived align with the network’s topology and accurately represent the 

behavior of risk propagation. 

 

    A.  Formal Model Elements 

We define an MDP M = (S, A, P, R, γ), where S is the set of states, A the set of actions, P(s ′ |s, a) the transition probability, 

R(s, a) the reward, and γ ∈ [0, 1] the discount factor [30], [31]. Each state s ∈ S encodes both the current network security posture 

(e.g., vulnerability status or telemetry) and structural attributes (e.g., node centrality). Actions a ∈ A represent defender interventions 

such as patching, isolating, blocking, or re-segmenting nodes. The optimal policy π ∗ (s) satisfies the Bellman optimality criterion:  

 

π ∗ (s) = arg max a Q ∗ (s, a), (1) 

 

 where Q∗ (s, a) denotes the optimal state–action value. The AMC layer models the probabilistic propagation of an attacker 

through the network. From an attack graph, an AMC is constructed with a transient block Q and an absorbing block R. The 

fundamental matrix is:  

 

N = (I − Q) −1 , (2) 

 which yields expected visits to transient states before absorption and the expected time-to-compromise. Absorption 

probabilities from N × R quantify the long-term likelihood of attackers reaching critical assets [13], [22]. These AMCderived 

measures are used to parameterize both the reward and transition functions of the MDP, bridging quantification with decision 

control.. 
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B. Reward and Transition Coupling 

To jointly model structural importance and operational cost, the reward function is formulated as:  

 

R(s, a) = Rbase(s, a)+ω C(v)−Cop(a)−λRiskAMC(s), (3) 

 

where C(v) denotes the centrality of node v, Cop(a) represents the action cost, and RiskAMC(s) is the AMC-quantified compromise 

probability. Coefficients ω and λ balance the influence of structural significance and risk reduction [23], [14]. Transitions P(s ′ |s, 

a), estimated from telemetry or simulation, are adjusted by AMC-derived risk and node centrality, emphasizing realistic attacker 

preferences toward high-impact nodes [21], [24]. 

 

C. Learning Process 

Policy learning is achieved using Q-learning or Deep QNetworks (DQN) when state dimensionality is large. The temporal-

difference update rule is: 

 

Q(st, at) ← Q(st, at)+α rt+1+γ max a′ Q(st+1, a′ )−Q(st, at) , (4) 

 

 where α is the learning rate and rt+1 is the reward observed after executing at. This iterative process converges toward a policy 

maximizing the long-term expected return while adapting to AMC-updated risk estimates [28], [24]. 

 

D. AMC Quantification Layer 

Within the AMC layer, each transient state corresponds to an intermediate network configuration or a partial system 

compromise, while absorbing states denote full system compromise or successful defense. The AMC is constructed from the attack 

graph by dividing it into transient block Q and absorbing block R. The fundamental matrix derived from Equation (2),  

 

N = (I − Q) −1 , (5) 

 

 provides interpretable measures of network risk dynamics. N reflects the expected number of transitions through transient 

states before reaching an absorbing state. This formulation supports the computation of several essential security indicators, 

including: : • Expected path length: the average number of steps before an attacker reaches an absorbing (compromised) state. • 

Expected absorption time: the anticipated duration or persistence of an attack campaign before compromise. • State visitation 

frequency: the chance of each node being visited in an attack chain, reflecting its systemic importance. These metrics are 

continuously recalculated whenever the network topology changes (e.g., via segmentation, patching, or isolation), ensuring that the 

AMC layer remains synchronized with evolving network states and reflects real-time security posture [22], [13], [19]. 

 

E. Integration and Topology Awareness 

The hybrid AMC–MDP framework functions as a selfadaptive system in which the probabilistic output of the AMC 

continuously dictates the policy-learning process of MDP. After each training cycle, the updated AMC-derived risk values are 

inserted into the reward R(s, a) and transition probability P(s ′ |s, a) components, ensuring that policy optimization mirrors the current 

attack surface and evolving threat conditions. Topological awareness is maintained by calculating graphbased centrality metrics—

such as between ness, eigenvector, and closeness centrality—which are part of both state features and reward formulations [14], 

[28]. Whenever the network undergoes changes, the AMC matrices and centrality values are recalculated, allowing the model to 

adaptively reshape its perception of attack pathways and defense leverage points [4]. 

 

F. Addressing the Identified Gaps 

 

This unified AMC–MDP framework systematically addressees the key challenges identified in prior research: • Quantification 

and Control: The AMC component generates interpretable probabilistic estimates of compromise likelihood and time-to-absorption, 

while the MDP layer interprets these insights to develops them in actionable and defense policies [13], [14]. • Structural Awareness: 

Network topology directly influences both state representation and policy optimization, ensuring that nodes that are critical to attack 

path lateral movement are prioritized for defense. [27], [4]. • Long-Horizon Optimization: Reinforcement learning is capable of 

maximizing security returns over long time horizons , rather than solely focusing on short term detection metrics. [9], [20]. • 

Scalability: Through hierarchical abstraction and graph compression, the framework maintains computational feasibility even with 

large and complex network environments. [14], [24]. • Adaptability: With temporal-difference learning, the system keeps 

improving its decision based on new data. This means even if the network environment changes or new attack patterns appear , the 

model can adapt quickly without needing to be re-trained. [16], [17]. • Interpretability: The probabilistic foundation of AMC ensures 

that all model outputs and policy decisions remain auditable and explainable to security analysts and system administrators [22], 

[13]. 

 

G. Scope and Future Evaluation Plan 

 

This work presents a conceptual framework and does not include experimental validation; implementation and validation will be 

pursued in subsequent research. Planned experiments will use simulated enterprise networks with diverse topologies—random, 

scale-free, and small-world—and benchmarked or synthetically generated attack graphs [27], [4]. Comparative baselines will 

include:  

 1) CVSS-only severity ranking, 

 2) AMC-only probabilistic risk assessment, 

 3) MDP-based defense without structural modulation, and 
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 4) heuristic patching of top-k central nodes. Evaluation criteria will include metrics such as: (a) AMC absorption probability 

and expected time-to-compromise, (b) cumulative cost-adjusted risk, (c) average remediation time, (d) policy stability and 

convergence, and (e) computational efficiency. Stress-testing will analyze performance under progressive vulnerability landscapes 

(non-stationarity), partial observability via POMDP extensions, and adversarial adaptation modeled through game-theoretic 

scenarios. Furthermore scalability assessments will examine the benefits of graph embeddings and factored MDP decompositions 

for largescale deployments [14], [24]. Collectively, these experimental studies aim to validate the framework’s real world 

applicability, scalability and efficiency within complex enterprise environments. V. DISC 

   

V.  RESEARCH OPPORTUNITIES AND FUTURE WORK 
 

The proposed Hybrid AMC–MDP framework offers a unified approach that integrates probabilistic quantification, structural 

reasoning, and long-horizon decision optimization. While the model conceptually addresses prior gaps in vulnerability assessment, 

scalable deployment and real-world adaptation introduce new frontiers for research. The following directions extend beyond the 

limitations already addressed within the hybrid framework. 

 

 1) Scalable architectures and state abstraction: Although the hybrid model mitigates complexity by grouping states using 

AMC, large enterprise networks still demand additional abstraction mechanisms. A possible improvement is to investigate 

hierarchical and factored reinforcement learning architectures, where decisions are broken in manageable layers or components 

using graph-based embeddings, and modular subnet decomposition to support expansive, diverse infrastructures [14], [24]. Recent 

works highlights how adaptive routing in IOT systems can simultaneously imporve security and reduce energy consumption[34]. 

The integration of graph neural encoders with reinforcement learning can enable compact structural representation of the network 

while still maintaining the relation between the nodes [28], [9].  

2) Advanced uncertainty handling: In real world security operations , defenders often operate under incomplete or delayed 

information. Extending the framework toward partially observable MDPs (POMDPs) and Bayesian inference allows maintenance 

of decision accuracy under incomplete information [24], [19]. Hidden Markov Models (HMMs) can also help better estimate 

hidden attack states, providing greater resilience to stealthy or ambiguous attack behaviors in dynamic environments.  

3) Real-world data integration and empirical calibration: For the hybrid model to work in real world enterprise 

environments, its parameters need to reflect real world telemetry and threat data. Integrating live exploit prediction and threat 

intelligence feeds—such as the Exploit Prediction Scoring System (EPSS)—can provide continuously updated priors for AMC 

edge likelihoods and MDP reward terms [6]. This data coupling ensures that learned defensive policies evolve alongside actual 

exploitation patterns, maintaining alignment between modeled risk and empirical threat trends. These directions collectively make 

the hybrid AMC–MDP framework more scalable, uncertainty-aware, and empirically grounded deployment within enterprise 

security operations, marking the next stage in transitioning from conceptual design to operational realization 

 

VI. CONCLUSION 
 

The evolution of network vulnerability assessment reveals a shift from static scoring to adaptive and stochastic decision 

frameworks. Static systems focused on severity scores to individual vulnerabilities, without considering how attack progresses step-

by-step within a network; learning-based detectors react locally; probabilistic attack-graph models quantify longterm compromise 

but do not choose defenses [3], [23], [11], [13]. The proposed Hybrid AMC–MDP framework unifies these by combining AMC’s 

interpretable quantification with MDP’s long-horizon optimization, enriched by topology-aware state and reward design. Although 

this study is conceptual, it provides a rigorous foundation for empirical validation and a roadmap toward adaptive, interpretable, and 

economically optimized defense systems. 
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