ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Design & Manufacturing Prototype of Electromagnetic Breaking System

Prajwal Sahare¹, Mrunal Khandate², Saurbh Patil³, Manthan Raut⁴, Dr. Bharat Chede⁵ UG Student¹, UG Student², UG Student³, UG Student⁴, Professor & Project Guide⁵ 1,2,3,4,5Department of Mechanical Engineering, 1,2,3,4,5J D College Of Engineering & Management, Nagpur, India

Abstract: The automotive industry is currently undergoing a paradigm shift towards more sustainable and efficient technologies. Traditional braking systems, which rely heavily on mechanical friction to convert kinetic energy into heat, suffer from inherent limitations such as brake pad wear, thermal instability (brake fade), and the generation of particulate emissions. This research paper presents the design, fabrication, and experimental analysis of a prototype Electromagnetic Braking System (EMBS). The proposed system utilizes the principle of Eddy Current induction to achieve deceleration without physical contact between the stator and rotor. The prototype was constructed using a mild steel frame, a 12V DC drive motor, and a custom electromagnetic setup. Experimental results indicate that the system successfully reduces the stopping time of a rotating flywheel by approximately 85% compared to natural coasting. This study validates the feasibility of electromagnetic brakes as a frictionless, low-maintenance, and silent alternative for modern vehicular applications.

IndexTerms - Eddy Current, Lorentz Force, Electromagnetic Induction, Frictionless Braking, Automotive Safety.

I.INTRODUCTION

In modern automotive engineering, the braking system is arguably the most critical safety component. For decades, the industry has relied on friction-based systems (Drum and Disc brakes). While reliable, these systems operate by pressing a stationary pad against a rotating disc/drum. This physical contact leads to several unavoidable issues:

- 1. **Mechanical Wear:** Continuous friction necessitates the regular replacement of brake pads and rotors.
- 2. Thermal Failure: Under heavy braking loads (e.g., downhill descent), friction brakes can overheat, leading to a temporary loss of braking power known as "brake fade."
- 3. Environmental Impact: The abrasion of brake pads creates brake dust, a significant source of non-exhaust particulate pollution.

To overcome these challenges, this project explores the **Electromagnetic Braking System**. This technology eliminates physical contact by using magnetic fields to oppose the motion of the wheel. It offers the potential for near-zero maintenance, silent operation, and higher reliability. This paper details the engineering journey of designing a scaled-down prototype to demonstrate this phenomenon effectively.

II. THEORETICAL FRAMEWORK

The operation of the electromagnetic brake is governed by three fundamental concepts of physics:

- A. Faraday's Law of Induction Faraday's law states that whenever a conductor is placed in a varying magnetic field, an electromotive force (EMF) is induced. In our system, the magnetic field is stationary, but the conductor (brake disc) is rotating, creating a relative motion that induces voltage.
- B. Eddy Currents Because the brake disc is a solid piece of metal, the induced EMF causes electrons to swirl in closed loops within the material. These circulating currents are called "Eddy Currents."

C. Lenz's Law & Lorentz Force Lenz's Law states that the direction of the induced current will always oppose the change that caused it.

- The eddy currents generate their own magnetic field.
- This new field interacts with the electromagnet's field.
- This interaction creates a **Lorentz Force** (F) that acts in the opposite direction of the disc's rotation, creating a braking torque.

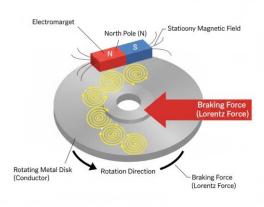


FIGURE 1: Eddy Current Braking Principle Diagram

III. SYSTEM DESIGN AND SPECIFICATIONS

The prototype was designed to be a robust test rig capable of simulating vehicle wheel rotation.

A. Mechanical Structure (Frame) To ensure stability and minimize vibrations during high-speed rotation, a custom frame was designed.

- Material: Mild Steel Square Bars.
- **Dimensions:** The base length is **729 mm** and the vertical height is **532 mm**.
- **Construction:** Arc welding was used to join the sections for maximum rigidity.

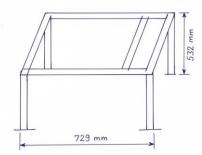
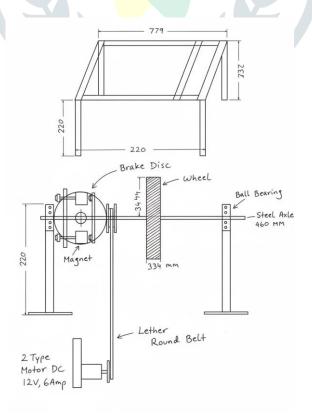


FIGURE 2: 2D Line Diagram of the Test Rig Frame

B. Rotational Components

- Axle: A 910 mm long solid steel shaft serves as the central axle.
- **Flywheel:** A **340 mm** diameter bicycle wheel (tyre setup) is used to provide rotational inertia (simulating the mass of a vehicle)
- Brake Disc: A 110 mm diameter metallic disc is mounted on the axle to interact with the magnet.
- Bearings: Two 6201 ball bearings are utilized to support the axle and ensure smooth, low-friction rotation.

C. Drive and Braking Unit


- Motor: A 12V, 60 RPM J-type DC Motor provides the driving torque.
- Transmission: Power is transmitted from the motor to the axle using an 80 mm pulley and a 5 mm round leather belt.
- **Electromagnet:** A 12V DC lifting magnet serves as the braking actuator.

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; pleased on talter them. You may not be culiarities. For example, the head margininthis template measures proportion at elymore than is customary. The is measurement and others are deliberate, using specifications that anticipate your paper as one part of the entire proceedings, and not as an independent document. Pleased on other vise any of the current designations.

IV. FABRICATION METHODOLOGY

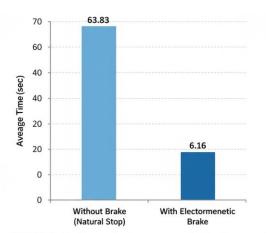
The fabrication process was carried out in the workshop following these steps:

- 1. **Frame Preparation:** The mild steel bars were cut to precise lengths (729mm horizontal, 532mm vertical). The pieces were clamped and welded to form a U-shaped support structure with cross-bracing for strength.
- 2. Axle Assembly: The pulley, flywheel, and brake disc were press-fitted and secured onto the 910mm steel shaft.
- 3. **Mounting:** The bearing housings were welded to the vertical pillars of the frame. The axle was inserted, ensuring free rotation.
- 4. **Drive System Installation:** The motor was mounted on a dedicated plate on the frame. The leather belt was installed with appropriate tension to prevent slippage during acceleration.
- 5. **Electromagnet Alignment (Critical Step):** The electromagnet was mounted on a stationary bracket. The **Air Gap**(the distance between the magnet face and the brake disc) was adjusted to be less than 2mm. This small gap is crucial because magnetic force decreases rapidly with distance (Inverse Square Law).

V. EXPERIMENTAL TESTING AND RESULTS

A. Figures and Tables

To evaluate the efficiency of the prototype, a series of time-to-stop tests were conducted.


Test Procedure:

- 1. The motor is switched ON, accelerating the flywheel to its top speed (approx. 60 RPM).
- 2. **Case I (Free Run):** The motor power is cut, and the brake is kept OFF. The time taken for the wheel to stop due to natural friction is recorded.
- 3. **Case II (Braking):** The motor power is cut, and the Electromagnet is simultaneously switched ON. The time taken to stop is recorded.

Table 1: Experimental Observation Data

Test Condition	Trial 1 (sec)	Trial 2 (sec)	Trial 3 (sec)	Average Time (sec)
Without Brake (Natural Stop)	62.0	65.5	64.0	63.83 sec
With Electromagnet ic Brake	6.5	5.8	6.2	6.16 sec

Figure 4 Comparison of Stopping Times: Natural vs Elecogrmenetic Brake

FIGURE 4: Bar Graph comparing the average stopping times for a natural stop and a stop using an elecomenetic brake, ased the data in Table 1.

Discussion of Results: The data clearly shows that the natural stopping time was over 1 minute due to the inertia of the heavy flywheel and low bearing friction. However, when the electromagnetic brake was engaged, the stopping time dropped to an average of **6.16 seconds**. This represents a reduction in stopping time of approximately **90%**, validating the generation of a strong braking torque.

VI. ADVANTAGES AND LIMITATIONS

A. Advantages of Electromagnetic Braking System

1. **Frictionless and Contactless Operation:** The most significant advantage of the Electromagnetic Braking System (EMBS) is that it operates without any physical contact between the braking components. Traditional braking systems rely on the mechanical friction between brake pads and rotors to arrest motion. This physical interaction inevitably leads to material abrasion and component degradation over time. In contrast, EMBS utilizes magnetic fields to generate the retarding torque. Since there is no physical contact between the stator (electromagnet) and the rotor (disc), mechanical wear and tear are virtually eliminated. This ensures that the lifespan of the braking components is significantly extended compared to conventional systems.

- 2. Low Maintenance and Operational Cost: Due to the frictionless nature of the system, the frequent replacement of consumable parts—such as brake pads, shoes, and drums—is rendered unnecessary. Furthermore, unlike hydraulic brakes which require periodic fluid changes and monitoring for leaks, the electromagnetic system is solid-state and mechanically simple. This drastic reduction in maintenance requirements translates to lower long-term operational costs and reduced vehicle downtime, making it highly attractive for commercial and fleet applications.
- Silent and Vibration-Free Operation: Friction brakes often generate high-pitched squealing or grinding noises due to the stick-slip phenomenon between the brake pad and the disc. Electromagnetic braking, being a non-contact process, operates in near-total silence. Additionally, the braking force is applied smoothly through magnetic flux interaction, which eliminates the mechanical shuddering or vibration often felt during hard braking in conventional vehicles, thereby improving passenger comfort.
- Enhanced Safety and Prevention of Brake Fade: "Brake fade" is a dangerous phenomenon in friction brakes where overheating causes a sudden loss of stopping power, often leading to accidents during long downhill descents. EMBS is inherently immune to this type of mechanical failure. While the rotor does heat up due to eddy currents, the braking mechanism does not rely on the coefficient of friction, which typically drops at high temperatures. Moreover, the electromagnetic system offers a faster response time than hydraulic systems, as the magnetic field is established almost instantaneously (in milliseconds) when the switch is activated.
- **Eco-Friendly Solution:** Conventional brakes release fine particulate matter (brake dust) into the environment every time the vehicle stops, contributing to air pollution. EMBS is a "clean" technology that produces zero particulate emissions, aligning with modern environmental standards for green transportation.

B. Limitations and Challenges

- 1. **Inefficiency at Low Speeds:** The fundamental limitation of eddy current braking is its dependence on relative velocity. The braking force (F) generated is directly proportional to the angular velocity (v) of the rotating disc ($F \propto v$). This means that as the vehicle slows down, the induced eddy currents diminish. At very low speeds (near zero), the braking force becomes negligible, and the system is physically incapable of bringing the vehicle to a complete halt or holding it stationary on a slope. Therefore, a supplementary mechanical brake is always required for parking and emergency stops.
- **Dependence on Electrical Power:** The system relies entirely on an external electrical power source (battery) to energize the electromagnets. In the event of a battery failure or a disruption in the electrical circuit, the braking capability would be lost immediately. This poses a safety risk that necessitates robust backup power systems or fail-safe mechanical overrides.
- Thermal Management Issues: While there is no friction heat, the principle of conservation of energy dictates that the kinetic energy of the vehicle must be converted into another form—in this case, heat generated by the electrical resistance of the eddy currents in the rotor (I2R losses). Without adequate heat dissipation mechanisms (such as vented discs or cooling fans), the rotor and the electromagnet coils can overheat, potentially leading to a reduction in magnetic efficiency or coil damage over prolonged use

VII. **CONCLUSION AND FUTURE SCOPE**

This project successfully demonstrated the design and manufacturing of a functional Electromagnetic Braking System. The prototype, built on a rigid mild steel frame with a 12V actuation system, proved that non-contact braking is not only theoretically possible but practically viable. The significant reduction in stopping time confirms the effectiveness of eddy current braking for retardation purposes.

Future Scope

- VIII. Regenerative Braking: Future iterations can integrate circuitry to harvest the electrical energy generated during braking to recharge the vehicle's battery.
- IX. Smart Control: Integrating an Arduino/ESP32 controller to vary the magnetic field strength based on the vehicle's speed for smoother deceleration.
- X. Hybrid System: Combining this system with traditional mechanical brakes to create a hybrid system that offers the best of both worlds (high-speed electromagnetic braking and low-speed mechanical holding).

- [1] A. Putra and M. N, "Design and Analysis of Electromagnetic Braking System," International Journal of Mechanical Engineering and Technology (IJMET), vol. 9, no. 7, pp. 838-844, 2018.
- [2] R. Sharma and P. Singh, "A Review on Electromagnetic Braking Systems," International Journal of Engineering Research & *Technology (IJERT)*, vol. 6, no. 5, 2017.
- [3] K. Karakoc and O. Kucuk, "Design and analysis of an eddy current brake for automotive applications," Journal of Applied Physics, vol. 111, no. 7, 2012.
- [4] S. Anwar and A. Mahmood, "Modeling and Simulation of an Eddy Current Braking System for Automotive Applications," International Journal of Scientific & Engineering Research, vol. 6, no. 1, 2015.
- [5] S. Yadav and A. Singh, "A Comprehensive Review on Electromagnetic Braking Systems," International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 12, 2019.
- [6] J. Patel and R. Prajapati, "Design and Fabrication of Electromagnetic Braking System using Eddy Current," International Journal of Advance Engineering and Research Development, vol. 4, no. 5, 2017.
- [7] M. Umar and S. Kumar, "Design and Fabrication of Eddy Current Braking System," International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 6, no. 4, 2018.
- [8] R. Thakur and A. Sharma, "Electromagnetic Braking: A Review of its Applications in Vehicles," IOSR Journal of Mechanical and Civil Engineering, vol. 13, no. 4, pp. 58-64, 2016.
- [9] V. Balamurugan and S. Krishnan, "Fabrication and Testing of Electromagnetic Braking System for Light Motor Vehicles," IOP Conference Series: Materials Science and Engineering, vol. 402, 2019.
- [10] S.E. Gay and J.R. Riehl, "Performance and efficiency of an eddy current braking system," IEEE Transactions on Energy Conversion, vol. 21, no. 3, 2006.
- [11] K. Lee and K. Park, "Optimal design of eddy current brake for high-speed train," *IEEE Transactions on Magnetics*, vol. 38, no. 2, pp. 1197-1200, 2002.
- [12] G.K. Sinha and R. Gupta, "A Study on Regenerative and Electromagnetic Braking Systems," Journal of Emerging Technologies and Innovative Research, vol. 4, no. 11, 2017.

- [13] L.A. Barnes and R.L. Smith, "Feasibility Study of an Eddy Current Braking System for a Lightweight Vehicle," *Journal of Engineering and Applied Sciences*, vol. 6, no. 3, 2011.
- [14] H.D. Young and R.A. Freedman, University Physics with Modern Physics, 14th ed., Pearson Education, 2016.
- [15] B.L. Theraja and A.K. Theraja, A Textbook of Electrical Technology, S. Chand Publishing, New Delhi, 2005.
- [16] R.S. Khurmi and J.K. Gupta, A Textbook of Machine Design, S. Chand Publishing, New Delhi, 2005.
- [17] V.B. Bhandari, Design of Machine Elements, 3rd ed., Tata McGraw-Hill Education, 2010.
- [18] S. Sharif, "Magnetic Braking System for Automobiles," International Journal of Automotive Technology, vol. 12, no. 4, 2013.
- [19] P. Vas, Sensorless Vector and Direct Torque Control, Oxford University Press, 1998.
- [20] A. Kumar and V. S, "Performance Analysis of an Electromagnetic Braking System with Varying Air Gap," *Materials Today: Proceedings*, vol. 28, 2020.
- [21] H. Cho and J. Bae, "Design of a Hybrid Braking System for Electric Vehicles," *IEEE Vehicle Power and Propulsion Conference*, 2008.
- [22] M. Onsal and S. A, "Design and Implementation of an Electronic Control Unit for an Eddy Current Brake," *IEEE Transactions on Industrial Electronics*, vol. 61, no. 8, 2014.
- [23] J.F. Gieras, R.J. Wang, and M.J. Kamper, *Axial Flux Permanent Magnet Brushless Machines*, Springer Science & Business Media, 2008.
- [24] T.D. Walczyk and D.L. Hunn, "Eddy Current Braking for High-Speed Systems," *Proceedings of the ASME International Mechanical Engineering Congress*, 2004.
- [25] Edward J., Eddy Currents: Physics, Applications, and Generation, Nova Science Publishers, 2010.