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Abstract: The rapid expansion of the Internet of Things (l1oT) has introduced significant challenges in ensuring efficient and
reliable routing in dynamic and resource-constrained environments. Quality of Service (QoS) plays a critical role in maintaining
seamless communication, particularly in applications requiring low latency, high throughput, and energy efficiency. This study
presents a comparative analysis of two bio-inspired optimization algorithms—Grey Wolf Optimizer (GWO) and Particle Swarm
Optimization (PSO)—for optimizing 10T routing performance. The evaluation is conducted across key QoS metrics, including
end-to-end delay, packet delivery ratio (PDR), throughput, energy consumption, and routing overhead. Simulation results
highlight the strengths and weaknesses of both algorithms, with GWO demonstrating superior performance in energy efficiency
and delay minimization, while PSO exhibits advantages in throughput and delivery ratio. The findings provide valuable insights
into algorithm selection for diverse 10T network scenarios, contributing to the design of adaptive and QoS-aware routing protocols
for next-generation 10T systems.
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I. INTRODUCTION

The rapid proliferation of the Internet of Things (loT) has
revolutionized numerous domains, ranging from smart homes
and healthcare to industrial automation. These IoT systems
typically comprise myriad devices with constrained
resources—such as limited battery life, processing power,
and communication bandwidth—operating in highly dynamic
environments. Consequently, efficient and reliable routing
protocols are essential to maintain service quality under such
constraints. Quality of Service (QoS) in loT routing is
critical, with key performance metrics including end-to-end
delay, packet delivery ratio (PDR), energy consumption,
routing overhead, and throughput. Traditional routing
protocols often fall short in balancing these competing
demands, especially within dynamic topologies or resource-
constrained scenarios.

Moreover, the advent of meta-heuristic and swarm
intelligence algorithms has opened new avenues for
optimizing 10T routing. For instance, Nawkhare and Singh
(2024) demonstrated that integrating Particle Swarm
Optimization (PSO) into the AODV routing protocol
significantly improved energy efficiency, packet delivery
ratio, throughput, end-to-end delay, and reduced routing
overhead and normalization load within Wireless Sensor
Networks (WSNs)—a key subset of 10T environments [1].
Similarly, Polara and Rathod (2023) proposed a PSO-based
parameter optimization technique for AODV in MANETS,

leading to enhanced data transmission and overall QoS by
selectively tuning control parameters and integrating node
speed control mechanisms [2]. Beyond PSO, hybrid meta-
heuristic approaches have also shown significant promise. A
novel Particle Swarm Optimization—Cuckoo Search hybrid
clustering technique was introduced for multipath routing in
WSNs. The QoS-aware multipath strategy resulted in
improvements in throughput, packet delivery ratio, end-to-
end delay, and network lifetime when compared to traditional
protocols [3]. Further examining meta-heuristic scheduling
strategies, Koca and Avci (2024) compared several
algorithms—including PSO, Genetic Algorithm, and Ant
Colony Optimization—within the context of container
scheduling for 10T microservices. They evaluated these
techniques against QoS performance metrics, providing
useful insights into their applicability in cloudified loT
deployment [4].

While PSO and various hybrid methods have been explored
for QoS optimization in loT and related networks, less
attention has been paid to the comparative evaluation of Grey
Wolf Optimizer (GWO) versus PSO specifically for loT
routing. GWO, first proposed by Mirjalili et al., is a swarm-
intelligence algorithm inspired by grey wolves' hierarchical
hunting behaviors. It offers advantages such as fewer control
parameters and robust exploitation—exploration balance [5].
However, its application within 10T routing—and a direct
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comparison with PSO under identical QoS metrics—remains
under-explored.

This study aims to fill this gap by presenting a controlled
comparative analysis of GWO and PSO for loT routing
optimization. Using a consistent evaluation framework, we
will assess algorithm performance across key QoS metrics—
namely, end-to-end delay, packet delivery ratio, throughput,
energy consumption, and routing overhead—within
simulated l0T environments.

The remainder of this paper is structured as follows: Section
2 presents the literature review; Section 3 details the
methodology, including algorithm design and simulation
setup; Section 4 covers results and analysis; Section 5
discusses implications; and Section 6 concludes and outlines
avenues for future research.

Il. LITERATURE REVIEW

loT deployments must satisfy stringent Quality of Service
(QoS) constraints—low end-to-end delay, high packet
delivery ratio (PDR), adequate throughput, and minimal
energy use—despite lossy links, mobility, and resource
limits. Recent surveys and systems work underscore that
balancing these metrics typically forces trade-offs,
motivating adaptive and optimization-driven routing designs
(Isyaku et al., 2024) [5]. Routing in low-power and lossy
networks frequently builds on RPL; however, vanilla RPL
struggles under dynamics, mixed traffic, and security
stressors. Newer works inject learning or metaheuristics to
re-weight objective functions, reduce delay/energy, and
harden against attacks (Wang et al., 2024; “Secure
Optimization of RPL,” 2025) [6] [7].

Optimization and Metaheuristics in 10T Routing:
Metaheuristics (e.g., PSO, GWO, ACO, GA) are increasingly
used to tune routing decisions, cluster formation, and path
selection to meet QoS goals in dynamic I0T/WSN settings.
Recent comparative and survey papers document consistent
gains over fixed-rule baselines while noting sensitivity to
parameterization and scenario specifics (Nadimi-Shahraki et
al., 2024; Koca & Avci, 2024) [8] [9]. Deep learning and
reinforcement learning variants complement metaheuristics
by predicting traffic loads or optimizing forwarding under
uncertainty, but require careful resource budgeting; hybrid
“learning + heuristic” schemes have emerged to capture the
best of both worlds (Wang et al., 2024; Isyaku et al., 2024)
[10] [11].

Particle Swarm Optimization (PSO) for 10T Routing/QoS:
PSO has been widely adapted to loT routing due to its
simplicity and convergence speed. PSO-based parameter
tuning for AODV/RPL and PSO-guided service placement in
edge environments report improvements in delay, PDR, and
throughput under diverse traffic mixes (Bey et al., 2024;
Polara & Rathod, 2023) [12] [13]. Fuzzy-enhanced PSO
further stabilizes performance by handling uncertainty in link
quality and node states (Hussain et al., 2023) [14]. Hybrid
designs that combine PSO with clustering (e.g., fuzzy/GA-
assisted cluster heads) show gains in energy efficiency and
network lifetime—Kkey for battery-powered 10T nodes (Lei et
al., 2024) [15].

Grey Wolf Optimizer (GWO) for 1oT/WSN Routing: GWO’s
exploration—exploitation balance and light parameter set
make it attractive for routing and power-aware decisions in
WSN/IoT. A recent PRISMA-based systematic review
catalogs GWO variants tailored to 10T tasks (e.g., routing,
clustering, scheduling), highlighting consistent energy and
delay benefits alongside open issues such as premature
convergence and parameter control (Nadimi-Shahraki et al.,
2024) [16]. Enhanced GWO forms—using adaptive control
parameters  or  hybridized leaders—report  further
improvements in path optimality and energy distribution in

sensor networks (Fauzan et al., 2025) [17]. Emerging GWO-
centric routing approaches also integrate fuzzy logic to
improve cluster stability and link reliability, indicating
GWO’s versatility across topology management and next-
hop selection (Rahmani et al., 2025) [18].

RPL Optimization and Security-Aware QoS: Beyond
performance, recent studies optimize RPL for robustness
under adversarial conditions while maintaining QoS.
Metaheuristic and Al-based RPL variants target ETX,
latency, and energy simultaneously, often outperforming
static OFs (objective functions) in mobility and attack
scenarios (“Secure Optimization of RPL,” 2025; El-Hajj et
al., 2024) [19]. Multi-attention actor—critic DRL has also
been proposed to scale routing decisions while reducing
overhead (Wang et al., 2024) [20].

Hybrids and Emerging Directions: Hybrid PSO-GWO
designs seek complementary strengths—PSO’s  fast
convergence with GWO’s exploitation depth—showing
promise in related network optimization domains and,
increasingly, in 10T/WSN routing prototypes. These works
report reductions in latency and energy consumption and
improvements in throughput/PDR, suggesting a fruitful
direction for adaptive, scenario-aware routing (Balamurali et
al., 2025; Nguyen et al., 2025) [21] [22].

While PSO and GWO individually—and in hybrids—
demonstrate QoS gains, head-to-head comparisons under a
unified loT routing framework and identical evaluation
settings remain limited. Recent papers often vary traffic
patterns, mobility, or objective functions, complicating direct
conclusions about algorithm suitability across scenarios. This
motivates a controlled comparative study of GWO vs. PSO
for 10T routing, using common datasets, workloads, and
metrics (delay, PDR, throughput, energy, overhead), to
generate actionable guidance for practitioners (Nadimi-
Shahraki et al., 2024; Isyaku et al., 2024).

I1l. METHODOLOGY

System Model

The proposed study evaluates routing optimization in an l1oT
environment under varying network sizes and topologies.
The loT network is simulated with 50, 100, 150, and 200
nodes, randomly distributed across four different topologies
(grid, random, clustered, and hierarchical). Each node is
assumed to have limited energy resources, communication
range, and processing capabilities, reflecting realistic loT
deployment conditions.

All nodes in the network are assumed to be homogeneous in
terms of initial energy and transmission capabilities.
Communication takes place using a multi-hop mechanism,
and the network supports both static and mobile scenarios,
with mobility modeled using the random waypoint model.
Bandwidth is finite and shared among all nodes, which can
lead to contention in high-density scenarios. Environmental
interference such as noise and collisions may further degrade
packet transmission. The sink, or base station, is static and
functions as a data aggregator. However, several constraints
affect network performance. Energy is limited since each
node operates with a finite battery capacity, and once
depleted, the node becomes non-functional. Bandwidth is
restricted, causing potential congestion during heavy traffic.
Additionally, mobility introduces frequent topology changes,
which can affect the stability and reliability of routing.

The primary objective of this research is to optimize loT
routing using Grey Wolf Optimizer (GWO) and Particle
Swarm Optimization (PSO) in order to minimize latency
and energy consumption while maximizing throughput and
packet delivery ratio.
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Let the 10T network be represented as a graph G(V, E) where
V denotes the set of nodes and E represents the set of
wireless links. Routing is formulated as a multi-objective
optimization problem:

Minimize:F =a.D+ .E.+vy.0 —6.PDR —n.T
Where, D = End-to-End Delay, E. = Energy Consumption, O
= Routing Overhead, PDR = Packet Delivery Ratio , T =
Throughput and, a,B,y,0,n = weight coefficients reflecting the
relative importance of each QoS metric.

3.3 Optimization Algorithms

3.3.1 Grey Wolf Optimizer (GWO) for 10T Routing

The Grey Wolf Optimizer (GWO) is a nature-inspired
metaheuristic proposed by Mirjalili et al. (2014), modeled on
the leadership hierarchy and cooperative hunting strategy of
grey wolves. In this study, GWO is applied to optimize
routing in loT by selecting near-optimal forwarding paths
while balancing multiple QoS objectives.

The wolf pack is divided into four categories:

e Alpha (a): Best candidate solution (optimal routing

path).

e Beta (P): Second best solution (guides o).

e Delta (8): Third best solution (assists a and B).

e Omega (®): Remaining solutions (follow leaders).
This hierarchy ensures exploitation (following a, B, &) and
exploration (searching new areas).

Step 1: Initialization
Define a population of wolves (candidate routes). Each wolf
encodes a potential routing path from source to sink in the
0T network.
) Xi = (xil,xiz,...,xid),i = 1,2,..,7’1,
Where, X' = position of the i wolf (candidate path), d =
dimensionality (number of decision variables = hops in
route), and n = population size (number of candidate routes).
Fitness of each wolf is evaluated using the objective function
F.
Step 2: Encircling the Prey
Wolves update their position around prey (best solution
found so far). The encircling behavior is modeled as:
D =|C.X,(t) = X(®)]
Xt+1)=X,)- AD
Where, )?p(t): position of prey (best route so far), X(@®)=
current wolf’s position, and A and C = coefficient vectors.
Coefficient vectors:
A= 2a,7 — a,C = 2.7

Where, a decreases linearly from 2 to 0 over iterations
(balances exploration & exploitation). r1,72 are random
vectors in [0,1].
Step 3: Hunting (Guided by a, B, 6)
The top three wolves (o, B, 8) guide the position update. Each
wolf updates its position relative to these leaders:

Qa = |€1-)£a _)gl

D= 16—

D5 = |C3.X5_)— Xl

X, =X, - 4,.D,

)?2 = )?B - /Tz. Bﬁ'

X3 = |X5 _A3.D5
Final position update:
X +X +X

X(t+1)= 3

Step 4: Attacking the Prey (Exploitation)
As a—0, wolves converge toward prey, focusing on

exploitation. This corresponds to fine-tuning routing paths
for minimal delay and energy.

Step 5: Termination

The process repeats until a stopping criterion is reached

(maximum iterations or convergence). The o wolf at

termination represents the optimal routing path.

Fitness Evaluation for loT Routing

For each candidate path, fitness is computed using the

weighted objective function:
F=aD+pB.E.+y.0—68.PDR—n.T

Where, Lower fitness = better route. a wolf = best route with

minimal delay, minimal energy, low overhead, and high

PDR/throughput.

3.3.2 Particle Swarm Optimization (PSO) for loT Routing
The Particle Swarm Optimization (PSO) algorithm is
inspired by the social behavior of birds flocking or fish
schooling. In 10T routing, each particle represents a candidate
route from the source node to the sink. The swarm iteratively
updates positions and velocities to search for the optimal path
with respect to multiple QoS metrics.
Step 1: Initialization

o Initialize a swarm of particles, where each particle

encodes a possible routing path.
e  Each particle has two attributes: position (solution)
and velocity (search direction).
Xi = (%1, X2y ey Xiq), 1=12,...,n
Vi = (W1, Via,y -5 Via)

Where, X; = position of particle i (candidate route), V; =
velocity of particle i, d= dimensionality (number of hops in
the route) and n = swarm size (number of routes). Each
particle’s fitness is evaluated using the objective function F.
Step 2: Personal and Global Best Update
Each particle tracks two best values:

e Personal Best (Ppesti): Best position achieved by

particle iii.
e Global Best (Goest): Best position among all
particles.
Formally:

Xi(t)’ if F (Xi(t)) < F(Pbest,i(t)
Ppesti (D), otherwise

min
Gbest(t + 1) = arg F (Pbest,i(t + 1))

Pbest,i(t + 1) = {

Step 3: Velocity Update
Each particle updates its velocity based on three components:

1. Inertia (previous velocity).

2. Cognitive (attraction toward personal best).

3. Social (attraction toward global best).

Vit +1) = @.Vi(t) + c1.73. (Ppesta(£) = Xi(1))
+ C5. 72 (Gpese () — Xi(2))
Where, w = inertia weight (balances exploration &
exploitation). c1,c2 = cognitive and social acceleration
coefficients. ry,r, = random numbers in [0,1].
Step 4: Position Update
Each particle updates its position based on new velocity:
X;it+1D)=X@®)+V(t+1
This update shifts the routing path representation towards
better-performing solutions.
Step 5: Fitness Evaluation
For each updated position X;(t+1), compute the fitness using
the multi-objective function:
F=aD+pB.E.+y.0—6.PDR—n.T

Where, D = End-to-End Delay , Ec = Energy Consumption,
O = Routing Overhead, PDR = Packet Delivery Ratio and T
= Throughput. Lower fitness indicates a better routing path.
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Step 6: Iteration and Termination

Steps 2-5 repeat until a stopping condition is met (e.g.,
maximum iterations or convergence). At termination, the
global best (Gbest) represents the optimal 10T routing
path.

IV. RESULTS AND DISCUSSION

4.1. Experimental Setup

The simulations were conducted using the NS-3 simulator on
a workstation running Microsoft Windows 10 with an Intel
Core i5 processor, 8 GB RAM, and a 2.2 GHz clock speed.
The study compares the proposed Grey Wolf Optimizer
(GWO) and Particle Swarm Optimization (PSO)
implementations for 10T routing using standard QoS metrics:
End-to-End Delay, Packet Delivery Ratio (PDR),
Throughput, Energy Consumption, and Routing Overhead.
Experiments were performed with four node densities: 50,
100, 150, and 200 nodes, randomly deployed over a 1000 m
x 1000 m area. Each node is initialized with limited energy
and identical hardware capabilities; the sink (base station) is
static. Mobility is modeled with the Random Waypoint
model for selected scenarios to study robustness under
topology changes. Each experiment runs for 100 rounds and
is repeated 10 times with different random seeds to obtain
average results and confidence intervals.

The simulation setup assumes a transmission range of 100
meters and an initial energy of 120 J per node, using the
Two-Ray Ground propagation model. Each packet is
configured with a size of 512 bytes, and Constant Bit Rate
(CBR) traffic is employed. The network uses IEEE 802.11 as
the MAC protocol and an omni-directional antenna to
support communication. For mobility-based scenarios, the
Random Waypoint model is applied. Optimization
experiments use a population or swarm size of 30 candidates.
The PSO algorithm operates with parameters w = 0.7 for
inertia and ¢, = ¢, = 1.5, while the GWO algorithm uses an a
coefficient that decreases linearly from 2 to 0, along with its
standard coefficient vectors.

In the Particle Swarm Optimization (PSO) approach,
particles encode multi-hop routing paths, with velocity and
position updates governed by standard PSO equations. Both
personal best and global best positions are tracked using the
multi-objective fitness function described in Section 3. In the
Grey Wolf Optimizer (GWO), candidate wolves represent
routing paths, and the o, B, and & leaders guide the search
process. The coefficient a decreases linearly across iterations
to gradually shift the algorithm from exploration to
exploitation. The experimental workflow begins with the
random deployment of nodes and initialization of energy and
trust values. For each node density and mobility scenario,
routing simulations are executed for both GWO and PSO.
Quality of Service (QoS) metrics, including delay, packet
delivery ratio (PDR), throughput, energy consumption, and
overhead, are collected during each run. The results are then
averaged across multiple repetitions, followed by the
computation of confidence intervals and the application of
statistical tests to compare the performance of the two
algorithms.

4.2. Qos Performance

The performance of Grey Wolf Optimizer (GWO) and
Particle Swarm Optimization (PSO) was evaluated using five
key QoS metrics: End-to-End Delay, Packet Delivery Ratio
(PDR), Throughput, Energy Consumption, and Routing
Overhead. The experiments were carried out under varying
network densities (50, 100, 150, and 200 nodes).

End-to-End Delay (ms): Average time taken for a data
packet to travel from source to destination.
Z(trecv - tsend)
NP
where trecy = packet reception time, tseng = packet transmission

time, and N, = total number of packets received.

D=

Nodes | GWO Delay (ms) | PSO Delay (ms)
50 38.5 45.2
100 42.3 49.7
150 48.9 57.1
200 55.6 63.8

Table 1: End-to-End Delay (ms)
GWO consistently achieved lower end-to-end delay
compared to PSO. This is due to GWO’s leader-based
exploration mechanism, which accelerates the discovery of
stable paths, whereas PSO takes longer to converge under
dense node conditions.

mGWO Delay (ms) mPSO Delay (ms)

70
60
50
40
30 -
20 -
10 -

50 100 150 200

Figure 1: End-to-End Delay (ms)

Table 1 and Figure 1 show that GWO consistently achieves
lower delay compared to PSO. For instance, at 100 nodes the
average delay is 42.3 ms for GWO versus 49.7 ms for PSO,
reflecting about a 15% reduction. Even at higher densities
such as 200 nodes, GWO maintains a delay of 55.6 ms,
compared to 63.8 ms for PSO. This indicates that GWO
converges faster to stable paths, ensuring more efficient data
delivery.

Packet Delivery Ratio (PDR, %): Ratio of successfully
delivered packets to the total packets sent.

recv

N
PDR = ——x 100

sent

Nodes | GWO PDR (%) | PSO PDR (%)
50 96.4 94.7
100 | 95.2 92.8
150 | 93.6 90.9
200 | 915 88.7

Table 2: Packet Delivery Ratio (%0)

Table 2 and Figure 2 show that, Both algorithms maintained
high PDR, but GWO outperformed PSO, especially in larger
networks. PSO was more sensitive to congestion and
mobility, leading to higher packet drops. GWO also
outperforms PSO in terms of reliability. At 150 nodes, GWO
achieves a PDR of 93.6%, while PSO records 90.9%, with
the gap widening as network density increases. At 200 nodes,
the improvement is about 3.2%, showing that GWO is less
sensitive to congestion and link failures, thereby ensuring
more reliable data transmission.
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mGWO PDR (%) = PSO PDR (%)
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95 -
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50 100 150 200

Figure 2: Packet Delivery Ratio (PDR, %):

Throughput (kbps): Total successful data delivery over
time.
N,y Packet_Size

T =

Total_Time
Nodes | GWO Throughput | PSO Throughput
(kbps) (kbps)
50 382 361
100 376 348
150 365 332
200 353 318

Table 3: Throughput (kbps)

Table 3 and Figure 3 show that GWO achieved 8-10%
higher throughput than PSO. The adaptive exploitation of
GWO allowed more efficient use of available bandwidth.
Throughput results indicate that GWO sustains higher data
rates. At 100 nodes, GWO provides 376 kbps, while PSO
reaches 348 kbps; at 200 nodes, GWO still maintains 353
kbps versus PSO’s 318 kbps, marking an 11% gain. This
reflects GWO’s ability to better exploit stable routes,

minimizing retransmissions and maximizing network
efficiency.
B GWO Throughput (kbps) m PSO Throughput (kbps)
500
400

300 -

200 -

100 -

0 -
50 100 150 200

Figure 3: Throughput (kbps)

Energy Consumption (Joules): Total energy consumed by
nodes during data transmission, reception, and control
overhead.

E. .= Z(Etx + Erx + Eiare)

Table 4 and Figure 4 show that PSO consumed more energy
compared to GWO, mainly because its iterative particle
updates lead to longer convergence times and more
retransmissions. GWO, by contrast, balances exploration and
exploitation, conserving energy. In terms of energy
efficiency, GWO consumes less power per node. At 150
nodes, GWO uses 96.7 J compared to PSO’s 105.2 J,
reflecting about an 8% saving. This trend remains consistent
across all densities, highlighting GWO’s effectiveness in
conserving energy by reducing unnecessary retransmissions
and control overhead.

B GWO Energy (J/node)  ®mPSO Energy (J/node)

120
100
80 -
60 -
40 -
20 -

0 -

50 100 150 200

Figure 4: Energy Consumption (Joules)

Routing Overhead: Ratio of control packets (RREQ, RREP,
RERR) to total transmitted packets.
0 = Ncontrol
Ndata + Ncontrol

Nodes | GWO Overhead (%) | PSO Overhead (%)
50 11.6 13.4
100 13.2 15.7
150 15.4 18.3
200 17.9 20.8

Table 5: Routing Overhead

Table 4 and Figure 4 show that PSO incurred higher routing
overhead due to frequent position/velocity updates that
required additional control packets. GWO maintained
relatively lower overhead by rapidly stabilizing routes.
Routing overhead is significantly lower in GWO than PSO.
For example, at 150 nodes GWO records 15.4%, while PSO
reaches 18.3%, yielding nearly a 16% reduction. Even at
200 nodes, GWO achieves 17.9% versus PSO’s 20.8%,
confirming that GWO stabilizes routes with fewer control
messages, directly contributing to improved energy
efficiency and throughput.

e GWO Overhead (%)

PSO Overhead (%)

25

20 —
15 %

10

Nodes | GWO Energy (J/node) | PSO Energy (J/node)
50 82.1 89.5

100 90.3 97.8

150 96.7 105.2

200 103.5 112.6

Table 4: Energy Consumption (Joules)

5

50 100

150 200

Figure 5: Routing Overhead
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GWO consistently outperforms PSO across all QoS metrics.
PSO performs reasonably well in smaller networks (<100
nodes) but degrades more rapidly in dense networks. GWO is
more suitable for energy-constrained 10T environments due
to its better balance between exploration and exploitation.

The comparative analysis of GWO and PSO across the
considered QoS metrics reveals that GWO consistently
outperforms PSO. In terms of end-to-end delay, GWO
demonstrates faster convergence to stable routes, thereby
reducing latency in packet transmission. For packet delivery
ratio, GWO performs better due to its robustness against
congestion, which allows it to maintain a higher level of
reliability even under increasing network density. Similarly,
GWO achieves higher throughput by efficiently exploiting
available paths, leading to improved data transfer rates.
Energy consumption is also lower in GWO, as its balanced
exploration—exploitation strategy minimizes retransmissions
and accelerates convergence, conserving node energy.
Furthermore, GWO incurs less routing overhead compared to
PSO, since it requires fewer control messages to establish
and maintain routes.

Overall, the results indicate that while PSO performs
reasonably well in smaller networks with fewer than 100
nodes, its performance deteriorates more significantly as
network density increases. In contrast, GWO maintains
superior performance across all metrics, making it more
suitable for energy-constrained loT environments where
efficient utilization of resources is critical.

V. CONCLUSION

This paper presented a comparative analysis of Grey Wolf
Optimizer (GWO) and Particle Swarm Optimization (PSO)
for optimizing routing in loT networks under Quality of
Service (QoS) constraints. Simulation results demonstrated
that GWO consistently outperforms PSO across all key
metrics, including end-to-end delay, packet delivery ratio,
throughput, energy consumption, and routing overhead. The
superiority of GWO is attributed to its efficient leader-based
hierarchy, which accelerates convergence and reduces
redundant control messages. Conversely, PSO, while
performing adequately in smaller networks, exhibits
performance degradation as network density increases due to
higher energy usage and overhead. Overall, the findings
highlight GWO as a robust and energy-efficient optimization
algorithm for 10T routing, making it particularly suitable for
large-scale,  resource-constrained environments  where
network lifetime and service quality are critical. While the
comparative evaluation provided valuable insights, several
directions remain open for further research. Future work may
focus on: Combining GWO with PSO or other metaheuristics
(e.g., Genetic Algorithms, Ant Colony Optimization) to
leverage the strengths of multiple algorithms. Extending the
evaluation to incorporate additional objectives such as
security, load balancing, and fault tolerance in 10T networks.
Exploring reinforcement learning or deep learning-assisted
optimization to enable adaptive and context-aware routing
decisions.
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