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Abstract— This paper presents Vayu Drishti, a real-time air quality monitoring and forecasting system addressing air pollution 

tracking through multi-source data integration. The system combines data from Central Pollution Control Board (CPCB) ground 

stations (40 stations across 16 states), ISRO's INSAT-3D satellite, and NASA's MERRA-2 meteorological data. Our feature 

engineering framework extracts 69 attributes (33 base + 36 engineered features), capturing pollutant interactions, meteorological 

influences, and temporal patterns. The Random Forest ensemble model achieves R² = 0.9994 and RMSE = 4.57 with 8.3-second 

training time. The system provides 24-hour forecasts through XGBoost and LSTM models with 92-96% accuracy via a Streamlit 

web interface with sub-200ms API response time. 

 
Index Terms— Air quality monitoring, Random Forest, Multi-source integration, Real-time prediction, Machine learning, Satellite 
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I. INTRODUCTION 

Air pollution represents a significant public health challenge globally, with India facing particularly acute air quality issues [1]. 

Urban expansion, vehicular emissions, industrial activity, and seasonal agricultural burning contribute to persistent air quality 

degradation across metropolitan and rural areas. Fine particulate matter (PM2.5), nitrogen oxides, and ground-level ozone are 

associated with increased incidence of respiratory and cardiovascular conditions [2][3]. 

 

Current air quality monitoring systems face several critical challenges: limited spatial coverage with stations concentrated in urban 

centers, leaving rural areas underserved [4], data quality issues including inconsistent measurements and sensor malfunctions, 

single-source limitations preventing comprehensive atmospheric analysis, insufficient forecasting capabilities, and accessibility 

barriers limiting public access to air quality information. 
 
This work addresses these challenges through a comprehensive system that integrates multi-source data from ground stations, 

satellites, and meteorological systems [10][11]; implements robust feature engineering to extract 69 predictive attributes; achieves 

high-accuracy AQI prediction using Random Forest ensemble methods [6][7]; provides 24-hour forecasting with XGBoost and 

LSTM models [14]; and delivers real-time information through an accessible web interface. 

 

II. LITERATURE REVIEW 

Recent research in air quality monitoring has explored various machine learning approaches. Rosca et al. [3] reviewed deep learning 

methods for PM2.5 forecasting, noting temporal resolution and external feature integration as key challenges. Rautela and Goyal 

[5] demonstrated how AI technologies transform air pollution management in India. Chen et al. [6] surveyed machine learning 

techniques, while Liu et al. [7] demonstrated ensemble method advantages. Iskandaryan et al. [8] showed ensemble method potential 

but identified spatial coverage limitations. Satellite remote sensing integration represents an emerging direction. CREA [9] 

highlighted gaps in India's monitoring infrastructure with 62% of population outside real-time coverage. Zhang et al. [10] reviewed 

satellite-based monitoring advances, while Reddy et al. [11] examined satellite-ground integration in India. Wang et al. [12] 

demonstrated multimodal data fusion improving prediction accuracy. 
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III. SYSTEM ARCHITECTURE AND DATA SOURCES 

A. System Architecture 

Vayu Drishti implements a microservices architecture with distinct components for data collection, processing, machine learning, 

and user interface delivery [12]. The system operates on cloud infrastructure with auto-scaling capabilities to handle variable user 

loads. 

 

 

Figure 1: System architecture of Vayu Drishti 

 

B. Data Sources 

CPCB Ground Station Data: The Central Pollution Control Board operates monitoring stations measuring seven pollutants: PM2.5, 

PM10, NO₂, SO₂, CO, O₃, and NH₃. Our system collects hourly measurements from 40 stations across 16 states selected for 

geographic diversity and data consistency.INSAT-3D Satellite Data: ISRO's INSAT-3D geostationary satellite provides 

atmospheric observations including Aerosol Optical Depth (AOD550), Aerosol Index, Cloud Fraction, Surface Reflectance, 

Angstrom Exponent, and Single Scattering Albedo retrieved hourly through MOSDAC API [10].MERRA-2 Meteorological Data: 

NASA's MERRA-2 provides reanalysis data at 0.5° × 0.625° resolution [13]. We extract eight parameters: surface temperature, 

relative humidity, wind speed/direction, surface pressure, precipitation rate, boundary layer height, and total precipitable water. 

C. Data Processing Pipeline 

 Data Cleaning: Automated quality control filters remove outliers (values exceeding physical thresholds), identify stuck 

sensors (identical values for 5+ hours), and validate data completeness [4]. Missing values (<3 hours) are interpolated 

using linear methods; larger gaps use historical median imputation. 

 Spatial Alignment: Satellite and meteorological data are matched to ground station locations using inverse distance 

weighting interpolation with a 50km search radius, ensuring data consistency [11]. 

 Temporal Synchronization: All data sources are aligned to hourly intervals with UTC timestamp standardization, 

ensuring temporal consistency across multi-source integration. 

IV. FEATURE ENGINEERING 

Our feature engineering framework extracts 69 total features from raw multi-source data to capture complex relationships affecting 

air quality [3][6]. 
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A. Base Features (33 Features) 

 CPCB Pollutants (7): PM2.5, PM10, NO₂, SO₂, CO, O₃, NH₃ measurements providing direct air quality indicators. 

MERRA-2 Meteorological (8): Temperature, humidity, wind speed, wind direction, pressure, precipitation, boundary layer 

height, precipitable water, capturing atmospheric conditions affecting pollutant dispersion. 

 INSAT-3D Satellite (6): AOD550, Aerosol Index, Cloud Fraction, Surface Reflectance, Angstrom Exponent, Single 

Scattering Albedo, providing atmospheric column properties. 

 Location (2): Latitude and longitude enabling spatial pattern learning. 

 Temporal (10): Hour, day, month, day of week, is_weekend, is_rush_hour, plus cyclical encodings (hour_sin, hour_cos, 

dow_sin, dow_cos, month_sin, month_cos) capturing temporal dynamics. 

 

B. Engineered Features (36 Features) 

 
 Pollutant Ratios (6): PM2.5/PM10, NO₂/CO, O₃/NO₂, PM2.5/AOD550, PM10/AOD550, CO/Boundary_Layer_Height 

capturing pollutant relationships and atmospheric mixing [10][13]. 

 Lag Features (12): 1-hour, 3-hour, 6-hour, and 12-hour lags for PM2.5, PM10, and NO₂ enabling temporal dependency 

modeling for improved forecasting [3][7]. 

 Rolling Statistics (12): 6-hour, 12-hour, and 24-hour rolling means and standard deviations for PM2.5, PM10, NO₂, and 

O₃ capturing trend and variability. 

 Interaction Terms (6): Temperature × Humidity, Wind_Speed × Boundary_Layer_Height, AOD550 × Humidity, 

Temperature × Wind_Speed, Pressure × Temperature, Cloud_Fraction × AOD550 modeling meteorological influences on 

pollution. 

 

V. MACHINE LEARNING MODELS 

A. Random Forest Model 

Our primary prediction model uses Random Forest ensemble learning with 100 decision trees (max_depth=20, 

min_samples_split=5, min_samples_leaf=2) [6][7]. The model processes 69 features through parallel tree construction with 

bootstrap sampling and random feature selection at each split. 

 Training Process: The dataset of 320,000 hourly records (spanning 2023-2024) was split 70/15/15 for 

training/validation/testing. StandardScaler normalization ensures feature comparability. Training completed in 8.3 seconds 

on an 8-core CPU with 16GB of RAM. 

 Model Performance: Test set evaluation achieved R² = 0.9994, RMSE = 4.57, MAE = 3.12, demonstrating exceptional 

prediction accuracy. Cross-validation (5-fold) confirmed model stability with consistent R² (σ = 0.0008). 

 Feature Importance Analysis: Top features by importance: PM2.5 (28.4%), PM10 (19.7%), PM2.5/PM10 ratio (8.9%), 

NO₂ (7.2%), Temperature (5.8%), AOD550 (5.1%). CPCB pollutants contribute 75.9%, MERRA-2 meteorological 17.8%, 

INSAT-3D satellite 4.2%, temporal 2.1%. 

 

 

Figure 2: Feature importance analysis from random forest model 

B. Forecasting Models 

 XGBoost Model: Gradient boosting implementation for 1–6-hour forecasts achieve 95-96% accuracy with RMSE = 8.2 

[14]. Hyperparameters: 200 estimators, learning_rate=0.05, max_depth=7. 

 LSTM Model: Deep learning architecture for 12–24-hour forecasts use 2 LSTM layers (128, 64 units) with dropout (0.3) 

achieving 92-94% accuracy, RMSE = 12.5 [3][7]. Input sequence length = 24 hours. 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                   www.jetir.org (ISSN-2349-5162) 

 

JETIR2511440 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e325 
 

 Ensemble Strategy: XGBoost (60%) + LSTM (40%) weighted combination optimizes short and long-term accuracy 

[7][8]. 

 

 

Figure 3: Performance comparison of forecasting models 

C. Model Optimization 

TensorFlow Lite conversion reduces model size from 45MB to 2.8MB enabling efficient deployment [6]. Quantization (float32 to 

float16) maintains R² > 0.999 while reducing inference time to 8ms per prediction. 

 

 

VI. WEB APPLICATION INTERFACE 

A. Dashboard Features 

The Stream lit-based interface provides real-time AQI monitoring with color-coded health categories (Good: 0-50 green, Moderate: 

51-100 yellow, Unhealthy: 101-150 orange, Very Unhealthy: 151-200 red, Hazardous: 201+ purple) [2][9]. 

 

 

Figure 4: main dashboard interface with real-time aqi monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Interactive Map 

Folium-based interactive map displays monitoring stations with color-coded markers indicating current AQI levels. Users can click 

stations to view detailed pollutant concentrations, historical trends, and 24-hour forecasts [9]. 
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Figure 5: Interactive map showing station locations and AQI levels 

 

C. Custom Prediction Tool 

Users can input custom environmental parameters (pollutant concentrations, meteorological conditions, satellite data) to generate 

AQI predictions for hypothetical scenarios, supporting environmental impact assessment and policy planning [2]. 

 

 

Figure 6: Custom prediction tool for scenario analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Analytics Dashboard 

Correlation analysis visualizes relationships between pollutants and meteorological parameters, helping identify key factors 

influencing air quality. The heatmap displays correlation coefficients enabling data-driven insights into pollution dynamics. 
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Figure 7: Correlation matrix of environmental parameters 

 

 
 

VII. SYSTEM PERFORMANCE 

 Computational Efficiency: 95th percentile API latency = 185ms including data fetching (80ms), feature engineering 

(45ms), prediction (8ms), and response formatting (52ms). System handles 150 concurrent requests with <5% performance 

degradation. 

 Scalability: Kubernetes deployment enables horizontal scaling with auto-scaling policies (CPU > 70% triggers pod 

addition) [12]. Load testing confirms linear scaling to 500 concurrent users. 

 Reliability: System achieves 99.8% uptime over 6-month deployment with automated health checks, graceful degradation 

to cached data during API failures, and comprehensive error logging. 

 

 

VIII. RESULTS AND DISCUSSION 
 Prediction Accuracy: Random Forest model demonstrates exceptional performance across diverse conditions: Urban 

areas (R² = 0.9997, RMSE = 3.8), Rural areas (R² = 0.9992, RMSE = 5.2), High pollution events (R² = 0.9989, MAE = 

8.4), Low pollution periods (R² = 0.9996, MAE = 2.1). 

 Multi-Source Integration Benefits: Ablation studies quantify data source contributions - CPCB only: R² = 0.9954, RMSE 

= 9.8; CPCB + MERRA-2: R² = 0.9982, RMSE = 6.1; Full integration: R² = 0.9994, RMSE = 4.57. 

 Temporal Pattern Learning: Cyclical temporal features capture diurnal patterns, weekly cycles, and seasonal trends 

[1][4], improving forecast accuracy by 18% over models without temporal encoding. 

IX. CONCLUSION 

Vayu Drishti demonstrates that multi-source data integration combining ground stations, satellites, and meteorological systems with 

advanced machine learning achieves exceptional air quality prediction accuracy (R² = 0.9994). The system's 69-feature engineering 

framework, Random Forest ensemble approach, and dual forecasting architecture (XGBoost + LSTM) provide reliable 24-hour 

predictions with sub-200ms API latency. The accessible Stream lit interface democratizes air quality information for citizens, 

researchers, and policymakers. Operational deployment confirms system reliability (99.8% uptime) and scalability (500+ concurrent 

users). This work establishes a practical framework for hyperlocal air quality monitoring, addressing India's environmental health 

challenges. By combining multiple data sources, sophisticated feature engineering, and optimized machine learning models, Vayu 

Drishti advances real-time air quality monitoring beyond single-source systems. Open architecture supports extension to additional 

locations and data sources, enabling broader environmental health applications. 
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