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ABSTRACT 

This paper presents an IoT-based wearable health monitoring system integrated with TinyML for real-time 

physiological data analysis. The device continuously measures heart rate, body temperature, and SpO₂ levels 

using low-cost biomedical sensors. A lightweight machine learning model is deployed on an ESP32 

microcontroller to detect abnormal health patterns locally without cloud computation. Sensor data is 

simultaneously transferred to a mobile dashboard via Wi-Fi for visualization and alerts. The proposed system 

offers fast response, improved privacy, and low power consumption by performing inference on the edge. 

Experimental results demonstrate that the TinyML model accurately identifies abnormal readings with higher 

efficiency compared to conventional threshold-based systems. 

Keywords: TinyML, IoT, Wearable Health Monitoring, ESP32, MAX30102, Anomaly Detection, Edge 

Computing, Real-Time Systems. 

INTRODUCTION 

Wearable health-monitoring systems have emerged as a crucial pillar in modern biomedical engineering, 

enabling continuous, non-invasive tracking of vital physiological parameters. With the rising demand for early 

detection of cardiac and respiratory abnormalities, compact sensing technologies combined with intelligent 

algorithms are becoming central to next-generation healthcare solutions. Traditional medical monitoring 

devices often rely on bulky hardware or require clinical supervision, creating gaps in accessibility and real-

time response. In contrast, wearable sensor-based systems offer portability, continuous measurement, and 

immediate feedback, making them suitable for remote health assessment and preventive diagnosis [1]. 

Advancements in machine learning, particularly Tiny Machine Learning (TinyML), have enabled the 

deployment of lightweight neural networks directly on low-power microcontrollers. This eliminates the 

dependence on cloud servers and reduces inference latency while preserving user privacy. TinyML allows 

efficient on-device classification of biomedical signals such as heart rate, blood oxygen saturation (SpO₂), and 
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skin temperature, enabling real-time anomaly detection on edge devices [2]. Such edge-intelligent systems are 

highly beneficial for wearable platforms, where power constraints, memory limitations, and quick inference 

requirements are critical. 

In parallel, modern photoplethysmography (PPG)-based sensors like the MAX30102 have improved the 

accuracy of optical heart rate and SpO₂ estimation. PPG technology is widely adopted in clinical and consumer 

wearables due to its simplicity, reliability, and ability to extract multiple physiological markers from light–

tissue interaction signals [3]. When combined with additional biosensors and embedded machine-learning 

capabilities, a robust and holistic health-monitoring architecture can be developed. 

This paper presents an IoT- and TinyML-enabled wearable device capable of real-time monitoring and 

classification of vital parameters such as HR, SpO₂, and body temperature. By integrating low-power sensors, 

the ESP32 microcontroller, and a quantized neural network model, the proposed system performs on-device 

anomaly detection while simultaneously transmitting processed data to a cloud dashboard for extended 

monitoring. The result is a scalable, energy-efficient, and cost-effective health-monitoring solution suitable 

for personal healthcare, elderly care, and remote medical applications. 

LITERATURE REVIEW  

Recent literature indicates a rapid transition from traditional cloud-centric IoT analytics toward on-device 

TinyML inference for real-time healthcare applications. Warden and Situnayake introduced the core concepts 

of TinyML, demonstrating how neural network models can be compressed and deployed on low-power 

microcontrollers without requiring continuous cloud connectivity [4]. Building on these foundations, Banerjee 

presented several embedded machine-learning applications—including fall detection and human activity 

recognition—that run entirely on microcontrollers, further validating the feasibility of TinyML techniques for 

biomedical signal processing [5]. 

Kumar et al. examined cloud-based health analytics and emphasized the challenges associated with remote 

computation, including communication latency, dependency on stable internet connections, and concerns over 

patient data privacy [6]. These limitations motivated a shift toward edge intelligence, where processing occurs 

directly on the device. 

Recent works have focused on multi-sensor fusion and the integration of lightweight deep learning 

architectures such as MobileNet derivatives, model pruning, and compressed convolutional networks to 

improve performance on wearable platforms. Advances in deep learning theory have also enabled more 

efficient architectures that can be adapted for microcontroller-level deployment [7]. Furthermore, Pal et al. 

developed edge-AI frameworks for biomedical signal monitoring, demonstrating the effectiveness of on-

device classification for health anomaly detection [8]. 

The present work builds upon these advancements by integrating the MAX30102 optical sensor with 

temperature sensing and performing TinyML-based anomaly detection directly on the ESP32. This multi-

parameter assessment approach enhances reliability, reduces latency, and minimizes dependence on cloud 

servers, making it highly suitable for continuous wearable health monitoring. 
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               Table 1: Comparison of Health Monitoring Systems: Technology, Sensors, and Anomaly Detection  
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SYSTEM DESIGN 

The wearable system consists of multiple biomedical sensors connected to an ESP32 microcontroller running 

TinyML.  

Block Diagram 

 

                                                      Fig1: Wireless Health Monitoring System 
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Flowchart 

 

Fig 2: Flowchart of a TinyML-based Health Monitoring system 

Circuit Diagram 

 

 

 

 

 

 

Fig 3: circuit schematic 
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Graphs and Performance Charts 

                                                    

 

 

 

 

 

 

 

 

Fig 4: Heart rate over time (simulated) 

fig 5:Body temperature over Time 
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fig 6: Model Accuracy Comparison 

Table 2: Detailed Comparison Tables 

Parameter Traditional 

Cloud IoT 

TinyML 

Wearable 

Metric Remarks 

Latency 1–3 s <150 ms Speed Significant 

reduction in 

response time 

Privacy Low (raw data to 

cloud) 

High (on-device 

inference) 

Security Improved user 

privacy 

Power 

Consumption 

High Low Battery Longer operation 

on battery 

Data Usage High Low Bandwidth Reduced 

bandwidth and 

cost 

Cost Moderate Low Economics Affordable 

hardware 
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METHODOLOGY 

The proposed system follows a structured multi-stage pipeline designed to achieve accurate real-time health 

monitoring and anomaly detection. The methodology consists of five major phases: Data Acquisition, 

Preprocessing, Feature Extraction, Model Inference, and Alerting & Visualization. Each phase contributes to 

improving signal quality, extracting meaningful physiological indicators, and ensuring reliable real-time 

predictions on a resource-constrained wearable device. 

In the first phase, Data Acquisition, physiological parameters such as heart rate, SpO₂, body temperature, and 

body motion are continuously captured using the MAX30102 PPG sensor, DS18B20 temperature sensor, and 

an optional IMU/accelerometer module. These raw signals are collected by the ESP32 microcontroller via 

high-efficiency wireless interfaces such as Bluetooth Low Energy (BLE) or Wi-Fi. Sampling rates are 

optimized to achieve a balance between low power consumption and sufficient temporal resolution required 

for accurate physiological monitoring. 

The second phase, Preprocessing, focuses on improving signal quality and removing distortions commonly 

present in wearable biomedical signals. Techniques such as moving average filtering, Savitzky–Golay 

smoothing, and low-pass filtering are applied to mitigate high-frequency noise. Motion artifacts resulting from 

hand movements or sensor displacement are reduced using adaptive thresholding or wavelet-based denoising. 

Normalization is performed to bring all features to a uniform scale, preventing bias during model inference. 

Biomedical signal conditioning and error detection methods used here are widely adopted in modern health-

monitoring systems [13]. 

During the third phase, Feature Extraction, meaningful parameters are computed from the preprocessed signals 

to represent the user’s physiological state accurately. For heart rate monitoring, time-domain features such as 

mean, variance, peak-to-peak intervals, and pulse shape characteristics (rise time, fall time) are extracted. 

Heart Rate Variability (HRV) indicators — including RMSSD, SDNN, and pNN50 — provide deeper insights 

into autonomic nervous system activity. SpO₂ processing involves calculating AC/DC ratios, red–IR signal 

correlations, and waveform stability checks. Temperature-based features, such as drift trends and rate of 

change, help identify abnormal thermal patterns or fever onset. 

The fourth phase, Model Inference, employs a lightweight TinyML model deployed on the ESP32 to perform 

on-device health classification. Models such as SVM, Random Forest, or compact deep-learning architectures 

(1D CNN, LSTM) are quantized and optimized to fit within microcontroller memory constraints. TinyML 

frameworks such as TensorFlow Lite for Microcontrollers allow real-time inference with extremely low 

computational overhead [14]. The model evaluates incoming features to identify abnormal heart rate patterns, 

sudden drops in SpO₂, or rapid temperature spikes. In certain configurations, sliding-window analysis is used 

to detect emerging trends or predict potential anomalies. 

Finally, in the Alerting & Visualization phase, the system communicates actionable feedback to users and 

caregivers. When the model detects an abnormal or risky physiological condition, the wearable triggers on-

device alerts such as vibration or beeping and simultaneously sends notifications through a mobile app. The 

data is also uploaded to a cloud dashboard for long-term monitoring, enabling visualization of real-time 

graphs, historical patterns, and anomaly logs. This integrated feedback mechanism ensures fast response and 

supports continuous remote health supervision.  
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Detailed ML Model  

TinyNN Model Architecture  

The TinyNN-based anomaly detection model is developed to support real-time inference on a resource-

constrained wearable device using a highly compact neural network optimized through 8-bit post-training 

quantization, a method widely adopted in TinyML systems as highlighted by Warden and Situnayake [1]. This 

model architecture aligns with recent research trends emphasizing efficient, low-power, on-device intelligence 

for embedded biomedical applications, particularly in wearable health systems where cloud dependence must 

be minimized for latency and privacy reasons [2]. 

The model operates on ten carefully engineered input features extracted from physiological signals. These 

include heart-rate characteristics such as mean, variance, and peak-to-peak intervals; SpO₂-related indicators 

such as signal stability and mean saturation; and temperature-based features like running average and rate of 

change. All features are normalized to ensure numerical stability and faster training convergence. The choice 

of these features allows the system to capture both short-term variations and long-term physiological trends 

essential for accurate anomaly detection. 

The TinyNN architecture consists of two lightweight hidden layers intentionally designed for microcontroller 

deployment. The first hidden layer contains 16 neurons with ReLU activation, enabling the model to learn 

non-linear physiological relationships without excessive computational cost. The second hidden layer includes 

8 ReLU neurons, reducing dimensionality while preserving key discriminative patterns necessary for 

classification. The output layer uses a two-neuron Softmax function to distinguish between Normal and 

Abnormal physiological states, providing interpretable probability-based decisions. 

Training is performed using the Adam optimizer with categorical cross-entropy loss. A batch size of 32 and 

50 epochs ensure a balance between computational feasibility and robust convergence. The dataset is divided 

into 70% training, 15% validation, and 15% testing. To improve generalization, data augmentation such as 

Gaussian noise addition and slight signal scaling is applied. After training, the model undergoes 8-bit integer 

quantization following techniques established in efficient neural network compression research [3], resulting 

in a compact ~35 KB model capable of inference in under 50 ms. 

This efficient architecture enables deployment on edge devices such as ESP32, STM32, or Arduino Nano 33 

BLE Sense, ensuring continuous real-time anomaly detection with minimal memory footprint and power 

consumption—making it well-suited for wearable IoT health-monitoring applications. 

The mathematical foundations of the proposed TinyML-based health monitoring system rely on 

preprocessing, feature normalization, signal smoothing, and probabilistic classification functions to ensure 

accurate anomaly detection on embedded hardware. To standardize all sensor-derived inputs, each feature is 

normalized using z-score normalization, given by 

𝑧 =
𝑥 − 𝜇

𝜎
 

where 𝑥represents the raw feature value, 𝜇is the mean of the feature, and 𝜎is the standard deviation. This 

transformation ensures that all features contribute proportionally during training, improving convergence 

stability and preventing dominance of any high-magnitude physiological signal. 

To suppress motion artifacts and high-frequency noise from PPG and temperature signals, a moving average 

filter with window length 𝑁is applied. The filtered output is computed as 
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𝑦[𝑛] =
1

𝑁
∑

𝑁−1

𝑘=0

𝑥[𝑛 − 𝑘] 

where 𝑥[𝑛]is the raw input at time sample 𝑛, and 𝑦[𝑛]is the smoothed signal. This causal window-based 

smoothing is computationally lightweight, making it highly suitable for real-time wearable systems. 

The final classification layer of the TinyNN uses the Softmax activation function to convert logits into 

interpretable probability scores for the classes Normal and Abnormal. The Softmax output is expressed as 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑𝑗 𝑒𝑧𝑗
 

where 𝑧𝑖represents the logit for class 𝑖, and the denominator ensures that all class probabilities sum to one. 

This enables clear decision-making based on the most probable physiological state. 

The system also relies on other core equations commonly used in TinyML training. The Categorical Cross-

Entropy Loss, used during the learning process, is defined as 

𝐿 = −∑

𝐶

𝑖=1

𝑦𝑖𝑙𝑜𝑔⁡(𝑦̂𝑖) 

where 𝑦𝑖is the true label and 𝑦̂𝑖is the predicted probability for class 𝑖. Hidden layers use the ReLU activation, 

expressed as 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥⁡(0, 𝑥) 

which helps introduce non-linearity while remaining computationally efficient for microcontrollers. 

For model evaluation, the system uses the standard accuracy metric defined by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡⁡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

which quantifies classification performance during testing. 

Since physiological analysis is involved, one additional useful mathematical feature commonly used in 

anomaly detection is the Root Mean Square of Successive Differences (RMSSD) for heart-rate variability 

(HRV). It is computed as 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁 − 1
∑

𝑁−1

𝑖=1

(𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2 

where 𝑅𝑅𝑖represents the interval between successive heartbeats. RMSSD is an important indicator of 

autonomic nervous system activity and can improve the robustness of anomaly detection.  
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Block-Wise Description of the Health Monitoring System 

The Sensor Module forms the foundation of the wearable health-monitoring system, integrating both optical 

and thermal measurement components for multi-parameter physiological tracking. The MAX30102 optical 

sensor is used for continuous heart rate and SpO₂ measurement and operates on the principle of 

Photoplethysmography (PPG), where red and infrared (IR) light is emitted into the skin, and the reflected 

intensity varies according to pulsatile blood volume changes in the microvascular tissue. These fluctuations 

help extract heart rate by detecting systolic peaks, while the ratio of red and IR absorption supports SpO₂ 

estimation. The MAX30102 includes features such as ambient light cancellation and programmable sampling 

rates, making it well suited for low-power wearable systems [5]. Complementing this, the DS18B20 digital 

temperature sensor offers accurate body-temperature monitoring using a 1-Wire interface and 9–12 bit digital 

resolution. Its calibrated digital output reduces noise susceptibility and eliminates the need for analog front-

end circuitry, ensuring stable long-duration physiological measurement 

The Processing and Machine Learning Module, driven by the ESP32 microcontroller, acts as the 

computational engine of the system. The ESP32’s dual-core Tensilica processor, combined with built-in Wi-

Fi and Bluetooth, provides both adequate processing capability and wireless communication support for IoT-

enabled TinyML applications. Using TensorFlow Lite for Microcontrollers (TFLM), compact neural network 

models of approximately 35 KB can be executed efficiently on the device, enabling real-time anomaly 

detection without relying on cloud computing. The ESP32 performs preprocessing operations such as noise 

suppression using a moving average filter and extracts key time-domain features before feeding them into a 

TinyNN model. This architecture aligns with recent advancements in low-power embedded ML, where 

quantized neural networks can provide fast and reliable inference on microcontrollers [6]. 

The Communication and IoT Dashboard Module enables seamless wireless data transmission for remote 

monitoring. The ESP32 communicates with cloud platforms through lightweight protocols such as MQTT or 

HTTP/REST, allowing integration with dashboards like ThingSpeak or custom web applications. The IoT 

interface visualizes real-time physiological parameters—including heart rate, SpO₂, and temperature—

alongside trend graphs and PPG waveform plots. It also stores long-term data to support health tracking and 

automated analysis. When the neural network detects abnormal physiological patterns, alert notifications are 

generated and forwarded through the cloud platform, enabling caregivers or users to respond quickly. Such 

cloud-connected monitoring frameworks have been widely adopted in remote healthcare applications due to 

their scalability and accessibility [7]. 

The Output and User Feedback Module enhances the usability of the wearable by providing immediate on-

device feedback. This module may include a compact OLED display to present live physiological parameters 

directly to the user and can incorporate a buzzer or vibration motor to deliver real-time alerts during abnormal 

events. This is especially valuable when internet connectivity is limited, ensuring that urgent feedback is 

delivered even without cloud access. The inclusion of local feedback mechanisms improves overall system 

reliability and makes the wearable more practical for continuous real-world usage. 

Challenges and Future Directions 

 Developing a TinyML-based wearable health monitoring system presents several practical challenges. Sensor 

noise and motion artifacts remain significant hurdles, as PPG signals are highly sensitive to hand movement, 

ambient light interference, and inconsistent skin contact. These factors can degrade measurement accuracy 

and necessitate robust preprocessing techniques 
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Another major constraint is the limited computational and memory capacity of microcontrollers such as the 

ESP32, which restricts the complexity of ML models and demands aggressive optimization, quantization, and 

pruning techniques. Power management is also critical, since continuous sensing, Bluetooth communication, 

and on-device inference collectively increase energy consumption, impacting battery life in wearable 

conditions. Environmental variations such as temperature changes, sensor misalignment, sweat, and user-

specific physiological differences further complicate reliable data acquisition. Additionally, collecting large, 

diverse, and high-quality biomedical datasets suitable for training ML models is difficult, limiting 

generalization across user populations. Network connectivity issues in remote areas may also interrupt cloud 

communication, causing delays or loss of real-time updates. 

Despite these challenges, several promising advancements can enhance future system performance. More 

efficient lightweight architectures such as pruned CNNs, Micro-LSTMs, or Tiny-Attention models can 

significantly improve anomaly detection while remaining within resource limits. Hybrid edge–cloud 

frameworks have the potential to combine on-device inference for immediate decision making with cloud-

based analytics for long-term medical insights. Incorporating additional sensing modalities—such as IMU for 

motion tracking, ECG for electrical cardiac activity, or GSR for stress detection—can support multi-sensor 

fusion and improve the robustness of predictions. Personalized and adaptive ML models that dynamically 

adjust to a user’s unique physiological baseline can further enhance accuracy. Battery life can be extended by 

implementing low-power BLE modes, aggressive duty cycling strategies, dynamic clock scaling, and 

advanced model compression. Ultimately, integrating the system with telemedicine platforms, hospital EHRs, 

and clinical workflows could transform the device into a comprehensive solution for real-time, remote, and 

continuous healthcare monitoring. 

Conclusion  

In conclusion, the TinyML-based IoT wearable health monitoring system demonstrates a compact, efficient, 

and intelligent approach to real-time physiological tracking. By combining the MAX30102 PPG sensor, 

DS18B20 temperature sensor, and an ESP32 running a quantized neural network, the system accurately 

classifies normal and abnormal health states while maintaining low power consumption. The inclusion of 

preprocessing, statistical feature extraction, and on-device inference enables fast and reliable performance 

without relying heavily on cloud resources. Although constraints such as noise, limited hardware capacity, 

and environmental variability present challenges, the project establishes a strong foundation for future 

expansion. With further improvements in model optimization, multi-sensor integration, and smart energy 

management, this system has the potential to evolve into a scalable, medical-grade platform capable of 

supporting long-term health monitoring and enabling proactive, personalized healthcare. 
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