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Abstract:  This study extends previous flood hazard modelling work in Nandigama by developing a real-time urban flood 

forecasting and drainage simulation system. While earlier research assessed future flood scenarios using HEC-HMS, HEC-RAS, 

SDSM downscaling, and Markov Chain land-use forecasting, the present study integrates Storm Water Management Model 

(SWMM) for drainage simulation and Long Short-Term Memory (LSTM) neural networks for rainfall nowcasting. The 

interaction between surface flooding and underground drainage networks was modelled through SWMM–HEC-RAS 2D coupling. 

Results indicate that LSTM-based nowcasting improves forecast lead-time by 30–45 minutes, while drainage network 

enhancement reduces flood depth by 18–34% in high-risk villages including Adiviravulapadu, Gollamudi, and Pallagiri. 

Combined mitigation measures achieved a 27% reduction in inundation extent, demonstrating a robust framework for climate-

resilient flood management in Nandigama. 
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1. Introduction 

Urban flooding has become a major environmental and infrastructural challenge in rapidly developing regions, 

particularly in monsoon-dominated countries like India. Towns such as Nandigama are undergoing extensive 

urbanisation, resulting in widespread alteration of the natural hydrological cycle. Classical hydrological principles by 

Chow et al. [1] and Beven [2] reveal that even minor increases in imperviousness can significantly modify runoff 

response, reduce infiltration, and elevate peak flows. Several studies across Asia and Europe have similarly 

documented the direct relationship between urban expansion and flood risk amplification [12, 16, 29, 31]. As 

Nandigama continues to transform from an agriculture-dominated landscape to a built-up urban cluster, the 

hydrological response of the basin has shifted dramatically. 

Existing research demonstrates that cities with inadequate drainage infrastructure experience higher flood 

susceptibility due to clogging, backflow, and channel overflow [24, 29, 31]. Such infrastructural limitations are 

observed in Nandigama, where outdated stormwater systems fail to accommodate growing runoff volumes. 

Concurrently, global climate assessments by the IPCC [7] indicate rising trends in extreme rainfall intensity, further 

aggravating urban flood risks. Climate modelling studies by Ghosh & Mujumdar [8], Rahman et al. [21], and Ward et 

al. [22] highlight that shifting monsoon patterns and intensified convective storms are major drivers of flash floods 

across South Asia. 

Generalisations derived from Global Climate Models (GCMs) are insufficient for local flood prediction due to coarse 

spatial resolution. Thus, downscaling techniques such as SDSM, pioneered by Wilby et al. [5], have been widely 

adopted to refine rainfall projections. Paul & Ghosh [13] demonstrated that statistically downscaled rainfall datasets 

significantly enhance hydrological model performance, aligning with trends seen in recent climate–hydrology 

integration studies [22, 30, 35]. Incorporating such downscaled rainfall is essential for accurate flood forecasting in 

rapidly changing towns like Nandigama. 
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Land-use and land-cover (LULC) change serves as an equally influential component in understanding urban flood 

behaviour. Markov Chain–based LULC forecasting, validated in studies by Pontius & Malanson [6], Khatun et al. 

[26], Sangwan & Vasu [15], and Zhang et al. [39], provides reliable projections of future built-up expansion. 

Increased imperviousness elevates curve numbers, speeds up runoff generation, and elevates flood peaks, as 

demonstrated in several watershed studies [3, 4, 11, 12]. In the earlier research on Nandigama, substantial built-up 

expansion between 2000 and 2020 was found to correlate strongly with increased peak discharge and decreased time-

to-peak. 

However, traditional flood models often fail to capture the complex interaction between surface water and subsurface 

drainage systems. While HEC-RAS remains a robust model for surface flood simulation [9, 10, 11], it does not 

independently represent manhole surcharging, pipe flow reversals, or inlet inefficiency. Researchers like Sanders [31] 

and Tingsanchali [29] emphasise that urban flood risk modelling must integrate drainage network behaviour to reflect 

real-world flood mechanisms accurately. Drainage congestion, debris accumulation, and inadequate pipe gradients 

significantly influence waterlogging patterns observed in cities like Nandigama. 

Another key research frontier involves real-time flood forecasting. Traditional climate models are useful for long-term 

projections, but they cannot predict near-future rainfall critical for early-warning systems. Machine-learning 

algorithms, particularly Long Short-Term Memory (LSTM) models, have demonstrated superior performance in short-

term rainfall prediction over statistical and physical models. Studies by Jin et al. [36], Li et al. [38], Zhang et al. [39], 

and Liu et al. [40] show that LSTM can capture complex temporal rainfall dependencies and deliver high-accuracy 

forecasts suitable for operational flood response. 

Given these considerations, the extended research for Nandigama aims to transition from a static flood hazard study to 

a dynamic, integrated forecasting system. By incorporating SWMM-based drainage simulation [37], HEC-RAS 2D 

modelling [31, 33], LSTM rainfall nowcasting [36, 39], and previously established climate–hydrology outputs [5, 11, 

13], this study provides a unified framework that addresses multiple drivers of urban flooding. Such an approach 

aligns with the integrated modelling philosophies presented in global literature, including the works of Fu et al. [15], 

O'Donnell & Thorne [17], Sarkar et al. [18], and Alfieri et al. [35]. These studies emphasise that only multi-

component flood models can effectively capture and forecast complex urban flood behaviour under changing climatic 

and urban conditions. 

This four-dimensional approach—combining hydrology, hydraulics, climate science, and machine learning—offers a 

major advancement in flood management for Nandigama. It supports climate-resilient infrastructure planning, real-

time decision-making, municipal response preparedness, and long-term urban policy development. 

2. Literature Review 

Urban flood modelling has undergone significant evolution as researchers attempt to understand the combined 

influence of climate change, land-use dynamics, and drainage infrastructure on flood hazard. Chow et al. [1] laid the 

foundation for hydrological process modelling, while Beven [2] advanced the conceptual understanding of rainfall–

runoff transformations. Tools such as HEC-HMS, documented in USACE manuals [3, 4], have since become standard 

for hydrological simulations across diverse climatic regions. 

Hydraulic modelling has simultaneously advanced, with 2D modelling approaches gaining prominence. Bates & De 

Roo [9] and Hunter et al. [19] highlight that high-resolution hydraulic models provide superior prediction of 

inundation patterns and velocities compared to 1D systems. HEC-RAS 2D has been applied widely for floodplain 

simulation, with studies showing its effectiveness in both rural and urban environments [10, 11, 31, 33]. Remote 

sensing integration further enhances flood mapping accuracy, as illustrated by Sanyal & Lu [20] and Bhattacharya et 

al. [33]. 

Climate change research emphasises rising flood risk due to increased rainfall extremes. IPCC [7] findings are 

supported by regional studies from Ghosh & Mujumdar [8], Rahman et al. [21], and Ward et al. [22], which show 

statistically significant increases in monsoon variability. Downscaling techniques such as SDSM [5] provide finer 

spatial rainfall projections essential for local flood prediction [13, 30]. Bias correction and calibration further improve 

these projections, aligning with methodologies by Alfieri et al. [35] and Sarkar et al. [18]. 

LULC change modelling is another domain of intensive research. Markov Chain analysis has been validated as a 

reliable predictor of future land-use transitions in numerous studies [6, 14, 15, 26]. Bhatt et al. [12] and Merz et al. 

[16] demonstrate that rapid urbanisation correlates strongly with increased runoff, reduced infiltration, and higher 

flood peaks. Such patterns have been consistently observed across Asia, Europe, and North America. 
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The integration of hydrological, hydraulic, climatic, and land-use models represents the most advanced stage in urban 

flood research. Fu et al. [15], O'Donnell & Thorne [17], and Teng et al. [23] argue that multi-model frameworks offer 

significantly better predictive accuracy. Remote sensing-based DEM analysis, as applied by Sanyal & Lu [20], 

Bhattacharya et al. [33], and Alfieri et al. [35], provides enhanced spatial detail for flood simulation. 

Despite advances, there remain gaps—especially in real-time flood forecasting and micro-drainage simulation. 

SWMM has proven effective for simulating urban drainage networks [24, 29, 37], yet few studies integrate SWMM 

outputs with 2D hydraulic models. LSTM-based predictive rainfall modelling also shows great promise [36, 39, 40], 

but is rarely combined with operational urban flood models. 

The present research addresses these gaps by synthesising insights across hydrology, hydraulics, machine learning, 

and climate science to develop a comprehensive real-time flood forecasting and drainage simulation system for 

Nandigama. 

2. Objectives 

1. To develop an LSTM-based rainfall nowcasting model for predicting short-term rainfall (0–3 hours) for 

Nandigama. 

2. To simulate stormwater drainage behaviour using SWMM and assess its interaction with surface flooding. 

3. To integrate SWMM and HEC-RAS 2D for detailed urban flood modelling. 

4. To evaluate structural and non-structural flood mitigation strategies and quantify reduction in flood depths and 

inundation extents. 

3. Study Area 

Nandigama, located in the Krishna District of Andhra Pradesh, is characterised by flat terrain, monsoon-driven rainfall, and mixed 

land-use patterns. Rapid urbanisation has reduced natural infiltration, causing frequent waterlogging. The municipality comprises 

several high-risk villages identified in previous studies, including Adiviravulapadu, Gollamudi, Jonnalagadda, Kanchela, and 

Pallagiri. 

4. DATA USED  

The study utilised a comprehensive set of hydrological, hydraulic, spatial, and model-derived datasets to support real-

time flood forecasting and drainage simulation in Nandigama. Hourly rainfall data for the period 2005–2020 was 

obtained from both APSDPS and IMD stations, providing a reliable long-term meteorological record essential for 

rainfall trend analysis, LSTM training, and event-based simulation. These datasets offered sufficient temporal 

resolution to capture high-intensity, short-duration rainfall events that are typical of monsoon-driven urban flooding. 

Detailed information on the municipal stormwater network was collected to facilitate accurate drainage modelling. 

The drainage inventory consisted of 78 junctions, 93 conduits, 11 outfalls, and three existing trunk lines, including 

pipe attributes such as diameter, length, invert elevation, and material type. This dataset formed the basis for 

reconstructing the underground drainage system within the SWMM environment and assessing its hydraulic 

performance under varying rainfall intensities. 

Spatial data played a crucial role in characterising the terrain, land-use pattern, and built environment of Nandigama. 

A 10-m resolution Digital Elevation Model (DEM) was used to derive topographic parameters such as slope, flow 

direction, and catchment boundaries. Land-use/land-cover (LULC) maps for 2020, 2030, and 2035 provided insights 

into urban growth and future imperviousness scenarios. Additionally, detailed GIS layers of the road network and 

building footprints were incorporated to capture the urban geometry influencing surface runoff and flood routing. 

The study also relied on output datasets from a previously completed modelling effort. These included boundary flow 

conditions from HEC-HMS, which supplied inflow hydrographs for the hydrodynamic simulations, and inundation 

extents from earlier HEC-RAS runs, which aided in model calibration and comparison. Furthermore, downscaled 

climate projections using SDSM were used to incorporate future rainfall scenarios and assess long-term flood risk. 

Together, these datasets provided the multi-dimensional information required to develop an integrated, accurate, and 

operational flood modelling framework for Nandigama. 
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5. Methodology 

 

The methodology adopted in this extended research integrates hydrological forecasting, drainage system modelling, machine-

learning-based rainfall prediction, and two-dimensional hydraulic flood simulation into a unified framework. Unlike traditional 

flood studies that focus only on surface runoff or rainfall–runoff processes, this approach captures both surface flooding and 

underground drainage behaviour, enabling real-time operational flood forecasting for Nandigama. The entire workflow consists 

of seven major components: (1) data preparation and integration, (2) LSTM-based short-term rainfall nowcasting, (3) SWMM 

modelling of stormwater drainage, (4) HEC-RAS 2D simulation of surface flood routing, (5) two-way coupling between SWMM 

and HEC-RAS, (6) flood mitigation scenario design, and (7) model validation and performance assessment. A detailed description 

of each component is provided below. 

5.1 Data Preparation and Integration 

5.1 Data Preparation and Integration 

The study utilised multiple datasets sourced from IMD, APSDPS, NRSC, the Andhra Pradesh Municipal Engineering 

Department, and outputs from the earlier HEC-HMS and HEC-RAS modelling work. All datasets were preprocessed 

to ensure compatibility with the modelling framework. Hourly rainfall data (2005–2020) underwent outlier removal, 

missing-value interpolation, event separation through minimum inter-event time, and statistical consistency checks 

including mean, standard deviation, skewness, and coefficient of variation. Spatial datasets comprised a 10 m 

resolution DEM, LULC maps for 2020–2035, road networks, building footprints, and the digitised stormwater 

drainage network. DEM-derived layers such as slope, flow direction, and flow accumulation were prepared in ArcGIS 

to support hydrodynamic modelling. The municipal drainage layout—consisting of 78 junctions, 93 pipes, 11 outfalls, 

and 3 trunk lines—was cleaned and corrected for pipe attributes, invert elevations, and connectivity. All spatial data 

were resampled to WGS 84 UTM Zone 44N to maintain coordinate uniformity. 

5.2 Rainfall Nowcasting Using LSTM 

Short-term rainfall prediction was achieved through a Long Short-Term Memory (LSTM) neural network trained to 

forecast rainfall 0–3 hours ahead. The rainfall data was normalised and structured into a 24-hour sliding input window, 

with an 80:20 training–testing split. The LSTM architecture comprised two layers of 64 units each, followed by a 

dropout layer to reduce overfitting and a dense output layer. The model was trained using the Adam optimiser and 

MSE loss function. Performance evaluation yielded strong results, with RMSE = 3.8 mm, MAE = 2.1 mm, and NSE = 

0.87, confirming the model’s ability to reproduce short-duration rainfall bursts. The predicted rainfall series served as 

dynamic forcing input for both SWMM and HEC-RAS 2D simulations. 

5.3 Stormwater Drainage Simulation Using SWMM 

The SWMM model was constructed to replicate the hydraulic behaviour of Nandigama’s stormwater network. Each of 

the 93 conduits and 78 manholes was assigned properties including length, diameter, slope, and roughness. Dynamic 

wave routing was used to capture pressurised flow, surcharging, and backflow. Field-based clogging conditions of 20–

40% were applied to assess system sensitivity to maintenance issues. Tailwater levels from HEC-RAS outputs were 
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incorporated to simulate realistic downstream conditions. SWMM generated detailed outputs including surcharge 

duration, overflow discharge, and outfall hydrographs for subsequent integration with the hydrodynamic model. 

5.4 Surface Flood Modelling Using HEC-RAS 2D 

HEC-RAS 2D was used to model surface runoff, flood propagation, and overland flow patterns. A 10 m 

computational mesh was constructed, with Manning’s roughness assigned based on LULC categories. The model used 

HEC-HMS hydrographs as upstream inflows, SWMM outfall hydrographs as lateral inputs, and LSTM rainfall 

predictions applied as rainfall-on-grid. The hydrodynamic solver applied shallow-water equations using the 

Preissmann implicit scheme with adaptive timesteps. The model produced depth grids, velocity fields, and flood 

inundation extents for multiple storm scenarios. 

5.5 Dynamic Coupling of SWMM and HEC-RAS 

A two-way dynamic coupling was implemented to simulate the interaction between subsurface drainage flow and 

surface flooding. Surcharged manhole volumes from SWMM were imported into HEC-RAS as point inflows, while 

surface water levels from HEC-RAS were fed back to SWMM as tailwater elevations. This minute-by-minute 

exchange enabled accurate representation of drainage overflow onto roads, flow reversal in pipes, and prolonged 

ponding in depressions. 

5.6 Mitigation Scenario Development and Validation 

Four scenarios were modelled: S1 (existing conditions), S2 (drainage upgrades), S3 (green infrastructure), and S4 

(combined measures). These scenarios allowed assessment of structural and non-structural flood mitigation strategies. 

Model validation was performed through field observations, municipal flood records, and historical flood locations. 

Performance indicators demonstrated high reliability: Hit Rate = 0.82, False Alarm Ratio = 0.14, and CSI = 0.71, 

confirming the robustness of the integrated framework 

6. Results and Discussion 

Table 1. LSTM Rainfall Nowcasting Performance (0–3 Hour Prediction) 

Metric Value 

RMSE (mm) 3.8 

MAE (mm) 2.1 

NSE 0.87 

Correlation (R) 0.91 

Forecast lead-time 30–45 minutes 

Peak rainfall capture accuracy 89% 

Table 2. Drainage Network Performance Under Existing Conditions (SWMM) 

Parameter Value 

Total manholes 78 

Surcharged manholes 22 

Overflowing manholes 9 

Maximum surcharge depth (m) 1.42 

Maximum conduit filling (%) 97% 

Average surcharge duration (min) 38 

Nodes with reverse flow 5 

Outfall peak flow (m³/s) 18.4 
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Table 3. Flood Depths (HEC-RAS 2D) in Major Localities – Baseline Condition 

 

Locality 
Maximum Flood 

Depth (m) 

Average 

Depth (m) 
Inundated Area (ha) 

Adiviravulapadu 1.85 0.92 312 

Gollamudi 1.62 0.78 267 

Jonnalagadda 1.34 0.61 198 

Kanchela 1.49 0.73 221 

Pallagiri 1.71 0.84 245 

                                      

 

Table 4. Comparison of Mitigation Scenarios (S1–S4) 

 

Scenario Description 

Flood 

Depth 

Reduction 

(%) 

Inundation 

Area 

Reduction 

(%) 

Surcharge 

Reduction 

(%) 

S1 Existing System – – – 

S2 Drainage Upgrade 18% 12% 29% 

S3 Green Infrastructure 22% 15% 17% 

S4 Combined Strategy 34% 27% 41% 

 

                           Table 5. Change in Flood Extent (ha) for 2020–2040 Under Climate + LULC Change 

Year Peak Discharge (m³/s) Total Flood Extent (ha) % Increase Compared to 2020 

2020 148 1340 ha – 

2030 158 1478 ha +10.3% 

2040 171 1624 ha +21.2% 

 

 

Fig.1 LSTM Performance Metrics 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                www.jetir.org (ISSN-2349-5162) 

JETIR2511495 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e760 
 

 

                                                    Fig.2 Maximum Flood Depth by Locality 

 

                                            Fig.3 Scenario-wise Flood Depth Reduction (%) 

  

                                                            Fig.4 Flood Extent (ha) for 2020–2040 

 

 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                www.jetir.org (ISSN-2349-5162) 

JETIR2511495 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e761 
 

 

                                                      Fig.5 Inundated Area (ha) by Locality 

6.1 Rainfall Nowcasting Performance (LSTM Model) 

The LSTM rainfall nowcasting model produced highly accurate short-term rainfall predictions essential for real-time flood 

forecasting. The model achieved an RMSE of 3.8 mm and an MAE of 2.1 mm, demonstrating its capability to capture the 

variability of short, intense rainfall bursts that commonly trigger urban flooding. The NSE value of 0.87 indicates a high level of 

agreement between observed and predicted rainfall. 

A visual inspection of the performance graph shows that the model successfully captures peak rainfall events, which are critical 

for flood forecasting. The 30–45 minute prediction lead-time offered by the model greatly enhances the operational readiness of 

municipal authorities. Such predictive capability allows early warnings to be issued, enabling communities to prepare for flooding 

and activate evacuation protocols where necessary. 

6.2 Drainage Network Behaviour Under Existing Conditions (SWMM) 

The SWMM simulation revealed significant deficiencies in the current stormwater drainage system of Nandigama. Out of 78 

manholes, 22 experienced surcharging during storm events, clearly indicating inadequate pipe capacity or poor gradient 

alignment. Additionally, 9 manholes overflowed onto the roads, contributing directly to surface flooding. 

The high percentage of surcharged nodes (approximately one-third of the network) reflects structural bottlenecks in the drainage 

layout. The maximum surcharge depth reached 1.42 m, while several conduits operated at more than 90% filling. Flow reversals 

at five junctions further indicate hydraulic imbalance caused by downstream backwater conditions or insufficient outfall capacity. 

Overall, the drainage network is unable to cope with present runoff volumes, highlighting the urgent need for both structural 

upgrades and routine desilting operations. 

6.3 Spatial Flood Characteristics (HEC-RAS 2D) 

HEC-RAS 2D simulations provided detailed insights into flood depth, inundation area, and flow velocity across the region. The 

results show that Adiviravulapadu recorded the highest flood depth of 1.85 m, followed by Pallagiri (1.71 m) and Gollamudi (1.62 

m). These depths significantly exceed the safe threshold for urban roads (0.3–0.5 m), making these zones extremely vulnerable 

during rainfall events. 

The total inundated area under baseline conditions was 1340 hectares. Adiviravulapadu accounted for the largest share (312 ha), 

indicating that it is repeatedly prone to severe flooding. In addition, velocity maps indicated flow speeds above 1 m/s in narrow 

built-up corridors—conditions capable of causing erosion, damaging properties, and endangering residents. 

These findings reinforce that several regions of Nandigama experience deep, widespread, and high-velocity flooding due to a 

combination of terrain depressions, obstructed drainage, and rapid urban expansion. 
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6.4 Evaluation of Mitigation Scenarios (S1–S4) 

Four mitigation scenarios—S1 (existing), S2 (drainage improvement), S3 (green infrastructure), and S4 (combined)—were 

evaluated to quantify potential flood reduction. 

6.4.1 Flood Depth Reduction 

Drainage improvements under S2 achieved an 18% reduction in flood depth, whereas green infrastructure interventions (S3) 

yielded a 22% reduction due to increased infiltration and delayed runoff. The combined mitigation strategy (S4) performed the 

best, achieving a 34% reduction in flood depth. In Adiviravulapadu, depth decreased from 1.85 m to approximately 1.22 m, 

indicating a significant improvement in safety and mobility. 

6.4.2 Inundation Area Reduction 

Under S4, the total inundation area dropped from 1340 ha to 977 ha, representing a 27% reduction. Green infrastructure alone 

reduced the flooded area by 15%, while drainage improvements reduced it by 12%. These results demonstrate that integrated 

interventions offer the best resilience outcomes. 

6.4.3 Drainage System Improvement 

Surcharge duration in manholes decreased by 29% under S2, 17% under S3, and by a substantial 41% under S4. The improved 

connectivity and increased infiltration under S4 enhanced system stability and reduced overflow occurrences. 

Overall, Scenario S4 is the most effective strategy, offering holistic improvements across hydrological, hydraulic, and surface-

flow components. 

6.5 Long-Term Flood Hazard Escalation (2020–2040) 

The combined influence of climate change and land-use transformation indicates a consistent escalation in flood hazards over the 

next two decades. Peak discharge increased from 148 m³/s in 2020 to 171 m³/s by 2040, marking a 15.5% rise due to increased 

impervious surfaces and more intense rainfall events. 

The spatial extent of flood inundation expanded from 1340 ha in 2020 to 1624 ha in 2040, representing a 21.2% increase. These 

trends align with the observed 33% increase in built-up area between 2000 and 2020, which significantly reduces infiltration 

potential and increases surface runoff. 

Climate downscaling results also indicate a rise in short-duration high-intensity rainfall events, further intensifying flood hazards. 

If no mitigation strategies are implemented, Nandigama may experience more severe and frequent urban flood disasters in the 

near future. 

7. Conclusion 

This extended research demonstrates the effectiveness of integrating drainage simulation, surface flood modelling, and machine 

learning rainfall forecasting for flood mitigation in Nandigama. The system provides actionable early warnings and quantifies the 

effectiveness of drainage upgrading and green infrastructure interventions. The significant reduction in flood depths and 

inundation area highlights the need for municipalities to adopt this integrated modelling framework to enhance climate resilience. 
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