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ABSTRACT

This paper presents an loT-based wearable health monitoring system integrated with TinyML for real-time
physiological data analysis. The device continuously measures heart rate, body temperature, and SpO: levels
using low-cost biomedical sensors. A lightweight machine learning model is deployed on an ESP32
microcontroller to detect abnormal health patterns locally without cloud computation. Sensor data is
simultaneously transferred to a mobile dashboard via Wi-Fi for visualization and alerts. The proposed system
offers fast response, improved privacy, and low power consumption by performing inference on the edge.
Experimental results demonstrate that the TinyML model accurately identifies abnormal readings with higher
efficiency compared to conventional threshold-based systems.

Keywords: TinyML, 10T, Wearable Health Monitoring, ESP32, MAX30102, Anomaly Detection, Edge
Computing, Real-Time Systems.

INTRODUCTION

Wearable health-monitoring systems have emerged as a crucial pillar in modern biomedical engineering,
enabling continuous, non-invasive tracking of vital physiological parameters. With the rising demand for early
detection of cardiac and respiratory abnormalities, compact sensing technologies combined with intelligent
algorithms are becoming central to next-generation healthcare solutions. Traditional medical monitoring
devices often rely on bulky hardware or require clinical supervision, creating gaps in accessibility and real-
time response. In contrast, wearable sensor-based systems offer portability, continuous measurement, and
immediate feedback, making them suitable for remote health assessment and preventive diagnosis [1].

Advancements in machine learning, particularly Tiny Machine Learning (TinyML), have enabled the
deployment of lightweight neural networks directly on low-power microcontrollers. This eliminates the
dependence on cloud servers and reduces inference latency while preserving user privacy. TinyML allows
efficient on-device classification of biomedical signals such as heart rate, blood oxygen saturation (SpO-), and
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skin temperature, enabling real-time anomaly detection on edge devices [2]. Such edge-intelligent systems are
highly beneficial for wearable platforms, where power constraints, memory limitations, and quick inference
requirements are critical.

In parallel, modern photoplethysmography (PPG)-based sensors like the MAX30102 have improved the
accuracy of optical heart rate and SpO: estimation. PPG technology is widely adopted in clinical and consumer
wearables due to its simplicity, reliability, and ability to extract multiple physiological markers from light—
tissue interaction signals [3]. When combined with additional biosensors and embedded machine-learning
capabilities, a robust and holistic health-monitoring architecture can be developed.

This paper presents an loT- and TinyML-enabled wearable device capable of real-time monitoring and
classification of vital parameters such as HR, SpO-, and body temperature. By integrating low-power sensors,
the ESP32 microcontroller, and a quantized neural network model, the proposed system performs on-device
anomaly detection while simultaneously transmitting processed data to a cloud dashboard for extended
monitoring. The result is a scalable, energy-efficient, and cost-effective health-monitoring solution suitable
for personal healthcare, elderly care, and remote medical applications.

LITERATURE REVIEW

Recent literature indicates a rapid transition from traditional cloud-centric 10T analytics toward on-device
TinyML inference for real-time healthcare applications. Warden and Situnayake introduced the core concepts
of TinyML, demonstrating how neural network models can be compressed and deployed on low-power
microcontrollers without requiring continuous cloud connectivity [4]. Building on these foundations, Banerjee
presented several embedded machine-learning applications—including fall detection and human activity
recognition—that run entirely on microcontrollers, further validating the feasibility of TinyML techniques for
biomedical signal processing [5].

Kumar et al. examined cloud-based health analytics and emphasized the challenges associated with remote
computation, including communication latency, dependency on stable internet connections, and concerns over
patient data privacy [6]. These limitations motivated a shift toward edge intelligence, where processing occurs
directly on the device.

Recent works have focused on multi-sensor fusion and the integration of lightweight deep learning
architectures such as MobileNet derivatives, model pruning, and compressed convolutional networks to
improve performance on wearable platforms. Advances in deep learning theory have also enabled more
efficient architectures that can be adapted for microcontroller-level deployment [7]. Furthermore, Pal et al.
developed edge-Al frameworks for biomedical signal monitoring, demonstrating the effectiveness of on-
device classification for health anomaly detection [8].

The present work builds upon these advancements by integrating the MAX30102 optical sensor with
temperature sensing and performing TinyML-based anomaly detection directly on the ESP32. This multi-
parameter assessment approach enhances reliability, reduces latency, and minimizes dependence on cloud
servers, making it highly suitable for continuous wearable health monitoring.

JETIR2511466 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | e529


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

Table 1: Comparison of Health Monitoring Systems: Technology, Sensors, and Anomaly Detection

Core Anomaly Inference Latency
Study Technolog | Sensors Used Detection L ocation (Approx.

y )
Kumar
etal. Cloud- Threshold/Ru
(2022) | Based loT | ECG: TEMP le Cloud 1=3s
[9]
Banerje . Edge

Embedded Activit - <200
e (2020) mbedde Accelerometer -~y y (Microcontroll ¥ ¥
[10] ML Recognition ms

er)

Liu et
al. Compresse . P Edge $<500%
(2023)] 4 DL Multi-Sensor Classification (Mobile/MCU) | ms
[11]
This . HR, Neural

TinyML + <1
Work |ol$y $\text{SpO} 2 | Network Edge (ESP32) i}s 508
[12] $, Temp Anomaly

SYSTEM DESIGN

The wearable system consists of multiple biomedical sensors connected to an ESP32 microcontroller running
TinyML.

Block Diagram

MAX30102 DS18B20 /f MLX9pPD614 ESP32 Wi-Fi
(Heart rate, SpOR) (Temperature) (TinyML Inferende Dashboard (Blynk)

Figl: Wireless Health Monitoring System
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Fig 2: Flowchart of a TinyML-based Health Monitoring system
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Fig 3: circuit schematic
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Graphs and Performance Charts
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Fig 4: Heart rate over time (simulated)
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fig 5:Body temperature over Time
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Model Accuracy Comparison
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fig 6: Model Accuracy Comparison

Table 2: Detailed Comparison Tables

Parameter Traditional TinyML Metric Remarks
Cloud loT Wearable
Latency 1-3s <150 ms Speed Significant
reduction in

response time

Privacy Low (raw data to | High (on-device | Security Improved  user
cloud) inference) privacy

Power High Low Battery Longer operation

Consumption on battery

Data Usage High Low Bandwidth Reduced
bandwidth  and
cost

Cost Moderate Low Economics Affordable
hardware
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METHODOLOGY

The proposed system follows a structured multi-stage pipeline designed to achieve accurate real-time health
monitoring and anomaly detection. The methodology consists of five major phases: Data Acquisition,
Preprocessing, Feature Extraction, Model Inference, and Alerting & Visualization. Each phase contributes to
improving signal quality, extracting meaningful physiological indicators, and ensuring reliable real-time
predictions on a resource-constrained wearable device.

In the first phase, Data Acquisition, physiological parameters such as heart rate, SpO-, body temperature, and
body motion are continuously captured using the MAX30102 PPG sensor, DS18B20 temperature sensor, and
an optional IMU/accelerometer module. These raw signals are collected by the ESP32 microcontroller via
high-efficiency wireless interfaces such as Bluetooth Low Energy (BLE) or Wi-Fi. Sampling rates are
optimized to achieve a balance between low power consumption and sufficient temporal resolution required
for accurate physiological monitoring.

The second phase, Preprocessing, focuses on improving signal quality and removing distortions commonly
present in wearable biomedical signals. Techniques such as moving average filtering, Savitzky—Golay
smoothing, and low-pass filtering are applied to mitigate high-frequency noise. Motion artifacts resulting from
hand movements or sensor displacement are reduced using adaptive thresholding or wavelet-based denoising.
Normalization is performed to bring all features to a uniform scale, preventing bias during model inference.
Biomedical signal conditioning and error detection methods used here are widely adopted in modern health-
monitoring systems [13].

During the third phase, Feature Extraction, meaningful parameters are computed from the preprocessed signals
to represent the user’s physiological state accurately. For heart rate monitoring, time-domain features such as
mean, variance, peak-to-peak intervals, and pulse shape characteristics (rise time, fall time) are extracted.
Heart Rate Variability (HRV) indicators — including RMSSD, SDNN, and pNN50 — provide deeper insights
into autonomic nervous system activity. SpO- processing involves calculating AC/DC ratios, red—IR signal
correlations, and waveform stability checks. Temperature-based features, such as drift trends and rate of
change, help identify abnormal thermal patterns or fever onset.

The fourth phase, Model Inference, employs a lightweight TinyML model deployed on the ESP32 to perform
on-device health classification. Models such as SVM, Random Forest, or compact deep-learning architectures
(1D CNN, LSTM) are quantized and optimized to fit within microcontroller memory constraints. TinyML
frameworks such as TensorFlow Lite for Microcontrollers allow real-time inference with extremely low
computational overhead [14]. The model evaluates incoming features to identify abnormal heart rate patterns,
sudden drops in SpO-, or rapid temperature spikes. In certain configurations, sliding-window analysis is used
to detect emerging trends or predict potential anomalies.

Finally, in the Alerting & Visualization phase, the system communicates actionable feedback to users and
caregivers. When the model detects an abnormal or risky physiological condition, the wearable triggers on-
device alerts such as vibration or beeping and simultaneously sends notifications through a mobile app. The
data is also uploaded to a cloud dashboard for long-term monitoring, enabling visualization of real-time
graphs, historical patterns, and anomaly logs. This integrated feedback mechanism ensures fast response and
supports continuous remote health supervision.
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Detailed ML Model

TinyNN Model Architecture

The TinyNN-based anomaly detection model is developed to support real-time inference on a resource-
constrained wearable device using a highly compact neural network optimized through 8-bit post-training
quantization, a method widely adopted in TinyML systems as highlighted by Warden and Situnayake [1]. This
model architecture aligns with recent research trends emphasizing efficient, low-power, on-device intelligence
for embedded biomedical applications, particularly in wearable health systems where cloud dependence must
be minimized for latency and privacy reasons [2].

The model operates on ten carefully engineered input features extracted from physiological signals. These
include heart-rate characteristics such as mean, variance, and peak-to-peak intervals; SpO--related indicators
such as signal stability and mean saturation; and temperature-based features like running average and rate of
change. All features are normalized to ensure numerical stability and faster training convergence. The choice
of these features allows the system to capture both short-term variations and long-term physiological trends
essential for accurate anomaly detection.

The TinyNN architecture consists of two lightweight hidden layers intentionally designed for microcontroller
deployment. The first hidden layer contains 16 neurons with ReLU activation, enabling the model to learn
non-linear physiological relationships without excessive computational cost. The second hidden layer includes
8 ReLU neurons, reducing dimensionality while preserving key discriminative patterns necessary for
classification. The output layer uses a two-neuron Softmax function to distinguish between Normal and
Abnormal physiological states, providing interpretable probability-based decisions.

Training is performed using the Adam optimizer with categorical cross-entropy loss. A batch size of 32 and
50 epochs ensure a balance between computational feasibility and robust convergence. The dataset is divided
into 70% training, 15% validation, and 15% testing. To improve generalization, data augmentation such as
Gaussian noise addition and slight signal scaling is applied. After training, the model undergoes 8-bit integer
quantization following techniques established in efficient neural network compression research [3], resulting
in a compact ~35 KB model capable of inference in under 50 ms.

This efficient architecture enables deployment on edge devices such as ESP32, STM32, or Arduino Nano 33
BLE Sense, ensuring continuous real-time anomaly detection with minimal memory footprint and power
consumption—making it well-suited for wearable 10T health-monitoring applications.

The mathematical foundations of the proposed TinyML-based health monitoring system rely on
preprocessing, feature normalization, signal smoothing, and probabilistic classification functions to ensure
accurate anomaly detection on embedded hardware. To standardize all sensor-derived inputs, each feature is
normalized using z-score normalization, given by

where xrepresents the raw feature value, uis the mean of the feature, and ais the standard deviation. This
transformation ensures that all features contribute proportionally during training, improving convergence
stability and preventing dominance of any high-magnitude physiological signal.

To suppress motion artifacts and high-frequency noise from PPG and temperature signals, a moving average
filter with window length Nis applied. The filtered output is computed as
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x[n —kj

where x[n]is the raw input at time sample n, and y[n]is the smoothed signal. This causal window-based
smoothing is computationally lightweight, making it highly suitable for real-time wearable systems.

The final classification layer of the TinyNN uses the Softmax activation function to convert logits into
interpretable probability scores for the classes Normal and Abnormal. The Softmax output is expressed as

eZi
0(z); = 7

2

where z;represents the logit for class i, and the denominator ensures that all class probabilities sum to one.
This enables clear decision-making based on the most probable physiological state.

The system also relies on other core equations commonly used in TinyML training. The Categorical Cross-
Entropy Loss, used during the learning process, is defined as

C
L==>" ylog®)
i=1

where y;is the true label and y;is the predicted probability for class i. Hidden layers use the ReLU activation,
expressed as

ReLU(x) = max(0,x)

which helps introduce non-linearity while remaining computationally efficient for microcontrollers.
For model evaluation, the system uses the standard accuracy metric defined by

Correct Predictions

A =
couracy Total Samples

which quantifies classification performance during testing.

Since physiological analysis is involved, one additional useful mathematical feature commonly used in
anomaly detection is the Root Mean Square of Successive Differences (RMSSD) for heart-rate variability
(HRV). It is computed as

N-1
1
RMSSD = mZ (RR;4, — RR;)?
1=

where RR;represents the interval between successive heartbeats. RMSSD is an important indicator of
autonomic nervous system activity and can improve the robustness of anomaly detection.
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Block-Wise Description of the Health Monitoring System

The Sensor Module forms the foundation of the wearable health-monitoring system, integrating both optical
and thermal measurement components for multi-parameter physiological tracking. The MAX30102 optical
sensor is used for continuous heart rate and SpO: measurement and operates on the principle of
Photoplethysmography (PPG), where red and infrared (IR) light is emitted into the skin, and the reflected
intensity varies according to pulsatile blood volume changes in the microvascular tissue. These fluctuations
help extract heart rate by detecting systolic peaks, while the ratio of red and IR absorption supports SpO-
estimation. The MAX30102 includes features such as ambient light cancellation and programmable sampling
rates, making it well suited for low-power wearable systems [5]. Complementing this, the DS18B20 digital
temperature sensor offers accurate body-temperature monitoring using a 1-Wire interface and 9-12 bit digital
resolution. Its calibrated digital output reduces noise susceptibility and eliminates the need for analog front-
end circuitry, ensuring stable long-duration physiological measurement

The Processing and Machine Learning Module, driven by the ESP32 microcontroller, acts as the
computational engine of the system. The ESP32’s dual-core Tensilica processor, combined with built-in Wi-
Fi and Bluetooth, provides both adequate processing capability and wireless communication support for 10T-
enabled TinyML applications. Using TensorFlow Lite for Microcontrollers (TFLM), compact neural network
models of approximately 35 KB can be executed efficiently on the device, enabling real-time anomaly
detection without relying on cloud computing. The ESP32 performs preprocessing operations such as noise
suppression using a moving average filter and extracts key time-domain features before feeding them into a
TinyNN model. This architecture aligns with recent advancements in low-power embedded ML, where
quantized neural networks can provide fast and reliable inference on microcontrollers [6].

The Communication and loT Dashboard Module enables seamless wireless data transmission for remote
monitoring. The ESP32 communicates with cloud platforms through lightweight protocols such as MQTT or
HTTP/REST, allowing integration with dashboards like ThingSpeak or custom web applications. The loT
interface visualizes real-time physiological parameters—including heart rate, SpO., and temperature—
alongside trend graphs and PPG waveform plots. It also stores long-term data to support health tracking and
automated analysis. When the neural network detects abnormal physiological patterns, alert notifications are
generated and forwarded through the cloud platform, enabling caregivers or users to respond quickly. Such
cloud-connected monitoring frameworks have been widely adopted in remote healthcare applications due to
their scalability and accessibility [7].

The Output and User Feedback Module enhances the usability of the wearable by providing immediate on-
device feedback. This module may include a compact OLED display to present live physiological parameters
directly to the user and can incorporate a buzzer or vibration motor to deliver real-time alerts during abnormal
events. This is especially valuable when internet connectivity is limited, ensuring that urgent feedback is
delivered even without cloud access. The inclusion of local feedback mechanisms improves overall system
reliability and makes the wearable more practical for continuous real-world usage.

Challenges and Future Directions

Developing a TinyML-based wearable health monitoring system presents several practical challenges. Sensor
noise and motion artifacts remain significant hurdles, as PPG signals are highly sensitive to hand movement,
ambient light interference, and inconsistent skin contact. These factors can degrade measurement accuracy
and necessitate robust preprocessing techniques
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Another major constraint is the limited computational and memory capacity of microcontrollers such as the
ESP32, which restricts the complexity of ML models and demands aggressive optimization, quantization, and
pruning techniques. Power management is also critical, since continuous sensing, Bluetooth communication,
and on-device inference collectively increase energy consumption, impacting battery life in wearable
conditions. Environmental variations such as temperature changes, sensor misalignment, sweat, and user-
specific physiological differences further complicate reliable data acquisition. Additionally, collecting large,
diverse, and high-quality biomedical datasets suitable for training ML models is difficult, limiting
generalization across user populations. Network connectivity issues in remote areas may also interrupt cloud
communication, causing delays or loss of real-time updates.

Despite these challenges, several promising advancements can enhance future system performance. More
efficient lightweight architectures such as pruned CNNs, Micro-LSTMs, or Tiny-Attention models can
significantly improve anomaly detection while remaining within resource limits. Hybrid edge—cloud
frameworks have the potential to combine on-device inference for immediate decision making with cloud-
based analytics for long-term medical insights. Incorporating additional sensing modalities—such as IMU for
motion tracking, ECG for electrical cardiac activity, or GSR for stress detection—can support multi-sensor
fusion and improve the robustness of predictions. Personalized and adaptive ML models that dynamically
adjust to a user’s unique physiological baseline can further enhance accuracy. Battery life can be extended by
implementing low-power BLE modes, aggressive duty cycling strategies, dynamic clock scaling, and
advanced model compression. Ultimately, integrating the system with telemedicine platforms, hospital EHRs,
and clinical workflows could transform the device into a comprehensive solution for real-time, remote, and
continuous healthcare monitoring.

Conclusion

In conclusion, the TinyML-based loT wearable health monitoring system demonstrates a compact, efficient,
and intelligent approach to real-time physiological tracking. By combining the MAX30102 PPG sensor,
DS18B20 temperature sensor, and an ESP32 running a quantized neural network, the system accurately
classifies normal and abnormal health states while maintaining low power consumption. The inclusion of
preprocessing, statistical feature extraction, and on-device inference enables fast and reliable performance
without relying heavily on cloud resources. Although constraints such as noise, limited hardware capacity,
and environmental variability present challenges, the project establishes a strong foundation for future
expansion. With further improvements in model optimization, multi-sensor integration, and smart energy
management, this system has the potential to evolve into a scalable, medical-grade platform capable of
supporting long-term health monitoring and enabling proactive, personalized healthcare.
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