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Abstract: The rapid expansion of the Internet of Things (IoT) has introduced significant challenges in ensuring efficient and 

reliable routing in dynamic and resource-constrained environments. Quality of Service (QoS) plays a critical role in maintaining 

seamless communication, particularly in applications requiring low latency, high throughput, and energy efficiency. This study 

presents a comparative analysis of two bio-inspired optimization algorithms—Grey Wolf Optimizer (GWO) and Particle Swarm 

Optimization (PSO)—for optimizing IoT routing performance. The evaluation is conducted across key QoS metrics, including 

end-to-end delay, packet delivery ratio (PDR), throughput, energy consumption, and routing overhead. Simulation results 

highlight the strengths and weaknesses of both algorithms, with GWO demonstrating superior performance in energy efficiency 

and delay minimization, while PSO exhibits advantages in throughput and delivery ratio. The findings provide valuable insights 

into algorithm selection for diverse IoT network scenarios, contributing to the design of adaptive and QoS-aware routing protocols 

for next-generation IoT systems. 
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I. INTRODUCTION 

The rapid proliferation of the Internet of Things (IoT) has 

revolutionized numerous domains, ranging from smart homes 

and healthcare to industrial automation. These IoT systems 

typically comprise myriad devices with constrained 

resources—such as limited battery life, processing power, 

and communication bandwidth—operating in highly dynamic 

environments. Consequently, efficient and reliable routing 

protocols are essential to maintain service quality under such 

constraints. Quality of Service (QoS) in IoT routing is 

critical, with key performance metrics including end-to-end 

delay, packet delivery ratio (PDR), energy consumption, 

routing overhead, and throughput. Traditional routing 

protocols often fall short in balancing these competing 

demands, especially within dynamic topologies or resource-

constrained scenarios. 

 

Moreover, the advent of meta-heuristic and swarm 

intelligence algorithms has opened new avenues for 

optimizing IoT routing. For instance, Nawkhare and Singh 

(2024) demonstrated that integrating Particle Swarm 

Optimization (PSO) into the AODV routing protocol 

significantly improved energy efficiency, packet delivery 

ratio, throughput, end-to-end delay, and reduced routing 

overhead and normalization load within Wireless Sensor 

Networks (WSNs)—a key subset of IoT environments [1]. 

Similarly, Polara and Rathod (2023) proposed a PSO-based 

parameter optimization technique for AODV in MANETs, 

leading to enhanced data transmission and overall QoS by 

selectively tuning control parameters and integrating node 

speed control mechanisms [2]. Beyond PSO, hybrid meta-

heuristic approaches have also shown significant promise. A 

novel Particle Swarm Optimization–Cuckoo Search hybrid 

clustering technique was introduced for multipath routing in 

WSNs. The QoS-aware multipath strategy resulted in 

improvements in throughput, packet delivery ratio, end-to-

end delay, and network lifetime when compared to traditional 

protocols [3]. Further examining meta-heuristic scheduling 

strategies, Koca and Avcı (2024) compared several 

algorithms—including PSO, Genetic Algorithm, and Ant 

Colony Optimization—within the context of container 

scheduling for IoT microservices. They evaluated these 

techniques against QoS performance metrics, providing 

useful insights into their applicability in cloudified IoT 

deployment [4].  

 

While PSO and various hybrid methods have been explored 

for QoS optimization in IoT and related networks, less 

attention has been paid to the comparative evaluation of Grey 

Wolf Optimizer (GWO) versus PSO specifically for IoT 

routing. GWO, first proposed by Mirjalili et al., is a swarm-

intelligence algorithm inspired by grey wolves' hierarchical 

hunting behaviors. It offers advantages such as fewer control 

parameters and robust exploitation–exploration balance [5]. 

However, its application within IoT routing—and a direct 
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comparison with PSO under identical QoS metrics—remains 

under-explored. 

 

This study aims to fill this gap by presenting a controlled 

comparative analysis of GWO and PSO for IoT routing 

optimization. Using a consistent evaluation framework, we 

will assess algorithm performance across key QoS metrics—

namely, end-to-end delay, packet delivery ratio, throughput, 

energy consumption, and routing overhead—within 

simulated IoT environments. 

The remainder of this paper is structured as follows: Section 

2 presents the literature review; Section 3 details the 

methodology, including algorithm design and simulation 

setup; Section 4 covers results and analysis; Section 5 

discusses implications; and Section 6 concludes and outlines 

avenues for future research. 

II. LITERATURE REVIEW 

IoT deployments must satisfy stringent Quality of Service 

(QoS) constraints—low end-to-end delay, high packet 

delivery ratio (PDR), adequate throughput, and minimal 

energy use—despite lossy links, mobility, and resource 

limits. Recent surveys and systems work underscore that 

balancing these metrics typically forces trade-offs, 

motivating adaptive and optimization-driven routing designs 

(Isyaku et al., 2024) [5]. Routing in low-power and lossy 

networks frequently builds on RPL; however, vanilla RPL 

struggles under dynamics, mixed traffic, and security 

stressors. Newer works inject learning or metaheuristics to 

re-weight objective functions, reduce delay/energy, and 

harden against attacks (Wang et al., 2024; “Secure 

Optimization of RPL,” 2025) [6] [7].  

Optimization and Metaheuristics in IoT Routing: 
Metaheuristics (e.g., PSO, GWO, ACO, GA) are increasingly 

used to tune routing decisions, cluster formation, and path 

selection to meet QoS goals in dynamic IoT/WSN settings. 

Recent comparative and survey papers document consistent 

gains over fixed-rule baselines while noting sensitivity to 

parameterization and scenario specifics (Nadimi-Shahraki et 

al., 2024; Koca & Avcı, 2024) [8] [9]. Deep learning and 

reinforcement learning variants complement metaheuristics 

by predicting traffic loads or optimizing forwarding under 

uncertainty, but require careful resource budgeting; hybrid 

“learning + heuristic” schemes have emerged to capture the 

best of both worlds (Wang et al., 2024; Isyaku et al., 2024) 

[10] [11].  

Particle Swarm Optimization (PSO) for IoT Routing/QoS: 
PSO has been widely adapted to IoT routing due to its 

simplicity and convergence speed. PSO-based parameter 

tuning for AODV/RPL and PSO-guided service placement in 

edge environments report improvements in delay, PDR, and 

throughput under diverse traffic mixes (Bey et al., 2024; 

Polara & Rathod, 2023) [12] [13]. Fuzzy-enhanced PSO 

further stabilizes performance by handling uncertainty in link 

quality and node states (Hussain et al., 2023) [14]. Hybrid 

designs that combine PSO with clustering (e.g., fuzzy/GA-

assisted cluster heads) show gains in energy efficiency and 

network lifetime—key for battery-powered IoT nodes (Lei et 

al., 2024) [15].  

Grey Wolf Optimizer (GWO) for IoT/WSN Routing: GWO’s 

exploration–exploitation balance and light parameter set 

make it attractive for routing and power-aware decisions in 

WSN/IoT. A recent PRISMA-based systematic review 

catalogs GWO variants tailored to IoT tasks (e.g., routing, 

clustering, scheduling), highlighting consistent energy and 

delay benefits alongside open issues such as premature 

convergence and parameter control (Nadimi-Shahraki et al., 

2024) [16]. Enhanced GWO forms—using adaptive control 

parameters or hybridized leaders—report further 

improvements in path optimality and energy distribution in 

sensor networks (Fauzan et al., 2025) [17]. Emerging GWO-

centric routing approaches also integrate fuzzy logic to 

improve cluster stability and link reliability, indicating 

GWO’s versatility across topology management and next-

hop selection (Rahmani et al., 2025) [18].  

RPL Optimization and Security-Aware QoS: Beyond 

performance, recent studies optimize RPL for robustness 

under adversarial conditions while maintaining QoS. 

Metaheuristic and AI-based RPL variants target ETX, 

latency, and energy simultaneously, often outperforming 

static OFs (objective functions) in mobility and attack 

scenarios (“Secure Optimization of RPL,” 2025; El-Hajj et 

al., 2024) [19]. Multi-attention actor–critic DRL has also 

been proposed to scale routing decisions while reducing 

overhead (Wang et al., 2024) [20].  

Hybrids and Emerging Directions: Hybrid PSO–GWO 

designs seek complementary strengths—PSO’s fast 

convergence with GWO’s exploitation depth—showing 

promise in related network optimization domains and, 

increasingly, in IoT/WSN routing prototypes. These works 

report reductions in latency and energy consumption and 

improvements in throughput/PDR, suggesting a fruitful 

direction for adaptive, scenario-aware routing (Balamurali et 

al., 2025; Nguyen et al., 2025) [21] [22].  

While PSO and GWO individually—and in hybrids—

demonstrate QoS gains, head-to-head comparisons under a 

unified IoT routing framework and identical evaluation 

settings remain limited. Recent papers often vary traffic 

patterns, mobility, or objective functions, complicating direct 

conclusions about algorithm suitability across scenarios. This 

motivates a controlled comparative study of GWO vs. PSO 

for IoT routing, using common datasets, workloads, and 

metrics (delay, PDR, throughput, energy, overhead), to 

generate actionable guidance for practitioners (Nadimi-

Shahraki et al., 2024; Isyaku et al., 2024).  

 

III. METHODOLOGY 

System Model 

The proposed study evaluates routing optimization in an IoT 

environment under varying network sizes and topologies. 

The IoT network is simulated with 50, 100, 150, and 200 

nodes, randomly distributed across four different topologies 

(grid, random, clustered, and hierarchical). Each node is 

assumed to have limited energy resources, communication 

range, and processing capabilities, reflecting realistic IoT 

deployment conditions. 

 

All nodes in the network are assumed to be homogeneous in 

terms of initial energy and transmission capabilities. 

Communication takes place using a multi-hop mechanism, 

and the network supports both static and mobile scenarios, 

with mobility modeled using the random waypoint model. 

Bandwidth is finite and shared among all nodes, which can 

lead to contention in high-density scenarios. Environmental 

interference such as noise and collisions may further degrade 

packet transmission. The sink, or base station, is static and 

functions as a data aggregator. However, several constraints 

affect network performance. Energy is limited since each 

node operates with a finite battery capacity, and once 

depleted, the node becomes non-functional. Bandwidth is 

restricted, causing potential congestion during heavy traffic. 

Additionally, mobility introduces frequent topology changes, 

which can affect the stability and reliability of routing. 

 

The primary objective of this research is to optimize IoT 

routing using Grey Wolf Optimizer (GWO) and Particle 

Swarm Optimization (PSO) in order to minimize latency 

and energy consumption while maximizing throughput and 

packet delivery ratio. 
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Let the IoT network be represented as a graph G(V, E) where 

V denotes the set of nodes and E represents the set of 

wireless links. Routing is formulated as a multi-objective 

optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹 = 𝑎. 𝐷 + 𝛽. 𝐸𝑐 + 𝛾. 𝑂 − 𝛿. 𝑃𝐷𝑅 − 𝓃. 𝑇 
Where, D = End-to-End Delay, Ec = Energy Consumption, O 

= Routing Overhead, PDR = Packet Delivery Ratio , T = 

Throughput and, α,β,γ,δ,η = weight coefficients reflecting the 

relative importance of each QoS metric. 

 

3.3 Optimization Algorithms 

3.3.1 Grey Wolf Optimizer (GWO) for IoT Routing 

The Grey Wolf Optimizer (GWO) is a nature-inspired 

metaheuristic proposed by Mirjalili et al. (2014), modeled on 

the leadership hierarchy and cooperative hunting strategy of 

grey wolves. In this study, GWO is applied to optimize 

routing in IoT by selecting near-optimal forwarding paths 

while balancing multiple QoS objectives. 

The wolf pack is divided into four categories: 

 Alpha (α): Best candidate solution (optimal routing 

path). 

 Beta (β): Second best solution (guides α). 

 Delta (δ): Third best solution (assists α and β). 

 Omega (ω): Remaining solutions (follow leaders). 

This hierarchy ensures exploitation (following α, β, δ) and 

exploration (searching new areas). 

Step 1: Initialization 

Define a population of wolves (candidate routes). Each wolf 

encodes a potential routing path from source to sink in the 

IoT network. 

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑), 𝑖 = 1,2, . . , 𝑛 

Where, Xi = position of the ith wolf (candidate path), d = 

dimensionality (number of decision variables = hops in 

route), and n = population size (number of candidate routes). 

Fitness of each wolf is evaluated using the objective function 

F. 

Step 2: Encircling the Prey 

Wolves update their position around prey (best solution 

found so far). The encircling behavior is modeled as: 

𝐷⃗⃗ = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) −  𝐴 . 𝐷⃗⃗  

Where, 𝑋 𝑝(𝑡)= position of prey (best route so far),   𝑋 (𝑡)= 

current wolf’s position, and 𝐴   𝑎𝑛𝑑 𝐶  = coefficient vectors. 

Coefficient vectors: 

𝐴 = 2𝑎, 𝑟1⃗⃗⃗  − 𝑎, 𝐶 = 2. 𝑟 2 

Where, a decreases linearly from 2 to 0 over iterations 

(balances exploration & exploitation). 𝑟1⃗⃗⃗⃗ , 𝑟2⃗⃗⃗⃗    are random 

vectors in [0,1]. 

Step 3: Hunting (Guided by α, β, δ) 

The top three wolves (α, β, δ) guide the position update. Each 

wolf updates its position relative to these leaders: 

𝐷⃗⃗ 𝑎 = |𝐶 1. 𝑋 𝑎 − 𝑋 | 

𝐷⃗⃗ 𝛽 = |𝐶 2. 𝑋 𝛽 − 𝑋 | 

𝐷⃗⃗ 𝛿 = |𝐶 3. 𝑋 𝛿 − 𝑋 | 

𝑋 1 = 𝑋 𝑎 − 𝐴 1. 𝐷⃗⃗ 𝑎 

𝑋 2 = 𝑋 𝛽 − 𝐴 2. 𝐷⃗⃗ 𝛽 

𝑋 3 = |𝑋 𝛿 − 𝐴 3. 𝐷⃗⃗ 𝛿 

Final position update: 

𝑋 (𝑡 + 1) =  
𝑋 1 + 𝑋 2 + 𝑋 3

3
 

 

Step 4: Attacking the Prey (Exploitation) 

As a→0, wolves converge toward prey, focusing on 

exploitation. This corresponds to fine-tuning routing paths 

for minimal delay and energy. 

Step 5: Termination 

The process repeats until a stopping criterion is reached 

(maximum iterations or convergence). The α wolf at 

termination represents the optimal routing path. 

Fitness Evaluation for IoT Routing 

For each candidate path, fitness is computed using the 

weighted objective function: 

𝐹 = 𝑎. 𝐷 + 𝛽. 𝐸𝑐 + 𝛾. 𝑂 − 𝛿. 𝑃𝐷𝑅 − 𝑛. 𝑇 

Where, Lower fitness = better route. α wolf = best route with 

minimal delay, minimal energy, low overhead, and high 

PDR/throughput. 

 

3.3.2 Particle Swarm Optimization (PSO) for IoT Routing 

The Particle Swarm Optimization (PSO) algorithm is 

inspired by the social behavior of birds flocking or fish 

schooling. In IoT routing, each particle represents a candidate 

route from the source node to the sink. The swarm iteratively 

updates positions and velocities to search for the optimal path 

with respect to multiple QoS metrics. 

Step 1: Initialization 

 Initialize a swarm of particles, where each particle 

encodes a possible routing path. 

 Each particle has two attributes: position (solution) 

and velocity (search direction). 

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2 , … . , 𝑥𝑖𝑑),    𝑖 = 1,2, … , 𝑛 

𝑉𝑖 = (𝑣𝑖,1, 𝑣𝑖2,, … , 𝑣𝑖𝑑) 

Where, Xi = position of particle i (candidate route), Vi = 

velocity of particle i, d= dimensionality (number of hops in 

the route) and n = swarm size (number of routes). Each 

particle’s fitness is evaluated using the objective function F. 

Step 2: Personal and Global Best Update 

Each particle tracks two best values: 

 Personal Best (Pbest,i): Best position achieved by 

particle iii. 

 Global Best (Gbest): Best position among all 

particles. 

Formally: 

𝐏𝐛𝐞𝐬𝐭,𝐢(𝐭 + 𝟏) =  {
𝐗𝐢(𝐭),   𝐢𝐟 𝐅 (𝐗𝐢(𝐭))   < 𝑭(𝐏𝐛𝐞𝐬𝐭,𝐢(𝐭)

𝐏𝐛𝐞𝐬𝐭,𝐢(𝐭),                         𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 

𝐆𝐛𝐞𝐬𝐭(𝐭 + 𝟏) = 𝐚𝐫𝐠  
𝐦𝐢𝐧

𝐢
  𝐅 (𝐏𝐛𝐞𝐬𝐭,𝐢(𝐭 + 𝟏)) 

 

Step 3: Velocity Update 

Each particle updates its velocity based on three components: 

1. Inertia (previous velocity). 

2. Cognitive (attraction toward personal best). 

3. Social (attraction toward global best). 

𝑉𝑖(𝑡 + 1) = 𝜔. 𝑉𝑖(𝑡) + 𝑐1. 𝑟1. (𝑃𝑏𝑒𝑠𝑡,𝑖(𝑡) − 𝑋𝑖(𝑡))

+ 𝑐2. 𝑟2. (𝐺𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)) 
Where, w = inertia weight (balances exploration & 

exploitation). c1,c2 = cognitive and social acceleration 

coefficients. r1,r2 = random numbers in [0,1]. 

Step 4: Position Update 

Each particle updates its position based on new velocity: 

𝑋𝑖(𝑡 + 1) =  𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) 
This update shifts the routing path representation towards 

better-performing solutions. 

Step 5: Fitness Evaluation 

For each updated position Xi(t+1), compute the fitness using 

the multi-objective function: 

𝐹 = 𝑎. 𝐷 + 𝛽. 𝐸𝑐 + 𝛾. 𝑂 − 𝛿. 𝑃𝐷𝑅 − 𝑛. 𝑇 

Where, D = End-to-End Delay , Ec = Energy Consumption, 

O = Routing Overhead, PDR = Packet Delivery Ratio and T 

= Throughput.  Lower fitness indicates a better routing path. 
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Step 6: Iteration and Termination 

Steps 2–5 repeat until a stopping condition is met (e.g., 

maximum iterations or convergence). At termination, the 

global best (Gbest) represents the optimal IoT routing 

path. 

 

IV. RESULTS AND DISCUSSION 

 

4.1. Experimental Setup 

The simulations were conducted using the NS-3 simulator on 

a workstation running Microsoft Windows 10 with an Intel 

Core i5 processor, 8 GB RAM, and a 2.2 GHz clock speed. 

The study compares the proposed Grey Wolf Optimizer 

(GWO) and Particle Swarm Optimization (PSO) 

implementations for IoT routing using standard QoS metrics: 

End-to-End Delay, Packet Delivery Ratio (PDR), 

Throughput, Energy Consumption, and Routing Overhead. 

Experiments were performed with four node densities: 50, 

100, 150, and 200 nodes, randomly deployed over a 1000 m 

× 1000 m area. Each node is initialized with limited energy 

and identical hardware capabilities; the sink (base station) is 

static. Mobility is modeled with the Random Waypoint 

model for selected scenarios to study robustness under 

topology changes. Each experiment runs for 100 rounds and 

is repeated 10 times with different random seeds to obtain 

average results and confidence intervals. 

 

The simulation setup assumes a transmission range of 100 

meters and an initial energy of 120 J per node, using the 

Two-Ray Ground propagation model. Each packet is 

configured with a size of 512 bytes, and Constant Bit Rate 

(CBR) traffic is employed. The network uses IEEE 802.11 as 

the MAC protocol and an omni-directional antenna to 

support communication. For mobility-based scenarios, the 

Random Waypoint model is applied. Optimization 

experiments use a population or swarm size of 30 candidates. 

The PSO algorithm operates with parameters w = 0.7 for 

inertia and c₁ = c₂ = 1.5, while the GWO algorithm uses an a 

coefficient that decreases linearly from 2 to 0, along with its 

standard coefficient vectors. 

 

In the Particle Swarm Optimization (PSO) approach, 

particles encode multi-hop routing paths, with velocity and 

position updates governed by standard PSO equations. Both 

personal best and global best positions are tracked using the 

multi-objective fitness function described in Section 3. In the 

Grey Wolf Optimizer (GWO), candidate wolves represent 

routing paths, and the α, β, and δ leaders guide the search 

process. The coefficient a decreases linearly across iterations 

to gradually shift the algorithm from exploration to 

exploitation. The experimental workflow begins with the 

random deployment of nodes and initialization of energy and 

trust values. For each node density and mobility scenario, 

routing simulations are executed for both GWO and PSO. 

Quality of Service (QoS) metrics, including delay, packet 

delivery ratio (PDR), throughput, energy consumption, and 

overhead, are collected during each run. The results are then 

averaged across multiple repetitions, followed by the 

computation of confidence intervals and the application of 

statistical tests to compare the performance of the two 

algorithms. 

 

4.2. Qos Performance  

The performance of Grey Wolf Optimizer (GWO) and 

Particle Swarm Optimization (PSO) was evaluated using five 

key QoS metrics: End-to-End Delay, Packet Delivery Ratio 

(PDR), Throughput, Energy Consumption, and Routing 

Overhead. The experiments were carried out under varying 

network densities (50, 100, 150, and 200 nodes). 

End-to-End Delay (ms): Average time taken for a data 

packet to travel from source to destination. 

𝐷 =
∑(𝑡𝑟𝑒𝑐𝑣 − 𝑡𝑠𝑒𝑛𝑑)

𝑁𝑝

 

where trecv = packet reception time, tsend = packet transmission 

time, and Np = total number of packets received. 

Nodes GWO Delay (ms) PSO Delay (ms) 

50 38.5 45.2 

100 42.3 49.7 

150 48.9 57.1 

200 55.6 63.8 

Table 1: End-to-End Delay (ms) 

GWO consistently achieved lower end-to-end delay 

compared to PSO. This is due to GWO’s leader-based 

exploration mechanism, which accelerates the discovery of 

stable paths, whereas PSO takes longer to converge under 

dense node conditions. 

 
Figure 1: End-to-End Delay (ms) 

Table 1 and Figure 1 show that GWO consistently achieves 

lower delay compared to PSO. For instance, at 100 nodes the 

average delay is 42.3 ms for GWO versus 49.7 ms for PSO, 

reflecting about a 15% reduction. Even at higher densities 

such as 200 nodes, GWO maintains a delay of 55.6 ms, 

compared to 63.8 ms for PSO. This indicates that GWO 

converges faster to stable paths, ensuring more efficient data 

delivery. 

Packet Delivery Ratio (PDR, %): Ratio of successfully 

delivered packets to the total packets sent. 

𝐏𝐃𝐑 =
𝐍𝐫𝐞𝐜𝐯

𝐍𝐬𝐞𝐧𝐭

× 𝟏𝟎𝟎 

 

 

 

Nodes GWO PDR (%) PSO PDR (%) 

50 96.4 94.7 

100 95.2 92.8 

150 93.6 90.9 

200 91.5 88.7 

Table 2: Packet Delivery Ratio (%) 

 

Table 2 and Figure 2 show that, Both algorithms maintained 

high PDR, but GWO outperformed PSO, especially in larger 

networks. PSO was more sensitive to congestion and 

mobility, leading to higher packet drops. GWO also 

outperforms PSO in terms of reliability. At 150 nodes, GWO 

achieves a PDR of 93.6%, while PSO records 90.9%, with 

the gap widening as network density increases. At 200 nodes, 

the improvement is about 3.2%, showing that GWO is less 

sensitive to congestion and link failures, thereby ensuring 

more reliable data transmission. 
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Figure 2: Packet Delivery Ratio (PDR, %): 

 

 

Throughput (kbps): Total successful data delivery over 

time. 

𝑇 =
𝑁𝑟𝑒𝑐𝑣 . 𝑃𝑎𝑐𝑘𝑒𝑡_𝑆𝑖𝑧𝑒

𝑇𝑜𝑡𝑎𝑙_𝑇𝑖𝑚𝑒
 

Nodes GWO Throughput 

(kbps) 

PSO Throughput 

(kbps) 

50 382 361 

100 376 348 

150 365 332 

200 353 318 

Table 3: Throughput (kbps) 

 

Table 3 and Figure 3 show that GWO achieved 8–10% 

higher throughput than PSO. The adaptive exploitation of 

GWO allowed more efficient use of available bandwidth. 

Throughput results indicate that GWO sustains higher data 

rates. At 100 nodes, GWO provides 376 kbps, while PSO 

reaches 348 kbps; at 200 nodes, GWO still maintains 353 

kbps versus PSO’s 318 kbps, marking an 11% gain. This 

reflects GWO’s ability to better exploit stable routes, 

minimizing retransmissions and maximizing network 

efficiency. 

 
Figure 3: Throughput (kbps) 

 

Energy Consumption (Joules): Total energy consumed by 

nodes during data transmission, reception, and control 

overhead. 

𝐸𝑐 = ∑(𝐸𝑡𝑥 + 𝐸𝑟𝑥 + 𝐸𝑖𝑑𝑙𝑒) 

 

Nodes GWO Energy (J/node) PSO Energy (J/node) 

50 82.1 89.5 

100 90.3 97.8 

150 96.7 105.2 

200 103.5 112.6 

Table 4: Energy Consumption (Joules) 

 

 

 

Table 4 and Figure 4 show that PSO consumed more energy 

compared to GWO, mainly because its iterative particle 

updates lead to longer convergence times and more 

retransmissions. GWO, by contrast, balances exploration and 

exploitation, conserving energy. In terms of energy 

efficiency, GWO consumes less power per node. At 150 

nodes, GWO uses 96.7 J compared to PSO’s 105.2 J, 

reflecting about an 8% saving. This trend remains consistent 

across all densities, highlighting GWO’s effectiveness in 

conserving energy by reducing unnecessary retransmissions 

and control overhead. 

 

 
Figure 4: Energy Consumption (Joules) 

 

 

Routing Overhead: Ratio of control packets (RREQ, RREP, 

RERR) to total transmitted packets. 

𝑂 =
𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑁𝑑𝑎𝑡𝑎 + 𝑁𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 

 

Nodes GWO Overhead (%) PSO Overhead (%) 

50 11.6 13.4 

100 13.2 15.7 

150 15.4 18.3 

200 17.9 20.8 

Table 5: Routing Overhead 

Table 4 and Figure 4 show that PSO incurred higher routing 

overhead due to frequent position/velocity updates that 

required additional control packets. GWO maintained 

relatively lower overhead by rapidly stabilizing routes. 

Routing overhead is significantly lower in GWO than PSO. 

For example, at 150 nodes GWO records 15.4%, while PSO 

reaches 18.3%, yielding nearly a 16% reduction. Even at 

200 nodes, GWO achieves 17.9% versus PSO’s 20.8%, 

confirming that GWO stabilizes routes with fewer control 

messages, directly contributing to improved energy 

efficiency and throughput. 

 
Figure 5: Routing Overhead 
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GWO consistently outperforms PSO across all QoS metrics. 

PSO performs reasonably well in smaller networks (<100 

nodes) but degrades more rapidly in dense networks. GWO is 

more suitable for energy-constrained IoT environments due 

to its better balance between exploration and exploitation. 

 

The comparative analysis of GWO and PSO across the 

considered QoS metrics reveals that GWO consistently 

outperforms PSO. In terms of end-to-end delay, GWO 

demonstrates faster convergence to stable routes, thereby 

reducing latency in packet transmission. For packet delivery 

ratio, GWO performs better due to its robustness against 

congestion, which allows it to maintain a higher level of 

reliability even under increasing network density. Similarly, 

GWO achieves higher throughput by efficiently exploiting 

available paths, leading to improved data transfer rates. 

Energy consumption is also lower in GWO, as its balanced 

exploration–exploitation strategy minimizes retransmissions 

and accelerates convergence, conserving node energy. 

Furthermore, GWO incurs less routing overhead compared to 

PSO, since it requires fewer control messages to establish 

and maintain routes. 

Overall, the results indicate that while PSO performs 

reasonably well in smaller networks with fewer than 100 

nodes, its performance deteriorates more significantly as 

network density increases. In contrast, GWO maintains 

superior performance across all metrics, making it more 

suitable for energy-constrained IoT environments where 

efficient utilization of resources is critical. 

 

V. CONCLUSION 

This paper presented a comparative analysis of Grey Wolf 

Optimizer (GWO) and Particle Swarm Optimization (PSO) 

for optimizing routing in IoT networks under Quality of 

Service (QoS) constraints. Simulation results demonstrated 

that GWO consistently outperforms PSO across all key 

metrics, including end-to-end delay, packet delivery ratio, 

throughput, energy consumption, and routing overhead. The 

superiority of GWO is attributed to its efficient leader-based 

hierarchy, which accelerates convergence and reduces 

redundant control messages. Conversely, PSO, while 

performing adequately in smaller networks, exhibits 

performance degradation as network density increases due to 

higher energy usage and overhead. Overall, the findings 

highlight GWO as a robust and energy-efficient optimization 

algorithm for IoT routing, making it particularly suitable for 

large-scale, resource-constrained environments where 

network lifetime and service quality are critical. While the 

comparative evaluation provided valuable insights, several 

directions remain open for further research. Future work may 

focus on: Combining GWO with PSO or other metaheuristics 

(e.g., Genetic Algorithms, Ant Colony Optimization) to 

leverage the strengths of multiple algorithms. Extending the 

evaluation to incorporate additional objectives such as 

security, load balancing, and fault tolerance in IoT networks. 

Exploring reinforcement learning or deep learning–assisted 

optimization to enable adaptive and context-aware routing 

decisions. 
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