JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ANTIBACTERIAL EFFECT OF EUPHORBIA HIRTA ON PROPIONIBACTERIUM ACNES **ISOLATED FROM ACNE PUS**

Jincy Prasad R. U. and K. Sukesh

(II PG Medical Microbiology Scholar, Saveetha University, Chennai and *Associate Professor in Microbiology, Malankara Catholic College Mariagiri, Kaliyikkavilai, India – 629153)

Abstract

Acne vulgaris is a chronic inflammatory condition of the pilosebaceous unit, frequently associated with Propionibacterium acnes (currently Cutibacterium acnes). Due to increasing antimicrobial resistance, medicinal plants such as Euphorbia hirta are gaining attention for their therapeutic potential. This study aimed to isolate *P. acnes* from acne pus samples and evaluate the antibacterial effect of *E. hirta* leaf extracts prepared using ethanol, methanol, and chloroform. Samples were cultured on Brain Heart Infusion Agar, followed by Gram staining and biochemical characterization. Phytochemical screening of E. hirta leaf extracts showed the presence of saponins, flavonoids, tannins, alkaloids, terpenoids, and carbohydrates. Antibacterial activity determined by the well diffusion method revealed that methanol extract exhibited the highest inhibition zone (37 mm), followed by ethanol extract (30 mm), whereas chloroform extract showed no activity. The findings suggest that E. hirta possesses significant antibacterial properties and may serve as a potential natural therapeutic agent for acne management.

Keywords: Acne vulgaris, *Propionibacterium acnes*, *Euphorbia hirta*, antibacterial activity, phytochemicals. I. INTRODUCTION

Acne vulgaris is one of the most common dermatological disorders worldwide and is characterized by inflammation of the pilosebaceous unit (Adityan et al., 2009). The primary clinical features include seborrhoea, comedones, papules, pustules, nodules, cysts, and scarring (Degitz et al., 2007). Although acne does not pose a threat to general health, it greatly impacts psychological well-being due to its visible nature (Aydemir, 2002; James et al., 2008). During adolescence, increased androgen production stimulates sebaceous glands to produce excess sebum, leading to follicular blockage and creating an anaerobic environment suitable for P. acnes growth (Yosipovitch et al., 2007; Meixner et al., 2008). Acne pustules contain a variety of microorganisms including P. acnes, Staphylococcus epidermidis, Kocuria varians, Acinetobacter lowffii, and others (Niyan Innam et al., 2015). These organisms contribute significantly to acne pathogenesis.

P. acnes is a gram-positive, anaerobic skin commensal that thrives on fatty acids in sebum, playing a major role in inflammatory acne. Its scientific classification places it under the genus Cutibacterium. Plants have been used in medicine since ancient times, and many modern drugs are derived from plant secondary metabolites (Maciel et al., 2002). One such plant is Euphorbia hirta, traditionally used for treating respiratory, gastrointestinal, dermatological, and infectious diseases (Lind et al., 1971; Akomas et al., 2015). It possesses antibacterial, antifungal, antiasthmatic, antimalarial, and anti-inflammatory properties (Ogbulie et al., 2007). Given its medicinal significance, this study aimed to examine the antibacterial effect of E. hirta leaf extract against P. acnes isolated from acne pus.

II. RESEARCH METHODOLOGY

Sample Collection

This study was conducted from August 2023 to February 2024 at Malankara Catholic College. Acne pus samples were obtained from individuals aged 18–23 years. Samples were collected using sterile swabs and streaked directly onto Brain Heart Infusion (BHI) Agar plates.

Gram Staining

Gram staining was performed following standard protocol. Smears were stained sequentially with crystal violet, iodine, alcohol, and safranin before microscopic observation.

Isolation and Preservation of *P. acnes*

BHI plates were incubated at 37°C for 48–72 hours. Small, circular, creamy, raised colonies indicative of *P. acnes* were sub-cultured and preserved in nutrient broth.

Biochemical Characterization

Biochemical tests such as Catalase test, Indole test, Nitrate reduction test, Sugar fermentation test, Methyl red test were carried out for the characterization of the bacterial isolate.

Collection of Euphorbia hirta

Fresh leaves were collected, washed thoroughly, and shade-dried for one week.

Preparation of Plant Extracts

Five grams of dried leaf powder were extracted using 50 ml each of methanol, ethanol, and chloroform via cold extraction. Extracts were filtered after one week and used for phytochemical and antibacterial assays.

Phytochemical Screening

Tests for the detection of saponins, flavonoids, steroids, tannins, alkaloids and carbohydrates were performed.

Antibacterial Activity

The antibacterial activity of E. hirta extracts against P. acnes was tested using the well as well as disc diffusion method.

III RESULTS AND DISCUSSION

Isolation of *P. acnes*

Colonies were small, circular, raised, and creamy off-white, consistent with *P. acnes* morphology.

Biochemical Results

All biochemical tests (catalase, indole, nitrate reduction, sugar fermentation, methyl red) were positive, confirming the organism as *P. acnes*.

Phytochemical Findings

Phytochemical screening indicated the presence of saponins in ethanol and methanol extracts, terpenoids in ethanol and chloroform extracts, tannins in methanol and chloroform extracts, alkaloids, flavonoids and carbohydrates all extracts were detected.

Antibacterial Activity

Methanol extract demonstrated the highest antibacterial activity (30 mm), followed by the Ethanol extract (30 mm) and No inhibition was produced by the Chloroform extract.

The bacterial profile of acne pus in this study aligns with earlier findings showing *P. acnes*, *Staphylococcus* epidermidis, and Micrococcus species as predominant pathogens (Hassanzadeh et al., 2008; Biatecka et al., 2005). The strong antibacterial activity exhibited by ethanol and methanol extracts of *E. hirta* corresponds with previous studies demonstrating the plant's antimicrobial potential (Rautela et al., 2020; Ogbulie et al., 2007). Methanol extract performed best, likely due to better extraction of phytochemicals such as flavonoids, tannins, and alkaloids. The lack of inhibition in the chloroform extract may be attributed to the absence of saponins and lower solubility of active compounds.

IV TABLES

Table 1. Biochemical Analysis of *P. acnes*

Test	Response	
Catalase	Positive	
Indole	Positive	
Nitrate	Positive	
Sugar Fermentation	Positive	
Methyl Red	Positive	

Table 3. Antibacterial Activity Against P. acnes

	Solvents		
Extract Volume	Ethanol	Methanol	Chloroform
50 μg	5 mm	25 mm	-
100 μg	23 mm	30 mm	-
150 μg	30 mm	37 mm	-

V REFERENCES

- 1. Adityan, B., Kumari, R. and Thappa, D.M. Scoring system in acne vulgaris. Indian Journal of Dermatology, Venereology and Leprology, 2009; **75(3)**: 323–326.
- 2. Akomas, S.C., Ijioma, S.N. and Emelike, C.U. Effect of Euphorbia hirta on haematological and biochemical indices in albino rats. Applied Journal of Hygiene, 2015; **4(1)**: 1–5.
- 3. Aydemir, E.H. Akne vulgaris etyopatojenez ve patolojisi. Çukurova Tıp Günleri, Adana, 2002.
- 4. Biatecka, A., Mak, M., Biedroń, R., Bobek, M., Kasprowicz, A. and Marcinkiewicz, J. Different proinflammatory and immunogenic potentials of Propionibacterium acnes and Staphylococcus epidermidis. Archives of Immunology and Therapy, 2005; 53: 79–85.
- 5. Degitz, K., Placzek, M., Borelli, C. and Plewig, G. Pathophysiology of acne. Journal of the German Society of Dermatology, 2007; 5: 316–323.
- 6. Hassanzadeh, P., Bahmani, M. and Mehrabani, D. Bacterial resistance to antibiotics in acne vulgaris: an in vitro study. Indian Journal of Dermatology, 2008; 53(3): 122–124.
- 7. James, W.D., Berger, T. and Elston, D.M. Andrew's Deri Hastalıkları. Aydemir, E.H. (Trans.). Nobel Tıp Kitabevi, İstanbul, 2008: 231–250.
- 8. Lind, E.M. and Tallantire, A.C. Some Common Flowering Plants of Uganda. Oxford University Press, Nairobi, 1971: p.182.
- 9. Maciel, M.A.M., Pinto, A.C., Veiga Jr, V.F., Grynberg, N.F. and Echevarria, A. Medicinal plants: the need for multidisciplinary scientific studies. Química Nova, 2002; 25(3): 429–438.
- 10. Meixner, D., Schneider, S., Krause, M. and Sterry, W. Acne inversa. Journal of the German Society of Dermatology, 2008; **6**: 189–196.
- 11. Niyan Innam Muhammed Yousif and Dabbagh, R.A. Isolation and identification of microorganisms in acne patients. Zanco Journal of Medical Sciences, 2015; 20: 1330–1336.
- 12. Ogbulie, J.N., Ogueke, C.C., Okoli, I.C. and Anyanwu, B.N. Antibacterial activities and toxicological potentials of crude ethanolic extracts of Euphorbia hirta. African Journal of Biotechnology, 2007; 6: 1544–1548.
- 13. Rautela, I., Joshi, P., Thapliyal, P., Pant, M., Dheer, P., Bisht, S., et al. Comparative GC-MS analysis of Euphorbia hirta and Euphorbia milli. Plant Archives, 2020; 20(2): 3515–3512.
- 14. Yosipovitch, G., Tang, M., Dawn, A.G., et al. Study of psychological stress, sebum production and acne vulgaris in adolescents. Acta Dermato-Venereologica, 2007; 87: 135–139.