© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthl

serir » JOURNAL OF EMERGING TECHNOLOGIES AND
z INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

VAYU DRISHTI: REAL-TIME AIR QUALITY
MONITORING WITH MULTI-SOURCE DATA
INTEGRATION AND MACHINE LEARNING
FORECASTING

'Dr. Prakash Kene, ?Gurjas Singh Gandhi, *Nikita Bachute, ‘Pranav Gadewar, *Ritwik Rahut
1239 Department of Master of Computer Applications
Progressive Education Society's Modern College of Engineering
Pune, Maharashtra, India

Abstract— This paper presents Vayu Drishti, a real-time air quality monitoring and forecasting system addressing air pollution
tracking through multi-source data integration. The system combines data from Central Pollution Control Board (CPCB) ground
stations (40 stations across 16 states), ISRO's INSAT-3D satellite, and NASA's MERRA-2 meteorological data. Our feature
engineering framework extracts 69 attributes (33 base + 36 engineered features), capturing pollutant interactions, meteorological
influences, and temporal patterns. The Random Forest ensemble model achieves R? = 0.9994 and RMSE = 4.57 with 8.3-second
training time. The system provides 24-hour forecasts through XGBoost and LSTM models with 92-96% accuracy via a Streamlit
web interface with sub-200ms API response time.

Index Terms— Air quality monitoring, Random Forest, Multi-source integration, Real-time prediction, Machine learning, Satellite
data, Environmental informatics, Deep learning

I. INTRODUCTION

Air pollution represents a significant public health challenge globally, with India facing particularly acute air quality issues [1].
Urban expansion, vehicular emissions, industrial activity, and seasonal agricultural burning contribute to persistent air quality
degradation across metropolitan and rural areas. Fine particulate matter (PM2.5), nitrogen oxides, and ground-level ozone are
associated with increased incidence of respiratory and cardiovascular conditions [21[3].

Current air quality monitoring systems face several critical challenges: limited spatial coverage with stations concentrated in urban
centers, leaving rural areas underserved [4], data quality issues including inconsistent measurements and sensor malfunctions,
single-source limitations preventing comprehensive atmospheric analysis, insufficient forecasting capabilities, and accessibility
barriers limiting public access to air quality information.

This work addresses these challenges through a comprehensive system that integrates multi-source data from ground stations,
satellites, and meteorological systems [10][11]; implements robust feature engineering to extract 69 predictive attributes; achieves
high-accuracy AQI prediction using Random Forest ensemble methods [6][7]; provides 24-hour forecasting with XGBoost and
LSTM models [14]; and delivers real-time information through an accessible web interface.

Il. LITERATURE REVIEW

Recent research in air quality monitoring has explored various machine learning approaches. Rosca et al. [3] reviewed deep learning
methods for PM2.5 forecasting, noting temporal resolution and external feature integration as key challenges. Rautela and Goyal
[5] demonstrated how Al technologies transform air pollution management in India. Chen et al. [6] surveyed machine learning
techniques, while Liu et al. [7] demonstrated ensemble method advantages. Iskandaryan et al. [8] showed ensemble method potential
but identified spatial coverage limitations. Satellite remote sensing integration represents an emerging direction. CREA [9]
highlighted gaps in India's monitoring infrastructure with 62% of population outside real-time coverage. Zhang et al. [10] reviewed
satellite-based monitoring advances, while Reddy et al. [11] examined satellite-ground integration in India. Wang et al. [12]
demonstrated multimodal data fusion improving prediction accuracy.
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I1l. SYSTEM ARCHITECTURE AND DATA SOURCES

A. System Architecture
Vayu Drishti implements a microservices architecture with distinct components for data collection, processing, machine learning,
and user interface delivery [12]. The system operates on cloud infrastructure with auto-scaling capabilities to handle variable user

loads.

Vayu Drishti - System Architecture
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Figure 1: System architecture of VVayu Drishti

B. Data Sources

CPCB Ground Station Data: The Central Pollution Control Board operates monitoring stations measuring seven pollutants: PM2.5,
PM10, NO2, SOz, CO, Os, and NHs. Our system collects hourly measurements from 40 stations across 16 states selected for
geographic diversity and data consistency.INSAT-3D Satellite Data: ISRO's INSAT-3D geostationary satellite provides
atmospheric observations including Aerosol Optical Depth (AOD550), Aerosol Index, Cloud Fraction, Surface Reflectance,
Angstrom Exponent, and Single Scattering Albedo retrieved hourly through MOSDAC API [10].MERRA-2 Meteorological Data:
NASA's MERRA-2 provides reanalysis data at 0.5° x 0.625° resolution [13]. We extract eight parameters: surface temperature,
relative humidity, wind speed/direction, surface pressure, precipitation rate, boundary layer height, and total precipitable water.

C. Data Processing Pipeline

e Data Cleaning: Automated quality control filters remove outliers (values exceeding physical thresholds), identify stuck
sensors (identical values for 5+ hours), and validate data completeness [4]. Missing values (<3 hours) are interpolated
using linear methods; larger gaps use historical median imputation.

e Spatial Alignment: Satellite and meteorological data are matched to ground station locations using inverse distance
weighting interpolation with a 50km search radius, ensuring data consistency [11].

e Temporal Synchronization: All data sources are aligned to hourly intervals with UTC timestamp standardization,
ensuring temporal consistency across multi-source integration.

IV. FEATURE ENGINEERING
Our feature engineering framework extracts 69 total features from raw multi-source data to capture complex relationships affecting

air quality [3][6].
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A. Base Features (33 Features)

e CPCB Pollutants (7): PM2.5, PM10, NO2, SO2, CO, Os, NH: measurements providing direct air quality indicators.
MERRA-2 Meteorological (8): Temperature, humidity, wind speed, wind direction, pressure, precipitation, boundary layer
height, precipitable water, capturing atmospheric conditions affecting pollutant dispersion.

e INSAT-3D Satellite (6): AOD550, Aerosol Index, Cloud Fraction, Surface Reflectance, Angstrom Exponent, Single
Scattering Albedo, providing atmospheric column properties.

e Location (2): Latitude and longitude enabling spatial pattern learning.

e Temporal (10): Hour, day, month, day of week, is_weekend, is_rush_hour, plus cyclical encodings (hour_sin, hour_cos,
dow_sin, dow_cos, month_sin, month_cos) capturing temporal dynamics.

B. Engineered Features (36 Features)

e Pollutant Ratios (6): PM2.5/PM10, NO/CO, Os/NO2, PM2.5/A0OD550, PM10/AOD550, CO/Boundary Layer Height
capturing pollutant relationships and atmospheric mixing [10][13].

e Lag Features (12): 1-hour, 3-hour, 6-hour, and 12-hour lags for PM2.5, PM10, and NO: enabling temporal dependency
modeling for improved forecasting [3][7].

e Rolling Statistics (12): 6-hour, 12-hour, and 24-hour rolling means and standard deviations for PM2.5, PM10, NO-, and
O:s capturing trend and variability.

e Interaction Terms (6): Temperature x Humidity, Wind_Speed x Boundary_Layer Height, AOD550 x Humidity,
Temperature x Wind_Speed, Pressure x Temperature, Cloud_Fraction x AOD550 modeling meteorological influences on
pollution.

V. MACHINE LEARNING MODELS

A. Random Forest Model

Our primary prediction model uses Random  Forest ensemble learning with 100 decision trees (max_depth=20,
min_samples_split=5, min_samples_leaf=2) [6][7]. The model processes 69 features through parallel tree construction with
bootstrap sampling and random feature selection at each split.

e Training Process: The dataset of 320,000 hourly records (spanning 2023-2024) was split 70/15/15 for
training/validation/testing. StandardScaler normalization ensures feature comparability. Training completed in 8.3 seconds
on an 8-core CPU with 16GB of RAM.

e Model Performance: Test set evaluation achieved Rz = 0.9994, RMSE = 4.57, MAE = 3.12, demonstrating exceptional
prediction accuracy. Cross-validation (5-fold) confirmed model stability with consistent R? (¢ = 0.0008).

e Feature Importance Analysis: Top features by importance: PM2.5 (28.4%), PM10 (19.7%), PM2.5/PM10 ratio (8.9%),
NO2 (7.2%), Temperature (5.8%), AOD550 (5.1%). CPCB pollutants contribute 75.9%, MERRA-2 meteorological 17.8%,
INSAT-3D satellite 4.2%, temporal 2.1%.

Top 10 Featize Imponance Handom Farest

Figure 2: Feature importance analysis from random forest model

B. Forecasting Models
e XGBoost Model: Gradient boosting implementation for 1-6-hour forecasts achieve 95-96% accuracy with RMSE = 8.2
[14]. Hyperparameters: 200 estimators, learning_rate=0.05, max_depth=7.
e LSTM Model: Deep learning architecture for 12—24-hour forecasts use 2 LSTM layers (128, 64 units) with dropout (0.3)
achieving 92-94% accuracy, RMSE = 12.5 [3][7]. Input sequence length = 24 hours.
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e Ensemble Strategy: XGBoost (60%) + LSTM (40%) weighted combination optimizes short and long-term accuracy

[71[8].
_-I I-I IIII

Figure 3: Performance comparison of forecasting models

C. Model Optimization

TensorFlow Lite conversion reduces model size from 45MB to 2.8MB enabling efficient deployment [6]. Quantization (float32 to
float16) maintains R? > 0.999 while reducing inference time to 8ms per prediction.

VI. WEB APPLICATION INTERFACE

A. Dashboard Features

The Stream lit-based interface provides real-time AQI monitoring with color-coded health categories (Good: 0-50 green, Moderate:
51-100 yellow, Unhealthy: 101-150 orange, Very Unhealthy: 151-200 red, Hazardous: 201+ purple) [2][9].

11 Cwmtrod Parwt

Aead - Time AQ Nonitoring & Prediction System

s o Real-Time Alr Quality Dashboard
L
258.6 250
Current AQI X
W CPCEB Geound Station Data = MNIRRA-2 Metearobogical % INSAT-30R Sateliite
1009 pg/m* 43.0% 0.902
- 36.4 pg/m? 33mis 2481
TensorFiow Lite ’
1362 pg/m’ 1014.8 hPa 40.00%

Figure 4: main dashboard interface with real-time agi monitoring

B. Interactive Map

Folium-based interactive map displays monitoring stations with color-coded markers indicating current AQI levels. Users can click
stations to view detailed pollutant concentrations, historical trends, and 24-hour forecasts [9].
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Figure 5: Interactive map showing station locations and AQI levels

C. Custom Prediction Tool
Users can input custom environmental parameters (pollutant concentrations, meteorological conditions, satellite data) to generate

AQI predictions for hypothetical scenarios, supporting environmental impact assessment and policy planning [2].
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Figure 6: Custom prediction tool for scenario analysis

D. Analytics Dashboard
Correlation analysis visualizes relationships between pollutants and meteorological parameters, helping identify key factors

influencing air quality. The heatmap displays correlation coefficients enabling data-driven insights into pollution dynamics.
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Feature Correlation Matnx (Pallutants, Weasther & AQI)

Figure 7: Correlation matrix of environmental parameters

VII. SYSTEM PERFORMANCE

Computational Efficiency: 95th percentile API latency = 185ms including data fetching (80ms), feature engineering
(45ms), prediction (8ms), and response formatting (52ms). System handles 150 concurrent requests with <5% performance
degradation.

Scalability: Kubernetes deployment enables horizontal scaling with auto-scaling policies (CPU > 70% triggers pod
addition) [12]. Load testing confirms linear scaling to 500 concurrent users.

Reliability: System achieves 99.8% uptime over 6-month deployment with automated health checks, graceful degradation
to cached data during API failures, and comprehensive error logging.

VIIl. RESULTS AND DISCUSSION

Prediction Accuracy: Random Forest model demonstrates exceptional performance across diverse conditions: Urban
areas (R? = 0.9997, RMSE = 3.8), Rural areas (R? = 0.9992, RMSE = 5.2), High pollution events (Rz = 0.9989, MAE =
8.4), Low pollution periods (R? = 0.9996, MAE = 2.1).

Multi-Source Integration Benefits: Ablation studies quantify data source contributions - CPCB only: Rz =0.9954, RMSE
=9.8; CPCB + MERRA-2: Rz = 0.9982, RMSE = 6.1; Full integration: R2 = 0.9994, RMSE = 4.57.

Temporal Pattern Learning: Cyclical temporal features capture diurnal patterns, weekly cycles, and seasonal trends
[1][4], improving forecast accuracy by 18% over models without temporal encoding.

IX. CONCLUSION

Vayu Drishti demonstrates that multi-source data integration combining ground stations, satellites, and meteorological systems with
advanced machine learning achieves exceptional air quality prediction accuracy (R2 = 0.9994). The system's 69-feature engineering
framework, Random Forest ensemble approach, and dual forecasting architecture (XGBoost + LSTM) provide reliable 24-hour
predictions with sub-200ms API latency. The accessible Stream lit interface democratizes air quality information for citizens,
researchers, and policymakers. Operational deployment confirms system reliability (99.8% uptime) and scalability (500+ concurrent
users). This work establishes a practical framework for hyperlocal air quality monitoring, addressing India's environmental health
challenges. By combining multiple data sources, sophisticated feature engineering, and optimized machine learning models, Vayu
Drishti advances real-time air quality monitoring beyond single-source systems. Open architecture supports extension to additional
locations and data sources, enabling broader environmental health applications.
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