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ABSTRACT

Cancer continues to be a significant international health issue, which demands the invention of new methods for early detection,
precise diagnoses, and personalized treatments. Artificial intelligence (Al) has rapidly become a groundbreaking component in
the modern era of oncology, offering sophisticated tools across the range of cancer care. In this review, we performed a
systematic survey of the current status of Al technologies used for cancer diagnoses and therapeutic approaches. We discuss Al-
facilitated imaging diagnostics using a range of modalities such as computed tomography, magnetic resonance imaging, positron
emission tomography, ultrasound, and digital pathology, highlighting the growing role of deep learning in detecting early- stage
cancers. We also explore applications of Al in genomics and biomarker discovery, liquid biopsies, and non-invasive diagnoses. In
therapeutic interventions, Al- based clinical decision support systems, individualized treatment planning, and Al- facilitated drug
discovery are transforming precision cancer therapies. The review also evaluates the effects of Al on radiation therapy, robotic
surgery, and patient management; including survival predictions, remote monitoring, and Al- facilitated clinical trials. Finally, we
discuss important challenges such as data privacy, interpretability, and regulatory issues, and recommend future directions that
involve the use of federated learning, synthetic biology, and quantum- boosted Al. This review highlights the groundbreaking
potential of Al to revolutionize cancer care by making diagnostics, treatments, and patient management more precise, efficient,
and personalized.

Keywords: Cancer, Artificial intelligence (Al), Machine learning (ML), Cancer diagnosis, Deep learning (DL)

Graphical Abstract: This graphical abstract schematically illustrates the progressive role of artificial
intelligence in the cancer treatment continuum.
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1. INTRODUCTION

Cancer, an illness that can affect people from all walks of life, is an intricate worldwide health concern that continues to require
attention. Cancer is a disease that affects people regardless of age and causes suffering all around the world. Cancer is the second
most prevalent cause of mortality worldwide, accounting for one in six deaths in 2020, according to the World Health
Organization. Through a gradual accumulation of biological and therapeutic knowledge which accelerated with the development
of molecular-cell biology and genetics in the second half of the twentieth century, modern medicine altered that perspective.
Together with more-recent technological developments, this progress has made it possible to comprehend the disease in ways that
were never possible before. The term "cancer" now encompasses hundreds of different kinds of diseases with similar basic
characteristics. Beyond figuring out a particular cancer type’s genetic fingerprint and molecular composition, we now know how
crucial the systemic and local tumor environment is to the disease’s progression and presentation. In recent years, interactions
between the immune system and the immunological tumor micro environment (TME) has particularly garnered notice.

A normal cell, responds to the signals given by the body either to grow, divide or to die as a natural process. When a varied
lifestyle impacts and alters the genetic environment, the said natural process of the cell is disturbed. This change results in
unintended actions of the cell like ignoring the signals of the body to stop dividing or to die, to grow in the absence of signals,
tricking the immune system, to invade other parts of the body, etc. This process of multiple mutations (changes) in the cell may
lead to cancer cells. These abnormal cells grow and divide in the tissue in which they originated, resulting in a mass of cells called
a tumor. This tumor may even spread to other parts of the body. One in six people are dying with cancer as per the statistics.
Blood tests, biopsy, and imaging techniques help diagnose cancer. A non-invasive way to diagnose and monitor several clinical
conditions is through medical imaging. Artificial intelligence (Al) in medical imaging helps screening large amounts of data and
reduces the pressure on radiologists.

Artificial intelligence (Al) is a technology that involves the use of algorithms and mathematical models to analyze and process
large and complex information. Diagnosis, patient response analysis of the disease before and after treatment, etc. are some of the
clinical applications of Al. Al in medical imaging helps improve diagnostic accuracy and efficiency. According to statistics, at
least 5% of out patients experience diagnostic error that leads to death in about 10% of these. Due to the rise in the amount of data
that is being processed, it takes longer time for both clinical and laboratory analysis. Al helps to analyze data in a short duration
of time, which helps faster diagnosis and treatment. Al replaces the routine detection process of radiologists and frees up their
time to consult more patients. Various Al algorithms are used to identify the organ, its disease, and severity. Continuous
monitoring of a patient’s medical condition from time to time helps effective therapy. However, few factors contribute to the slow
adoption of Al in healthcare. They require strict regulatory requirements that hinder implementation of new technologies. The
new algorithms require heavy clinical trials for reasonable accuracy and efficiency. Features that Al can extract from a medical
image include the size, shape, and texture of the organ or tissue. It can recognize abnormal ties in growth, dimension, and
thickness to detect diseases and tumors. Due to a varied patient population, developing an Al model with salient features is a
challenging task. The main objectives of the review include application of Al in medical imaging for cancer diagnosis and
staging. Assessing the radiological images of any disease is a whole visual task. Al strides to present a qualitative interpretation of
cancer diagnosis as analyzed by the radiologists. Not only Al is used to identify the locations of cancer but also to classify and
grade the stages of cancer. Al also interprets images of various modalities to interpret the clinical workflow of detection, constant
observation, and therapeutic suggestions. To understand the complex structure of cancer cells, Al models are trained based on
feature extraction. Modeling an Al can be done using machine learning and deep learning algorithms. Machine learning
algorithms self-train themselves to interpret and analyze the given data through various patterns. Deep learning techniques, also a
part of machine learning, interpret the data from the perspective of the human brain. Though Al helps easy cancer interpretation,
it also faces major challenges which are legal and ethical. Availability of large datasets that are not standardized as it requires
experienced medical professionals to validate the results. The data that is given to the ML (Machine Learning) and DL (Deep
Learning) models doesn't directly give the output but needs feature extraction, processing the data, and validation. Highly training
the models, also leads to inaccurate results. Anticipating the reasons for the failure of the model is also hard to communicate.

Figure -1: Al implementation in cancer according to the statistics
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Various Types of Cancer

Cancers originating from various cells or tissues may be of many types. This section elaborates some of the existing and most
prevalent cancers. Figure 2a, b give details of statistics of different cancers based on gender. The graphs show the incidence of
most prevalent cancers in men and women. From the graph it is evident that certain cancers like prostate and lung have higher
incidence rates in men. And also breast cancer accounts for the highest percentage amongst women out of all other cancers.
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Prostate Cancer

The most prominent life-threatening cancer in males is prostate cancer. As per the statistics of WHO (World Health
Organisation), 2020, new cases of prostate cancer are about 1,414,259. It constitutes about 7.8% of all cancers. One in forty men
dies because of this. It is the fifth leading disease of cancer worldwide. More than 90% of patients, who are detected with early
diagnosis, respond to medication and get fully recovered. The diagnostic procedures available to identify the cancer are biopsy,
Tran’s rectal ultrasound, CT (Computed Tomography), and MRI (Magnetic Resonance Imaging). MRI is likely to be used to
define the progress of cancer. Another way to diagnose is the analysis of his to pathological images of the prostate tissue. These
images are graded according to the Gleason factor based on the appearance of the cells in a microscopic view. However, risk
factor analysis based on the Gleason factor was found to be ineffective due to the slow growth of cancer. The International
Society of Urological Pathology 2014 revised the terminology of differentiating five grade groups based on the Gleason factor.
Bladder Cancer

As per the statistics of WHO, 2020, bladder cancer constitutes 3.2% of all the cancers. The bladder is a hollow organ responsible
for the storage of urine in the abdomen. The muscular walls of the bladder are responsible for expanding to store urine and
squeeze to throw urine out of the body through the urethra. Common bladder cancer occurs in Kidneys or in the bladder itself as
the urothelial cells responsible for this cancer are found in the inner layers of the bladder and also in the uterus in females,
connecting the bladder and the kidneys. It starts from the innermost layers of the bladder which is at an early stage and when
diagnosed is mostly treatable. This cancer grows into deeper layers (advanced stage) which are difficult to treat. If left untreated it
spreads to outer layers and also nearby lymph nodes and other organs. Recurrence of the cancer is also possible even after proper
treatment. Hence cases of this cancer need to be diagnosed regularly. Depending on the type of cells affected, bladder cancers are
classified as urothelial carcinoma, squamous cell carcinoma, and adenocarcinoma. Based on the layers affected, the cancer is also
distinguished as non-muscular invasive, muscular invasive and metastatic bladder cancers. The imaging technique preferred to
detect bladder cancer is MRI. Performing MRI is considered to be a challenging task due to, variations in bladder size, shape, and
intensity in homogeneity of the urine in the bladder also causes shading effect.

Lung Cancer

The air when inhaled through the nose enters the lungs from the windpipe. In the lungs the air is carried through pipes called
bronchioles and finally into air sacs called alveoli. Multiple divisions of cells on the inner lines of bronchioles are responsible for
lung cancer or lung carcinoma. In some cases, it is caused by the cancerous cells that spread from other organs to the lungs. Lung
cancer ranks as the second most prevalent cancer all over the world and occur pies 12.2% out of all the cancers. Statistics of
WHO reports 2,206,771 new cases of lung cancer in 2020. Lung cancer mostly occurs in subjects addicted to smoking. Lung
cancer is differentiated as small cell lung cancer (SCLC) and non small cell lung cancer (NSCLC). Almost 80% of lung cancer
cases fall under NSCLC and 10-15% under SCLC. Based on the type of cells and their area of existence, NSCLC cancer is
grouped as squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Lung cancer is differentiated into four stages
based on the size and outspread of the cancerous cells. Chest X-ray, CT scan, PET-CT (Positron Emission Tomography /
Computed Tomography), and biopsy are the diagnosing techniques used to find lung cancer.

Liver Cancer

An important primary organ of the body responsible for digestion and storage of nutrients, filtering unwanted materials, etc. is the
liver. Because of its salient functions, cancer that affects the liver is also considered fatal cancer. Liver cancer makes up 5% of
overall cancer statistics. Mostly cancer in the liver occurs because of the cells in the liver or the cells in the bile duct. Common
liver cancers include hepatocellular carcinoma, intrahepatic cancer (10—20% of the cases) and angiosarcoma (rare case of cancer).
Similar to other cancers, liver cancer can also be metastatic liver cancer i.e., spread from other organs. However, it is not a very
common type of cancer and it stands sixth in place as per the statistics. The imaging modalities used to identify liver cancer is
MRI, CT, and ultrasound.

Breast Cancer

The most common cancer in women is breast cancer. The first most prominent of all cancers is also breast cancer. According to
the statistics of WHO, in 2020, 2,261,419 new cases were registered, contributing to 12.5% of all the new cases of cancer. If the
cells in the breast grow uncontrollably, it results in breast cancer. The cancer starts in the ducts and lobules of the breast. It is
differentiated as invasive ductalcarcinoma and invasive lobular carcinoma. Breast cancer spreads to other parts of the body and is
said to be metastasized. Some of the breast screening methods include mammography, Clinical Breast Examination, Breast Self-
Examination, breast ultrasound, MRI, Digital Breast Tomography and breast biopsy.

Thyroid Cancer

The thyroid is a gland that is responsible for regulating the metabolism of the body. Thyroid cancer develops in the thyroid gland
and is mostly curable. It is the fifth most significant cancer in women contributing to about 5.1% of the cancers affecting women.
Follicular cells and parafollicular(C cells) cells are the main types of cells present in the thyroid gland. The growth of these cells
causes nodules that can be malignant or benign. The main types of cancers in the thyroid are differentiated as thyroid cancer,
medullary thyroid cancer and an plastic thyroid cancer. Diagnosis of the tumor or cancer is initially confirmed using ultrasound.
The Ti-RADS (Thyroid Imaging Reporting and Data System) score confirms the risk of malignancy. Ultrasound, MRI and PET
are some of the imaging modalities to diagnose thyroid cancer.

Kidney Cancer

The primary role of kidneys is to detoxify our blood. Kidney cancer is the most likely cancer in adults above the age of 60. It is a
rare cancer (contributing to 2.4% of all cancers) and is curable at its early stages of diagnosis. The uncontrolled growth of the
cells at different parts of the kidneys leads to various types of kidney cancer. Kidney cancers are classified as renal cell
carcinoma, transitional cell cancer, renal sarcoma, and Wilms tumor. Wilms tumor is mostly observed in children. CT, MR,
ultrasound, and renal mass biopsy are the different ways to diagnose kidney cancer.

Endometrial Cancer

The sixth most affected feminine tumor is endometrial cancer, also referred to as uterine cancer. It contributes to about 6.9% of all
cancers affecting women. This occurs in the endometrium layer of the uterus (where fetal growth occurs). Symptoms of this
cancer help in early diagnosis, and removing the uterus is the best way to eliminate the cancer. An average of 2.8% of women is
diagnosed with this cancer. CT scan, MRI scan, transvaginal, and ultrasound are some of the imaging techniques used to identify
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cancer. The cancer is diagnosed as type 1 and type 2 endometrial cancers and is also graded as grade 1, grade 2, and grade 3.
Grades 1 and 2 come under type 1 and grade 3 under type 2.

Brain Tumor

A brain tumor is an abnormal mass of tissue where cells grow abnormally unchecked by mechanisms that control normal cells.
There are more than 308,102 new cases in the year 2020, as per WHO statistics. Tumors may start in the brain as primary tumors
or they may spread from elsewhere like muscles, blood vessels, and connective tissues to the brain called secondary tumors. The
primary tumors originate from glioma cells, which support nerve cells. WHO graded brain tumors from grade | to grade IV. CT
and MRI are imaging techniques that help determine brain tumors.

Colorectal Cancer

The colon is a major part of the large intestine that helps the digestion of food by shattering large molecules of nutrients into those
that can be absorbed by the body. The rectum is part of the digestive system that connects the colon to the anus. Colorectal cancer
is the second most common cancer in women (9.9% of all women cancers) and third most com mon cancer in men (11.4% of all
cancers in men). Colorectal cancer occurs when the colon and rectum grow uncontrolled lably. This is also named polyp. This
cancer occurs both in men and women. Early detection and removal of polyp in the colon helps prevent the spreading of cancer to
other issues. Colorectal cancers are graded from 0 to IV based on the spread of cancer. It is classified as adenocarcinoma and non-
adenocarcinoma. Colonoscopy and MRI are the most implemented screening modalities for colorectal cancer.

Pancreatic Cancer

Pancreatic cancer originates from the organ, pancreas. Pancreatic cancer is always detected at an advanced stage, challenging to
treat with the best therapy. It relates to about 2.7% of all cancers. This cancer originates mainly in the ducts of the pancreas. Most
of the time, pancreatic cancer is genetic. There are two types of pancreatic cancers. One is exocrine pancreatic cancer, the most
common type of cancer and the other is endocrine pancreatic cancer, the rarest type of cancer. CT, MRI, endoscopic ultrasound,
and PET (Positron Emission Tomography) are some of the imaging modalities that are used to detect pancreatic cancer.

Cervical Cancer

Cervical cancer is the fourth most significant cancer (6.9% of all cancers) in women. Cervical cancer originates in the cervix, the
lower part of the uterus, which connects to the vagina. The most common and highly treatable cancer is cervical cancer. Cervical
cancer is staged from 0 to IV. Cervical cancer is a very fast growing cancer. Based on the cells of its origin it is classified as
squamous cell, adenocarcinoma, adenosquamous carcinoma, small cell carcinoma, and neu roendocrine tumors. PET-CT,
cystoscopy, etc. are some of the diagnostic imaging tools used to identify cervical cancer.

Introduction to Al in the Field of Medicine

The integration of artificial intelligence (Al) in medicine marks a significant shift toward more accurate, personal ized, and
efficient healthcare practices, especially in cancer care.

1 Al refers to machines that perform tasks traditionally requiring human intelligence, such as understanding language,
recognizing patterns, solving problems, learning from data, and improving performance over time. Key Al techniques include
machine learning (ML) and deep learning (DL). ML uses algorithms to identify patterns and make predictions, while DL, a subset
of ML, employs multi-layered neural networks inspired by the human brain, such as convolution neural networks (CNNs). Other
essential ML techniques include support vector machines (SVMs), decision trees, and K-means clustering algorithms.

In healthcare, Al is applied in diagnostic algorithms; treatment recommendation systems, patient monitoring, and care
management tools.Al can process and analyze vast amounts of healthcare data more efficiently than humans, leading to improved
diagnostic accuracy, therapeutic interventions, and patient outcomes.

Al-Powered Precision Medicine: Advancing Personalized Treatment

Precision medicine categorizes patients in clinical trials utilizing personal data. The objective is to enhance efficacy and safety
outcomes, ultimately increasing the likelihood of clinical success and drug approval. This approach acknowledges that individuals
have unique genetic, molecular, and clinical characteristics influencing their treatment responses. Precision medicine aims to
enhance treatment outcomes and minimize side effects by tailoring therapies to these individual differences.

Al is vital in precision medicine, as seen in the genomic profiling of tumors that assists in making targeted therapy decisions for
patients with breast or lung cancer.Al-driven tools can also facilitate the rapid and accurate interpretation of genomic data,
providing real-time recommendations for personalized treatments.Al has been instrumental in genetic analysis by identifying
transcription start sites, modeling regulatory elements, and accurately predicting gene expression from genotype data.

These developments are crucial in understanding the relationship between genomic variations, disease presentation, treatment
efficacy, and prognosis. In medulloblastoma, Al analysis of numerous exomes has enabled the administration of precise and
optimal treatments for pediatric patients. Al-driven precision medicine holds the potential to change cancer care by offering more
accurate diagnoses, predicting disease risks before symptoms manifest, and designing tailored treatment plans that prioritize
safety and efficiency. Integrating Al into clinical practice is expected to become more widespread as research advances, leading to
even more significant advancements in cancer care. Figure 1 illustrates the process of precision oncology.

The Historical Background of Al in Cancer Research

The exploration of Al in cancer research began in the 1970s, with early attempts at computer-aided diagnosis and the
development of expert systems. These early Al programs primarily concentrated on diagnosing blood infections, which ultimately
laid the groundwork for future medical applications.22 over the years, advancements in computational power, complex
algorithms, and the availability of extensive biomedical datasets, have propelled Al from essential pattern recognition to
sophisticated ML and DL. These models can identify subtle diagnostic signals in imaging, genomic, and clinical data,
significantly advancing cancer diagnosis, prognosis, and treatment planning.

This study aims to review recent advancements and provide future directions for Al-driven oncology, focusing on 4 major fields:
medical imaging, pathology, surgery, and drug discovery.
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2. LITERATURE REVIEW

The Impact of Artificial Intelligence on Cancer Diagnosis and Treatment: A Review by Niki Najar Najafi , Maryam
Azimzadeh Irani and Helia Hajihassani

The complexity of cancer has long challenged the medical community, driving the need for improved early detection and
treatment. Artificial intelligence (Al) has profoundly impacted oncology research in recent decades, resulting in innovative
diagnostic and therapeutic approaches. This review synthesizes the critical applications of Al in oncology, focusing on 4 key
areas: medical imaging, digital pathology, robotic surgery, and drug discovery. We highlight the role of Al in cancer diagnosis
and treatment by reviewing key studies and machine learning methods, and we address the field’s current technical and ethical
challenges. Al models have significantly enhanced the accuracy of medical imaging by efficiently detecting lesions and disease
sites, leading to earlier and more precise diagnoses. In digital pathology, Al tools aid in risk prediction and facilitate the
examination of extensive tissue sample sets for patterns and markers, simplifying the pathologists’ tasks. Al-powered robotic
surgery provides different levels of automation, leading to precise and minimally invasive procedures that not only improve
surgical outcomes but also lower readmission rates, hospital stays, and infection risks. Moreover, Al expedites the process of
discovering cancer therapies by identifying potential lead compounds, predicting drug reactions, and repurposing current
medications. In the past decade, several Al-developed drugs have successfully entered clinical trials. These significant
advancements underscore the expanding role of Al in shaping the future of cancer diagnosis and treatment. Although
standardization, transparency, and equitable implementation must be addressed, Al brings hope for more personalized and
effective therapies.

Al technologies in oncology are poised to bring significant advancements, including predictive analytics, targeted delivery, and
image analysis. As shown in Table 5, Al-driven tools have demonstrated considerable potential in enhancing diagnostic accuracy,
streamlining workflows, and personalizing treatment plans. However, several challenges must be addressed to ensure their
reliable implementation in clinical settings.

Present Al models often rely on limited datasets and have primarily undergone retrospective trials for testing. To establish their
reliability, these models require further multicenter validation in prospective studies. Although patient outcome assessments are
critical for validation in areas like robotic-assisted surgery, there has been a notable lack of research focusing on these
assessments, particularly in cancer-related contexts.

The development of Al models must prioritize the use of diverse and representative datasets. For instance, many convolutional
neural networks (CNNs) that demonstrate high accuracy in detecting skin lesions are trained on data sets where only 5% to 10%
of the participants are Black. This results in a model accuracy for Black individuals that is roughly half that for White individuals,
highlighting the critical need for diverse datasets to ensure equitable health outcomes.

The integration of large and diverse datasets is crucial to addressing complex challenges in healthcare. This necessitates
collaboration between technology companies and healthcare providers. However, the reliance on medical and personal
information underscores the need for robust frameworks to enable secure and anonymous data sharing. One promising approach
is federated learning, which processes data locally at each institution. By sharing only model updates instead of raw data, this
method effectively preserves privacy and enhances security.

Future statistical studies should optimize workflows to minimize bias, including determining the necessary number of
annotations or samples required for robust model training. Additionally, adherence to established guidelines for model reporting,
such as the STARD-AI or TRIPOD-AI frameworks, is crucial for ensuring reproducibility and comparability across studies.

A significant concern in Al-driven medicine is the’ “black box” nature of many systems. This term refers to models that lack
transparency in their input features and algorithms, rendering them difficult to interpret. Consequently, some clinicians hesitate to
utilize Al tools, while others may blindly follow Al recommendations without fully understanding the underlying logic,
potentially leading to inappropriate treatments. For instance, an experimental study involving 28 pathol ogy experts found that
integrating Al improved overall diagnostic accuracy. However, it also resulted in a 7% bias rate, where initially accurate
diagnoses were inaccurately altered following Al intervention. Notably, time pressure further amplified the reliance on incorrect
Al outputs, underscoring significant risks associated with deskilling and over-dependence on technology.

A recent advancement in addressing the black box problem is the emergence of Explainable Al (XAIl). This approach aims to
make complex Al logic more interpretable for humans. By employing techniques such as data visualization and model
simplification, XAl fosters greater trust and reproducibility in Al models. These developments are critical for enhancing
transparency in Al systems, ensuring that users can understand and rely on Al-driven decisions.

Finally, the financial implications of integrating Al into medicine raise significant concerns. For example, hospital wide Al
implementation can exceed $36 billion annually, creating challenges for resource-limited settings. Expenses of Al adoption may
encompass expensive infrastructure, such as high-performance computing and cloud storage, maintenance, and cyber security
measures to protect sensitive genomic and imaging data, clinician training to interpret Al outputs and the cost of rigorous multi-
center trials. Consequently, comprehensive cost-benefit analyses and pilot studies are urgently needed to substantiate the case for
the widespread adoption of Al in healthcare.

Cancer Detection Using Artificial Intelligence: A Paradigm in Early Diagnosis by Gayathri Bulusu, K. E. Ch Vidyasagar,
Malini Mudigonda, Manob Jyoti Saikia

Cancer detection has long been a continuous key performer in oncological research. The revolution of artificial intelligence (Al)
and its application in the field of cancer turned out to be more promising in the recent years. This paper provides a detailed review
of the various aspects of Al in different cancers and their staging. The role of Al in interpreting and process ing the imaging data,
its accuracy and sensitivity to detect the tumors is examined. The images obtained through imaging modalities like MRI, CT,
ultrasound etc. are considered in this review. Further the review highlights the implementation of Al algorithms in 12 types of
cancers like breast cancer, prostate cancer, lung cancer etc. as discussed in the recent onco logical studies. The review served to
summarize the challenges involved with Al application. It revealed the efficacy of Al in detecting the region, size, and grade of
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cancer. While CT and ultrasound proved to be the ideal imaging modalities for cancer detection, MRI was helpful for cancer
staging. The review bestows a roadmap to fully utilize the potential of Al in early cancer detection and staging to enhance patient
survival.

The number of cancers, imaging techniques and Al algorithms implemented for early cancer detection were presented in this
systematic review. The potential of Al algorithms in radiological assessment provides consistency in analysis and reduces error of
interpretation. The review visualized the potential of Al, to analyze huge data rapidly and effectively, competing with human
experts. This ability of Al helps assists radiologists for better diagnosis and treatment.

The review was conducted on twelve types of cancers, which are very common. The study revealed the efficacy of Al in
detecting the region, size, and stages of cancer. However, choosing correct modality helps Al provide information regarding
anatomy and functioning of the organ. An overview of the imaging modalities from the study indicates that, CT and ultrasound
are most often used for diagnosis of cancer. MRI and other modalities provide further information of the disease like grading,
extent of spread and treatment response. In some cases, PET and PET-CT are also used to obtain the morphological features of
the tumor. X-Rays, as mammography were implemented only in the research based on breast cancer. Al was also implemented on
images obtained from pathology, colposcopy and biopsy. Finally, direct X-Rays and PET-CT were rarely used for oncological
studies.

It was observed that, Al was highly implemented in breast cancer, brain tumors, lung cancer and thyroid cancer detection. A
prominent number of Al algorithms, both ML and DL, were implemented in these areas. A moderate level of research as carried
out with Al in prostate, liver, kidney and pancreatic cancers. Al in endometrial, cervical and colo rectal cancers was carried out on
biopsy, pathological and colposcopy images. A very few MRI and CT images of these cancers were observed. Finally, the
research of Al in bladder cancer was rarely found. Only little research was carried out with DL algorithms.

The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide by Amin Zadeh Shirazi, , Morteza
Tofighi, Alireza Gharavi, and Guillermo A. Gomez

Advancements in Al have notably changed cancer research, improving patient care by enhancing detection, survival prediction,
and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology,
explaining key concepts and algorithms (like SVM, Naive Bayes, and CNN) in a clear, accessible manner. It aims to make Al
advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various
cancer types, thereby underlining AI’s potential to better patient outcomes. Moreover, we present a tabular summary of the most
significant advances from the literature, offering a time-saving resource for readers to grasp each study’s main contributions. The
remark able benefits of Al-powered algorithms in cancer care underscore their potential for advancing cancer research and
clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of
Al in cancer care.

Rapid progress in Al has profoundly impacted cancer research and treatment, leading to enhanced patient outcomes and
healthcare efficiency. Incorporating Al algorithms in cancer diagnosis, prognosis, and treatment response prediction has
facilitated early detection, customized intervention approaches, and improved overall patient care. In this comprehensive guide,
we have explored the crucial role of Al in cancer research, with a specific focus on the applications of machine learning, soft
computing, and deep learning algorithms. We have offered an in-depth over view of various algorithms’ functionality and
particular applications, supported by pertinent figures and a tabular summary of key findings from each study with the lowest
complexity and high suitability for a better understanding of all readers with different backgrounds. The impressive advantages of
Al-driven algorithms in cancer care emphasize their potential to reshape cancer research and clinical practice. This review serves
as an invaluable resource for researchers, clinicians, and healthcare industry stakeholders, offering insights into AI’s present state
and future potential in cancer care.

Future research in Al for cancer care could explore: 1. developing advanced Al algorithms to enhance the precision and efficiency
of cancer care. 2. Utilizing multi-modal data (eg, genomic, proteomic, imaging, and clinical reports) to gain a comprehensive
understanding of cancer, focusing on AI’s ability to process and analyze such diverse information. 3. Creating personalized
treatment plans using Al to consider individual patient characteristics, aiming for treatments that are both effective and have
minimal side effects. 4. Leveraging Al in drug discovery to quicken the identification of drug targets and optimize drug designs,
potentially speeding up the creation of new cancer treatments. 5. Addressing ethical and regulatory challenges associated with Al
in cancer care, such as data privacy and algorithmic fairness, to ensure Al’s responsible use.

Exploring the role of Al in Chemotherapy development, cancer diagnosis, and treatment: present achievements and
future outlook By Bassam Abdul Rasool Hassan, Ali Haider Mohammed, Souheil Hallit, Diana Malaeb and Hassan Hosseini

This review aims to explore the role of Al in forecasting outcomes related to chemotherapy development, cancer diagnosis, and
treatment response, synthesizing current advancements and identifying critical gaps in the field.

A comprehensive literature search was conducted across PubMed, Embase, Web of Science, and Cochrane databases up to 2023.
Keywords included “Artificial Intelligence (Al),” “Machine Learning (ML),” and “Deep Learning (DL)” combined with
“chemotherapy development,” “cancer diagnosis,” and “cancer treatment.” Articles published within the last four years and
written in English were included. The Prediction Model Risk of Bias Assessment tool was utilized to assess the risk of bias in the
selected studies.

This review underscores the substantial impact of Al, including ML and DL, on cancer diagnosis, chemotherapy innovation, and
treatment response for both solid and hematological tumors. Evidence from recent studies highlights AI’s potential to reduce
cancer-related mortality by optimizing diagnostic accuracy, personalizing treatment plans, and improving therapeutic outcomes.
Future research should focus on addressing challenges in clinical implementation, ethical considerations, and scalability to
enhance Al’s integration into oncology care.

Artificial intelligence (Al), including its subsets of machine learning (ML) and deep learning (DL), has demonstrated significant
potential in transforming chemotherapy development, cancer diagnosis, and treatment. This scoping review highlights AI’s role in
improving diagnostic accuracy, optimizing treatment plans, and predicting patient responses, ultimately contributing to reduced
cancer-related mortality. However, despite these advancements, challenges remain in integrating Al solutions into clinical
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practice. Future research should focus on addressing critical gaps such as the incorporation of pharma co genomic and multi-
omics data into Al algorithms, which could enhance the precision of personalized medicine. Longitudinal studies are needed to
validate the clinical utility of Al-driven predictions and interventions across diverse populations. Furthermore, developing
scalable, cost-effective Al systems tailored for resource-limited settings can ensure equitable access to advanced cancer care
globally.

3. RESEARCH METHODOLOGY
3.1 The role of artificial intelligence (Al) in modern oncology

Al refers to the wide area of computer science where algorithms or machines are designed to mimic human intellect. In machine
learning (ML), a subfield of Al, computers carry out predetermined tasks and use statistical techniques to find hidden patterns in
data and enhance model performance. Unlike standard ML, the ML subfield of deep learning (DL) does not rely on human-
defined heuristics to complete a task. Instead, DL uses the capability of multilayered neural networks to eliminate manual feature
extraction labor and allow for the self-discovery of features that humans are unaware of or would not have expected. The major
Al concepts are listed in Table 1. Electronic health record (HER) clinical notes, diagnostic and procedural reports, and other
unstructured data are trans formed into discrete data elements using natural language processing (NLP) , an adjacent
specialization within Al that aims to bridge human language with machine interpretation . Recent developments in the field have
significantly improved the technology’s efficacy, allowing it to be used to automate the gathering and recording of patient
outcomes, progression-free survival (PFS), and other tumor features associated with cancer. The construction of intricate
databases and tumor registries may be facilitated by such automation, which recursively boosts the strength of generated models.
NLP has been used to match clinical trials and detect possible adverse medication reactions, either alone or in conjunction with
ML/DL approaches. Furthermore, the use of Al for clinical decision-making is thought to improve the likelihood of early disease
diagnosis and predictions using high-resolution imaging and new generation sequencing (NGS) methods. Creating sizable
datasets and employing specialized bio informatics tools have also resulted in the introduction of novel biomarkers for diagnosing
cancer, the development of novel tailored medications, and the delivery of potential treatment regimens.

Category Concept / Description & Relevance in Oncology
Model
Machine Supervised Learn from labeled data to make predictions. Used for classifying
Learning Learning tumors,predicting survival, etc
(ML) Unsupervised Discovers hidden patterns in unlabeled data; applied
Learning in clustering patients or tumor subtypes
Semi Combines a small amount of labeled data with a large unlabeled dataset,
supervised useful in medical imaging with limited annotations.
Learning
Reinforcement Learns by trial-and-error through feedback.
Learning Applied in treatment policy optimization
Feature The process of selecting or transforming variables to improve
Engineering ML performance. Crucial for structured EHR and omics data
Classical Support Vector Effective in high-dimensional spaces (e.g., gene expression data)
ML Machines for classification tasks
Models (SVM)
Random Ensemble of decision trees; robust against over fitting, used for
Forests (RF) biomarker prediction and classification
Logistic Common baseline model for binary classification
R egression in survival and risk prediction
(LR)
k-Nearest Instance-based learner; used in similarity-based drug repo
sitioning and subtype classification
Neighbors(k-NN)
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Deep Deep Neural Net Multilayered feedforward networks for structured data,
works (DNNs) widely used in survival prediction
Learning
(DL) Convolution Specialized for image data (CT, MRI, histopathology); extracts spatial hierarchies in
Neural features
Networks (CNNs)
Recurrent Neural Suited for sequential data (e.g., patient records);
N Networks models time-dependent health trajectories
(RNNs)
Long A type of RNN that captures long-range dependencies;
Short-Term applied in EHR and time-series prognosis
Memory (LSTM)
Gated Efficient RNN variant; used in longitudinal cancer data modeling
Recurrent
Units (GRUs)
R residual DL architecture with skip connections; enables deeper networks for accurate
Networks (ResNet) image-based classification. Exten sively used in digital pathology
Vision Transformer-based models adapted for image analysis; increasingly
Transformers used for WSI (whole-slide image) classification
(VIT)
LongNet A transformer variant enabling processing of very long sequences

(> 32 k tokens); suitable for high-resolution pathology slide and multi-modal data

U-Net A CNN architecture designed for biomedical image segmentation; heavily

used in tumor boundary and organ at-risk contouring

Efficient Optimized CNN with excellent performance at low computational cost;
Net used in real-time image analysis and mobile health apps
Graph Neural Models relational data; used for protein—protein interac tions, drug-target graphs,
Networks (GNNs) and patient similarity networks
Autoencoders Unsupervised models for data compression and denois ing; used in
(AEs) omics dimensionality reduction
Variational A probabilistic extension of AEs used for generative tasks
Autoencoders (e.g., molecule generation)
(VAES)
Generative Generate realistic synthetic data (e.g., histopathology images, molecules).
Adversarial Applied in data augmentation and simulation

Networks (GANS)

Adversarial Combines GAN and AE for structured representation learn ing.
Autoencoders Used in molecule and feature generation
(AAES)
Transformer Core architecture using self-attention; enables context aware modeling.
Transformers Used in NLP and multi-modal integration in oncology
A-nd BERT / Bio BERT / Pre-trained language models fine-tuned on biomedical texts. Applied to EHR,
Attention Clinical BERT radiology reports, and literature mining
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Models GPT / GPT-3/ Autoregressive transformers used for medical Q&A, sum marization, and
GPT-4 even synthetic data generation
T5/ Sequence -to- sequence transformers used in molecular- to text or
BioT5 image- to- report tasks
CLIP (Contrastive Joint vision—language model; maps images and text to a shared space.
Language- Applied in pathology image captioning and labeling
mage Pre training)
Learning Transfer Fine- tuning pre- trained models on domain- specific data.
Paradigms Learning Useful in small medical datasets
Federated Decentralized training across institutions without data sharing;
Learning supports data privacy in multi-center oncology studies
Self- supervised Learns from unlabeled data using pretext tasks. CHIEF and other
Learning models use this for pathology image feature extraction
Contrastive Learns representations by comparing similar/dissimilar pairs.
Learning Enhances embedding quality for histology and radiomics.
Multi-task Simultaneous learning of related tasks. Improves generalization
Learning in cancer subtype classification and prognosis
Evaluation AUROC Measures model’s ability to discriminate between classes;
Metrics critical in binary cancer detection tasks
Accuracy, Basic metrics used to assess model performance
Sensitivity,
Specificity
Precision, Recall, Balance false positives and negatives; important in
F1-score imbalanced cancer datasets
Kaplan—Meier, Used in survival models to evaluate time- to- event predictions
C- index
Confusion Summarizes classification outcomes; visual tool for error analysis
Matrix

Table 1: Key Al concepts and architectures relevant to cancer diagnostics and research

3.2 Importance of Al in enhancing cancer diagnostics and treatment

Numerous studies have suggested that screening can increase early cancer detection and decrease mortality (Fig. 1). However,

even in disease groups like breast cancer where screening programs are well-established, discussions about patient selection and

risk-benefit tradeoffs continue, and concerns have been raised regarding a perceived "one size fits all" approach that is
inconsistent with the goals of personalized medicine [46-48]. In the near future, Al algorithms may play a part in enhancing this

procedure since they can analyze enormous volumes of multimodal data to find signals that would otherwise be hard to spot.
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Al's Multifaceted Impact on Cancer Care

O Enhanced Diagnosis
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FIGURE-2: AD’s diverse roles in cancer care, including enhanced diagnosis, personalized treatment, clinical decision
support, biomarker discovery, and drug development each contributing to improved precision, speed, and outcomes in

oncology through data- driven innovations.
3.3 Objectives and scope of this review

In-depth review of AI’s role in modern cancer diagnostics, consolidating diverse cancer types and Al-facilitated diagnostic
approaches into a cohesive overview. Al in oncology enhances diagnosis, treatment, and patient management by increasing
precision, efficiency, and personalization. Leveraging ML, DL, and NLP, Al analyzes complex datasets—including pathology
reports, clinical records, genomic data, and medical images—to generate insights that support more accurate and timely clinical
decisions. Its goals include early detection, personalized treatment planning, and streamlined care delivery to improve patient
outcomes. This review spans research-driven Al innovations and clinical applications, incorporating stud ies, benchmark models,
commercial tools, and regula tory perspectives. It offers valuable insights for a wide audience, including oncologists, Al
researchers, informaticians, policymakers, and biomedical engineers. By framing Al as a bridge between predictive and precision
oncology, this review supports strategic decision-making and encourages research that translates Al’s theoretical promise into

real-world clinical impact.
3.4 Al in cancer diagnostics

Al is developing at an exponential rate. Clinical oncology research is now more focused on comprehending the intricate
biological architecture of cancer cell proliferation in order to decipher the molecular origins of cancer. In order to address the
current situation of rising cancer mortality rates worldwide, it has also concentrated on processing millions of pertinent cases in
big data and computational biology. Furthermore, the use of Al in clinical decision-making is thought to improve the like lihood
of early disease diagnoses and predictions using high-resolution imaging and NGS methods. By creating sizable datasets and
employing specialized bioinformatics tools, it may also result in introducing novel biomarkers for diagnosing cancer, developing

novel tailored medications, and delivering potential treatment regimens.
3.5 Imaging - based Al diagnostics

Al, which is based on computational models and bio informatics-based algorithms, presents medical imaging technology (MIT)
with significant opportunities for advancement. It can identify biological alterations and aberrant cellular growth in the body. In

addition to being crucial in radiology, Al-assisted MIT has had a significant influence on neuro radiography and medical
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resonance imaging. Numerous dynamic applications of Al exist, including picture interpretation and categorization, data
organization, information storage, information mining, and much more. Al is anticipated to greatly assist pathologists in

enhancing diagnostic specificity because of its broad application in biomedical imaging technology.

Assessing tumors using traditional radiographic imaging is primarily based on qualitative characteristics, such as tumor density,
enhancement patterns, intra-tumoral cellular and a cellular compositions (including blood, necrosis, and mineralization), tumor
margin regularity, anatomical relationships with surrounding tissues, and impacts on these structures. It is possible to quantify a
tumor’s size and shape using one- (1D), two- (2D), and 3-dimensional (3D) analyses. All of these qualitative phenotypic
descriptions are referred to as "semantic” traits. In contrast, a quickly developing area known as radiomics is making it possible to
digitally decode radiographic pictures into quantitative properties, such as size, shape, and textural pattern descriptors. The
automatic quantification of radiographic patterns in medical imaging data has significantly progressed in recent years due to
advancements in Al approaches. A subset of Al called DL is particularly promising since it automatically learns feature
representations from sample photos and was demonstrated to perform on par with or even better than humans in task-specific
applications. DL has shown relative robustness against noise in ground truth labels, among other things, even though it requires

enormous datasets for training.

In external-beam radiation therapy, to mographic imaging is vital for follow-up care, image guidance, and treatment planning. A
CT simulation is typically per formed before treatment to image the targeted body part. Using these images, the tumor and nearby
critical structures are identified to develop the optimal treatment plan. For tumors near the diaphragm (e.g., liver or lower lung
lobe), 4D CT scans may be used to track respiratory motion. MRI is often recommended for brain, paraspinal, head and neck,
prostate cancers, and extremity sarcomas due to its superior soft-tissue contrast. MRI scans are fused with CT for tumor
delineation and organ-at-risk contouring, or used alone in MRI-only simulations with synthesized CT for planning and dose
calculation. Unlike CT and MRI, PET reveals tumor metabolism and helps define dose-escalation volumes, especially in head and

neck cancers.

Al’s automated abilities such as precise tumor volume tracking over time, simultaneous monitoring of multiple lesions, linking
phenotypic nuances to genotypes, and predicting outcomes via comparisons with vast tumor databases—can enhance clinicians’
qualitative judgment. DL methods further improve generalizability across diseases and imaging types, reduce noise sensitivity and
errors, and may enable earlier treatments and significant clinical advances. While most studies remain preclinical, the evolution of
automated radiographic "radiomic™ markers may ultimately shift cancer diagnostics by identifying actionable tumor

abnormalities.

Today’s digital pathology faces three core challenges that must be addressed as digitization expands, and Al capabilities evolve,
these include:

(1) Improved efficiency, quality control, and image management in laboratory operations;

(2) Clinical decision support, where algorithms are used to identify areas of interest or make specific diagnoses; and

(3) Research and development, where new biomarkers, transcriptomics , and correlations between image characteristics and

prognostics have been discovered.

The application of Al for digital pathology predates the introduction of whole-slide images (WSIs). Previous research showed that
computer vision and Al methods can distinguish between diseases in pathology images. However, previously chosen regions of
interest (ROIs) made up the majority of those image datasets. Because pathologists must first choose the areas of interest, this
approach is extremely time-consuming and technically impractical to integrate into a laboratory’s clinical process. One major
obstacle in healthcare systems is the early-stage identification of cancer, mainly because early stages of cancer are modest and

frequently asymptomatic. Early cancer detection is essential for effective treatment and higher survival rates, but there are a
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number of reasons that make this process complex and challenging. This investigation explores the complexities of these
problems, including systemic, technological, and biological ones, and emphasizes how urgently diagnostic methodology

innovations are needed.

Alternative Al models such as Al Initiatives at the University of Pittsburgh assist pathologists in diagnosing prostate cancer, and
the University of Pittsburgh Medical Center (UPMC) has used Al technologies such as Galen Prostate™ from Ibex Medical
Analytics. In order to detect cancer and evaluate characteristics like Gleason grades,per neural invasion, and tumor sizing. Galen
Prostate uses DL algorithms that have been trained on large datasets, including rare prostatic cancers. North well Health created
INav, an Al-powered diagnostic tool, to improve pancreatic cancer early diagnosis and treatment [74]. iNav detects patients with
radiographic signs of pancreatic cancer through radiology data analysis, enabling timely care. It uses an NLP classifier trained to
recognize phrases in radiology reports linked to pancreatic cancer, scanning for language patterns and keywords tied to masses or
lesions. When indicators appear, iNav flags them for further medical review. Given pancreatic cancer’s late detection and poor
prognosis, iNav improves early detection by proactively analyzing imaging. It cut the diagnosis-to-treatment time by 50%, tripled
biospecimen study participation, and increased referrals to multidisciplinary clinics, improving care and research opportunities.
An improved DL model called Dual-Domain Residual-based Optimization Network (DRONE) was developed. DRONE reduces
artifacts and boosts image quality by integrating image and data domains (sinogram). It has three modules: the embedding module
expands sparse sinogram data via an encoder-decoder network, enriching inputs; the refinement module improves initial images
using a deep CNN; and the awareness module ensures consistency between sinogram and reconstructed images through
regularization, integrating outputs from the other two modules. DRONE addresses sparse-view CT challenges by combining
outputs across modules. Its performance evaluated using PSNR, SSIM, and RMSE surpassed conventional and other DL methods
in reconstruction accuracy, feature retention, and edge clarity. The integration of Al and ML into cancer diagnostics has markedly
improved accuracy, speed, and treatment personalization. Al excels at analyzing complex datasets, leading to more accurate
diagnoses and faster treatment initiation, which improves outcomes. It also supports personalized medicine by integrating genetic
and clinical data to tailor treatments. Developing Al/ML models for cancer detection involves key steps. Data collection requires
diverse, high-quality datasets, including imaging, genomics, and patient histories. Preprocessing ensures data consistency via
normalization, augmentation, and annotation. Model selection is task-specific CNNs for images, RNNs or LSTMs for sequential
data, and decision trees for classification. Models are trained on large datasets and validated regularly to enhance accuracy. CNNs
effectively analyze images like MRIs and mammograms; LSTMs and RNNs process sequential clinical data; decision trees and

RFs support diagnostic decision-making. These models have demonstrated strong performance in cancer detection.

FIGURE-3: Whole slide images from different cancer tissues are processed using diverse Al models to enable key
applications like cancer detection, sub typing, mutation and biomarker prediction, prognostic evaluation, and survival

forecasting, advancing precision oncology through deep learning insights.
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3.6 Al in treatment planning and decision support

The use of Al to resolve medical problems has long been hailed as a disruptive and near-future development. It has a lengthy
history that began in the 1970s when clinical decision support systems (CDSSs) needed human input to choose qualities for these
expert systems and supply rules for decision-tree approaches. CDSSs based on Al emerged with the technical assistance of big
data and ML. CDSSs assess drug efficacy, product accessibility, adverse reactions, patient financial status, and medical insurance
types by combining various medical records, literature, and clinical research data. They then offer tailored recommendations to
assist clinicians in optimizing treatment plans. AI’S uses have grown beyond everyday problem solving to include medical
professional domains like pathology diagnosis, image diagnosis, clinical treatment decision-making, prognosis analysis, and hew

drug screening.

CDSSs based on Al technology have not fully achieved human—computer interactions in clinical practice as image-aided
diagnosis systems because the ethics of applying Al as an emerging technology in clinical decision-making have not been
thoroughly established. The Chinese Society of Clinical Oncology-Artificial Intelligence (CSCO Al), Watson for Oncology
(WFO), and other organizations are now using and promoting CDSSs globally.

As the first commonly used CDSS in the field of cancer, WO progressively gained global recognition in the areas of
gynecological, lung, colon, rectal, breast, and stomach cancers. Medical personnel just need to enter a case’s structured data
according to the WFO system. The technology will produce extremely consistent evidence and the most conventional treatment

strategy for the particular situation in less than a minute.

Al-based CDSSs simulate human reasoning to support clinical decisions, using ML models like DL, SVMs, LR, and ANNs.
Built on structured medical data, they reduce errors, response times, and reliance on memory, enhancing safety, quality, and

treatment efficacy.

Different from WFO, the CSCO Al system was established under the CSCO platform using the CSCO data base and guidelines.
The CSCO Al system mainly builds different knowledge maps based on schemes in CSCO guidelines. When doctors search for
relevant information, it locates the knowledge map and outputs results according to key information. Similarly, it is also updated

in real time with guidelines to ensure the timeliness of the system.

Tempus is transforming precision oncology through Al and ML-powered individualized therapy recommendations. By integrating
imaging, clinical records, genomic data, and patient histories. Tempus applies ML and DL (e.g., CNNs) to clinical and genomic
data—including a 100,000-patient database to identify cancer drivers and predict treatment response. It supports personalized
therapy, though challenges like data quality, bias, and limited diversity remain [174]. Additionally, model interpretability is an

ongoing concern, as clinicians require transparent, actionable outputs to guide patient care decisions.

Flach et al. (2025), explored the integration of Paige Prostate Detect, an Al-assisted tool, into the clinical workflow for prostate
cancer (PC) diagnosis. The study aimed to evaluate how Al can improve diagnostic accuracy and efficiency during prostate
biopsies. Using deep learning models, including CNNs, Paige Prostate Detect analyzes biopsy slides to identify malignant regions

and assist pathologists in detecting areas needing further review.

The system was trained on thousands of annotated biopsy samples. Enabling it to assess Gleason scores and distinguish benign
from malignant tissues. Preliminary results suggest that Al support may enhance diagnostic speed and accuracy, particularly for
less experienced pathologists or challenging cases. However, concerns remain regarding data variability, model interpretability,
and the need for large, diverse datasets to ensure generalizability. Importantly, human oversight remains critical to confirm Al-
assisted diagnoses. Al in Cancer Treatment and Therapy Optimization
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Figure-4 : Al applications across cancer care workflows from treatment planning and drug recommendation to robotic
surgery and drug discovery.Al enhances decision support, enables personalized radiotherapy, assists in surgery, and

predicts drug efficacy and resistance, thereby improving precision, outcomes, and therapy development.
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4. CONCLUSION

Al is no longer a secondary adjunct in oncology—it is becoming an essential, intrinsic component in advancing cancer
therapeutics. By seamlessly integrating heterogeneous biomedical datasets into clinically actionable insights, Al is transforming
every stage of cancer care: detection, diagnosis, treatment, follow-up, and research. T his review underscores both the vast
promise and complexity of embedding Al into oncology, spanning imaging modalities (CT, MRI, PET, ultrasound),
histopathology, genomics, proteomics, and more. Al shifts clinical decision-making from subjective estimations to high-accuracy,
algorithmic diagnostics that often outperform conventional methods in speed, reproduc ibility, and precision. Beyond diagnosis,
Al enables personalized treatment planning, fine-tuned radiation dosing, enhanced robot-assisted surgeries, and discovery of
novel therapeutic targets via data-intensive drug development pipelines. On the patient management front, Al-powered wearable
and virtual assistants facilitate real-time remote monitoring, boost treatment adherence, and detect complications early. In clinical
research, Al optimizes study design, patient stratification, and recruitment through real-time eligibility checks. Yet despite these
advancements, challenges remain in achieving universal clinical adoption. Concerns about algorithm transparency,
reproducibility, and interpretability underscore the need to build trust among providers and patients. Regulatory frameworks for
Al in healthcare are still evolving, and comprehensive governance models ensuring safety, efficacy, and innovation are urgently
needed. Critical data-related challenges—bias, inequity, security, and interoperability—must be addressed, particularly as biased
training data risks exacerbating existing health disparities across demographics and regions. A multidisciplinary ecosystem—
uniting Al researchers, oncologists, ethicists, regulators, and patient advocates—is essential to create equitable, transparent, and
clinically valuable Al deployment standards. Medical education must evolve to equip future healthcare professionals with the
skills to responsibly apply Al in clinical practice. Looking forward, AI’s convergence with federated learning, edge computing,
digital twins, and quantum ML offers exciting potential for highly granular, scalable, and personalized cancer care.Emerging
synergies between Al, synthetic biology, and de novo immunotherapy design point toward truly individualized next-generation
treatments. Ultimately, deploying transparent, privacy-preserving, and ethics-focused Al models will foster trusted healthcare
systems. AI’s true potential lies not just in improving current practices but in reshaping oncology into a predictive, preventive,
participatory, and precision-driven discipline. With a human-centered approach and collaborative innovation, Al can usher in a
transformative era in cancer care—benefiting all patients through smarter data use, outcome-driven strategies, and inclusive

clinical impact.
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