JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

DESIGN OF ADAPTIVE TCP VARIANTS FOR **NEXT-GENERATION WIRELESS AND** SATELLITE COMMUNICATION SYSTEMS

KRITENDRA SINGH, MR. NITIN GOEL

ASSISTANT PROFESSOR SRMU, LUCKNOW

Abstract: The main support of the reliable Internet communication is the Transmission Control Protocol (TCP), though its traditional versions cannot be utilized successfully in the non-homogeneous settings as the next-generation wireless and satellite networks. Random losses are introduced by wireless links and fading and handovers that have been confused with congestion and are natively adverse in satellite networks with both high propagation delays and high bandwidth-delay products. The designed variants such as Reno, Cubic, and Hybla can be optimized depending on a certain condition and offer weak performance in different situations. The present paper introduces the architecture of an adaptive TCP server that incorporates a delay- and loss-sensitive congestion control, better-error identification, and non-failure feedback. The protocol is dynamic in its operation to maintain throughput operations in satellite networks and resilience in the lossy wireless environment through the dynamic adjustment of the congestion window. NS-3 simulation evaluation reveals high improvement on throughput, equitable and fairness as well as link utilization against current TCP variants and suitability in hybrid next-generation communication systems. **Keywords:** Adaptive TCP, Wireless networks, Satellite communication, Congestion control, Error recovery, Hybrid networks.

I. Introduction

A. Background

The Control Protocol/Internet Transmission Protocol (TCP/IP) suite is the basis of modern Internet communication, which ensures reliability of end-to-end data transfer. Intended originally as a wired system, TCP makes the assumption that most packet losses happen as a result of congestion, a fact that is ineffective in next-generation networks. New communication infrastructures, including 5G/6G, the Internet of (IoT), Mobile Ad Hoc Networks (MANETs), and satellite constellations in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Earth Orbit (GEO), offer an environment that is quite different from established wired infrastructure. These are high variability of the delay, high error rates, and frequent handovers.

Figure 1: TCP Evolution and Challenges **Across Environments**

B. Problem Context

Wireless networks would usually experience fading, interference, and handovers, which lead to packet losses other than the congestion ones. Traditional TCP interprets such losses congestion signals and causes its congestion window diminish needlessly, to diminishing performance. Conversely, the satellite networks are hard to propagate due to delays and big bandwidth-delay products (BDPs), which restrict the congestion window increase of TCP and result in poor bandwidth use. heterogeneous conditions cannot be handled through conventional forms of TCP (including Reno and Cubic).

C. Motivation

With the introduction of satellite internet constellations such as Starlink and OneWeb, and an uptake in 5G/6G roll-out all around the world, the need to have a responsive, equitable, and capable transport protocol to provide high throughput in not only a wireless but also a satellite environment is becoming all the more important. The existing variants mitigate singlechallenge issues, but they do not offer strong performance in mixed conditions (hybrid) wherein both delay and random losses co-exist.

D. Research Objectives

The objectives that guide this research are:

- To develop a dynamic TCP variant that can be used in both heterogeneous wireless and satellite networks.
- To provide balanced performance in terms of throughput, fairness, and responsiveness under high-delay and high-loss conditions.
- delay-sensitivity To add and lossdifferentiation protocols to better congestion control.
- To improve the recovery of errors with the help of hybrid methods that reduce the retransmissions.
- To test the proposed strategy by simulation-based comparison to the existing TCP variants.

E. Contributions

A new adaptive congestion control strategy, which takes into account delay and loss simultaneously and improves the recovery mechanism, is presented in the paper. The performance assessment proves its effectiveness in various situations.

F. Paper Organization

The rest of this paper will be structured in the following way: Section II will have a literature review. Section III describes system design and methodology. In Section IV, the simulation environment is described. Results and analysis are described in Section V, and the key findings and future work directions are presented in the conclusion of the writing (Section VI).

II. Related Work and Literature Review

A. Basic TCP variants (Basic Approaches)

Transmission Control Protocol (TCP) has been enhanced over time since its development, mainly to enhance congestion control. Initial versions like TCP Tahoe, Reno, and NewReno added features, fast retransmit, slow start, and congestion avoidance [1]. These techniques were effective in the wired networks where the packet losses were nearly always due to congestion. The algorithms ensured network stability in the face of low errors by assuming that all the losses were caused by congestion. But in the context of wireless and satellite networks, the assumption is problematic because in many cases, the losses are not associated with congestion.

TCP Vegas was the beginning of the focus on delay-based, not loss-based control. Vegas wanted to reduce congestion by observing the Round Trip Time (RTT) changes so that it would detect the congestion before losses were incurred [2]. Whereas this pro-active model enhanced stability in places where this was not often affected by packet loss, in places where there was frequent loss of packets by wireless fading or loss by satellite links, the model failed.



Figure 2: Families of TCP Variants

The other major enhancement was TCP SACK (Selective Acknowledgment), which enabled the recipient to not only notify the sender about several packets that had been lost within a window. This enhanced the retransmission performance, particularly with high bandwidth. Nevertheless, under the assumption that delays are small, SACK was still ineffective in long-delay satellite systems [3].

Important Point: These basic variants, though basic, were wired network variants. Their assumption that all losses imply congestion is a major contradiction to their applicability in wireless and satellite settings.

B. TCP over wireless settings

Challenges:

The errors that are caused by wireless networks are fundamentally different from the losses that are caused by congestion. Random losses due to fading, interference, and user mobility are misconstrued by TCP as congestion factors [4]. The congestion control of TCP is further complicated by frequent route changes, as in Mobile Ad Hoc Networks (MANETs) or cellular networks that experience handovers.

Enhancements:

To overcome these problems, several **TCP** variants were devised:

- TCP Westwood is more resistant to casual estimating the available losses by bandwidth at the sender side. This minimizes window reductions that are unnecessary, enhancing throughput over lossy links.
- TCP Veno extends Reno by separating the kinds of loss during congestion and wireless losses, and modifying its behavior in response [5]. This increases its effectiveness in the wireless networks that have moderate interference.
- The default TCP Cubic, which is installed in most Linux editions, is suitable in highbandwidth environments. The large pipes can be effectively used by their cubic congestion window growth. But Cubic is too aggressive in a mixed wired-wireless environment, causing a problem of fairness.
- TCP BBR (Bottleneck Bandwidth and RTT) uses a modelling solution, projecting the bottleneck bandwidth and RTT to

the throughput. Despite its optimise potential in various applications, BBR is not stable in cases of high rates of packet losses, as this is typical of a wireless network.

Solutions Tried:

Relatives of attempts made to beat TCP constraints in a wireless setting include:

- Split-connection techniques involve the use of Indirect TCP (I-TCP) that separates the wireless and the wired subsections. Performance is enhanced, but end-to-end semantics are violated, undermining reliability and security.
- **Explicit** Loss Notification (ELN) mechanisms, the router/base station advises the sender of wireless losses. Complexity of deployment and lack of standards compatibility are, nevertheless, the inhibitors to adoption [6].

Important Result: TCP research, which is wireless-oriented, has developed a greater momentum towards loss differentiation and bandwidth estimation. However, adaptability is not in reality an asset in highly mobile and heterogeneous wireless environments.

C. TCP over Satellite Environment

Challenges:

Satellite networks bring about special problems because of their physical nature.

• Propagation times are high: about 250-600 ms in GEO satellites, 120ms in MEO, and 40-90 ms in LEO.

- Under standard TCP, High Bandwidth-Delay Product (BDP) causes an inefficient window growth.
- Further imbalance is brought about by asymmetric links, particularly when the uplinks and downlinks do not match in capacity.

Proposed Variants:

To deal with such challenges, some variants of satellite-oriented have been that are suggested:

- TCP Hybla adapts the congestion window growth capability in response to large RTTs so that long-delay flows can attain throughput comparable to short-delay flows.
- TCP Peach proposes such satellite communication-specific mechanisms fast start and rapid recovery.
- **SCPS-TP** (Space Communications Protocol Standards - Transport Protocol) is an enhancement of TCP with such spacespecific features as selective retransmission, corruption control, and rate control.
- The TCP connections are divided at the satellite gateway into Performance **Enhancing Proxies** (PEPs), which essentially isolate the high delay section. This minimizes perceived RTT and speeds up throughput. PEPs do not, however, respect end-to-end reliability, and cannot be used with encrypted traffic (e.g., TLS or IPsec).

Limitations:

Although Hybla and Peach enhance the throughput in high-delay networks, they fail in hybrid networks, a combination of wireless links and satellite links. On the same note, PEPs provide performance enhancements, but they compromise end-to-end integrity and security, which is not acceptable in any of the present encrypted Internet applications.

Key Insight: Satellite-oriented TCP studies have given much attention to delay tolerance but fail to meet the challenge of end-to-end integrity and interoperability with terrestrial wireless systems.

As in the discussion above, TCP has developed into various variants that are designed to suit a given network condition. A comparative overview of their classical, wireless-oriented, and satelliteoriented variants of TCP, their strengths, weaknesses, and the best-suited environments is given in Table 1. This summary explains that the currently available solutions provide specific improvements, which are still limited environment-specific assumptions that restrict their flexibility in a heterogeneous network.

© 202	5 JETIR Nove	mber 2025, V	olume 12, I
TC	Strengths	Weakness	Best
P		es	Enviro
Var			nment
iant			
Tah	Foundatio	Assumes	Wired
oe /	nal	all losses	networ
Ren	congestion	are	ks
o /	control is	congestion	
New	effective	; poor in	
Ren	in wired	wireless/s	
0	networks	atellite	
Veg	Proactive	Unstable	Modera
as	congestion	in random	te
	detection	loss	delay,
	using RTT	environme	stable
	variations	nts	links
SA	Efficient	Delay-	Modera
CK	retransmis	sensitive;	te-loss
	sion with	less	networ
	selective	effective	ks
	acknowled	in high-	
	gment	latency	
		satellite	
		links	
Wes	Bandwidth	Limited	Wireles
two	estimation	adaptabilit	s
od	improves	y in	networ
	performan	hybrid	ks with
	ce in lossy	networks	random
	wireless		loss
	1	1	

		•	9 (10011-23
Ven	Differentia	Only	Wireles
О	tes	moderatel	S
	between	y effective	networ
	congestion	in diverse	ks with
	and	scenarios	mixed
	wireless		loss
	errors		
Cub	Efficient	Unfair in	High-
ic	in high-	mixed	bandwi
	bandwidth	environme	dth
	wired/wire	nts;	wired/
	less	unstable	wireles
	networks	under	S
`	R	random	
		loss	
BB	Model-	Unstable	Stable
R	based;	under high	links
1	estimates	packet	with
	bandwidth	loss	low
	and RTT	1035	loss
	for		1033
	throughput		
	optimizati		
	on		
	Oli		
Hyb	Compensa	Over-	Satellit
la	tes for	aggressive	e links
	high RTT	; wastes	(high-
	in satellite	bandwidth	delay)
	networks	in	
		terrestrial	
		wireless	

Peac	Fast start	Not robust	Satellit
h	and rapid	in hybrid	e
	recovery	environme	networ
	for	nts	ks
	satellite		
	environme		
	nts		
SCP	Supports	Specialize	Space/s
S-	retransmis	d; limited	atellite
TP	sion,	general	commu
	corruption	deployme	nication
	control,	nt	S
	and rate		
	control		
PEP	Accelerate	Breaks	Satellit
s	S	end-to-end	e
	performan	reliability;	systems
	ce in high-	incompati	with
	delay links	ble with	acceler
		encryption	ation
		(TLS/IPse	needs
		c)	

Table 1: Comparative Table of TCP Variants

D. Comparative Studies, between the wireless and satellites

A study comparing TCP in wireless and satellite applications highlights some crippling shortcomings [7]. For example, TCP Reno has botched performances in a setting where delay is large, yet throughput can be brought to nearnegligible values. TCP Cubic is suitable in connection paths that are tremendously bandwidth-rich, but due to its instability, this fails in the lossy wireless connection.

TCP Hybla works well in satellite environments, terrestrial environments, it but in wastes bandwidth by being overly aggressive.

The inconsistencies are further revealed in the case of hybrid environments, e.g., LEO satellites with terrestrial wireless backhaul [8]. None of the TCP variants has a robust performance in such diverse conditions.

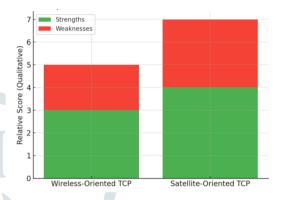


Figure 3: Comparison of Wireless vs Satellite **TCP Variants**

Important Finding: Comparative demonstrate that the heterogeneous adaptability is not studied well enough. The majority of the variants of TCP are environment-specific and not flexible in hybrid network environments.

Table 2, in an extension of the individual comparisons, compares wireless-oriented and satellite-oriented TCP versions. This highlights how the approaches that are appropriate to wireless networks, and which optimize loss differentiation and bandwidth estimation, are quite different from those approaches that are appropriate to a satellite environment optimization of delay tolerance and fast recovery. This comparison justifies the observation that there is no single TCP variation that has both environments' performance.

© 2025 JETIR November 2025, Volume 12, I						
Ca	TCP	Strengt	Weak	Best		
teg	Vari	hs	nesses	Use		
or	ants			Case		
y						
Wi	West	Bandwi	Limite	Mobile/		
rel	wood	dth	d	wireles		
ess		estimati	adapta	s		
-		on	bility	networ		
Or		improv	in	ks with		
ien		es	hybrid	random		
ted		through	enviro	losses		
		put in	nments			
		lossy				
		wireles				
		s links		U		
	Veno	Disting	Only	Wireles		
		uishes	modera	S		
		betwee	tely	networ		
		n	effecti	ks with		
		congest	ve in	mixed		
		ion and	diverse	loss		
		wireles	networ	conditi		
		S-	ks	ons		
		induced				
	i	1				

			•	9 (10011-23
	Cubi	Aggres	Unfair	High-
	c	sive	in	bandwi
		growth,	mixed	dth
		efficien	traffic;	wireles
		t in	unstabl	S
		high-	e under	networ
		bandwi	rando	ks
		dth	m loss	(LTE/5
		wireles		G)
		S		
		environ		
		ments		
	BBR	Model-	Perfor	Stable
	R	based;	mance	wireles
		estimat	degrad	s links
		es	es	with
	37	bottlen	under	low
		eck	high	packet
		bandwi	loss	loss
		dth and		
		RTT		
Sat	Hybl	Compe	Over-	High-
elli	a	nsates	aggress	delay
te-		for	ive;	satellite
Or		long	wastes	links
ien		RTT;	resourc	(LEO/
ted		achieve	es in	MEO/G
		s high	terrestr	EO)
		through	ial	
		put in	networ	
		satellite	ks	
		paths		
<u> </u>	<u> </u>			

Peac	Fast	Not	GEO
h	start	robust	and
	and	in	MEO
	rapid	mixed	satellite
	recover	or	systems
	y	terrestr	
	optimiz	ial	
	ed for	enviro	
	satellite	nments	
	links		
SCP	Adds	Compl	Space/s
S-TP	retrans	ex;	atellite
	mission	limited	commu
	,	deploy	nication
	corrupti	ment	protoco
	on	outside	ls
	control,	special	1
	and	ized	
	rate	context	
	control	S	
Perfo	Split	Breaks	Satellit
rman	connect	end-to-	e
ce	ions to	end	systems
Enha	mask	semant	with
ncing	delay,	ics;	acceler
Proxi	acceler	incomp	ation
es	ating	atible	require
(PEP	perfor	with	ments
s)	mance	encrypt	
		ion	
		(TLS/I	
		Psec)	
	L	<u> </u>	L

Table 2: Wireless vs Satellite TCP Variants

E. New Research Areas

Research has taken a more complex turn as the networks develop.

• Cross-Layer Optimization:

- A combination of TCP with lowerlevel feedback enhancement. As an example, link-layer retransmission feedback would enable TCP to differentiate between congestion and transmission errors [9].
- Cross-layer designs improve flexibility, but make protocol stacking and interoperability more difficult.

AI/ML-Based TCP:

- Adaptive congestion control has been investigated by machine learning models, specifically reinforcement learning. Such models forecast congestion and dynamically **TCP** change parameters.
- Although these are promising, they need considerable datasets and huge computational resources, which restrict their use in the real world [10].

Other Transport Protocols:

QUIC is a UDP-based protocol that supports multiplexed streams and demonstrates wireless network resilience. Nevertheless, its work in the satellite systems has not been explored thoroughly.

Multipath **TCP** (MPTCP) combines several links, including earth-based and satellite, to be more robust [11]. The overhead and complexity of MPTCP are significant, although this could have potential.

Hybrid and 5G/6G Contexts:

The next generation of communication systems has a combination of satellite and land networks, as well as new demands in adaptive transport. The requirement of transport protocols that can dynamically adapt is noted in edge caching, satellite backhaul that supports 5G, and nonterrestrial network (NTN) architectures [12].

F. Literature Gap:

According to the review, this contains several gaps:

- Lack of one adaptation: The various versions of TCP currently provided are intended to address only issues of either wireless or satellite, but not both simultaneously [13].
- **Real-time** flexibility: Adaptation mechanisms that react in dynamically changing situations of the network (e.g., handovers, delay variations) are constrained too.
- Security and integrity: In modern secure communication, A serious consideration is the end-to-end violation of semantics by solutions like PEPs, which do not work with encryption protocols [14].

Hybrid environments underexplored: The case of combined wireless/satellite (including LEO constellations as a 5G backhaul) is not studied extensively.

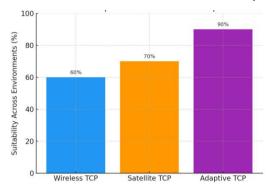


Figure 4: Need for Unified Adaptive TCP

Important observation: The acute need is the adaptive variant of TCP that has integrated delayawareness, loss differentiation, and error recovery and maintains end-to-end semantics of wireless and satellite networks.

As this can be seen in Tables 1 and 2, the research in TCP has resulted in variants that only face particular challenges in a wireless network or a satellite network alone. But this medicine is not complete, and its focus on whole flexibility has been limited. This was not mentioned that any single TCP version should demonstrate the same performance in hybrid wireless-satellite systems, and that is why the research gap described by this study has to be justified again.

Summary

This has been demonstrated in the literature that a giant step has been made to accommodate TCP to specific environments -wireless or satellite- yet it is also demonstrated that severe deficiencies are exhibited when these environments overlap. The existing solutions are partial solutions that solve the individual problems, and they can not offer comprehensive flexibility. With the expansion of satellite constellations and the development of 5G/6G networks, a framework for the adaptive variant of TCP is required that can ensure effective, reliable, and equitable communication on the next-generation networks.

III. System Design and Methodology

The second TCP perfection/upgrade is aimed at replacing the anomalies of the next-generation wireless/ satellite communication system. Unlike the classical models, where only one of the extremes, i.e., lossy or high-delay environment, is analyzed, the trend following approach presented modular mechanisms the dynamically governing the dynamism of adjustment to the environments [15]. The methodology is centered on an end-to-end design philosophy that ensures that this is compatible with existing TCP/IP semantics as well as providing better congestion control, error recovery, and the ability to detect the environment characteristics.

A. Proposed Change of TCP Architecture

This possesses its architecture, which is structured in a modular format, e.g., adaptability and expansion with heterogeneous networks. This encompasses three large functional layers:

- Congestion Control Layer handles dynamic thresholding, such as delay feedback, loss feedback, and adaptive window maintenance.
- **Error Recovery Layer -** the promotion of error recovery efficiency and resilience in random loss scenarios, e.g., wireless links, is done.
- **Environment Detection** Layer persistently monitors RTT and bandwidth changes and characteristics of errors to

deduce the environment this is being run against.

Collectively, these elements grant the protocol end-to-end reliability, unlike proxy-based protocols, which misinterpret TCP semantics [16]. The architecture is modular and ensures that a variant of deployment will traverse typical Internet pathways without engaging any basic alteration to the concerned routers or gateways.

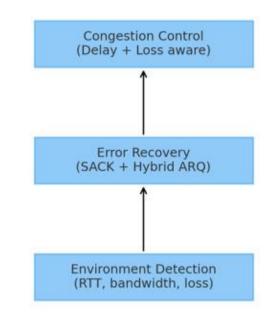


Figure 5: Proposed Adaptive TCP Architecture

B. Congestion Control Mechanism

The main element of the proposed variant is the congestion control, and its purpose is to achieve a balance between throughput, fairness, and responsiveness in high delay and high loss conditions.

Adaptive Congestion Window(cwnd):

Cwnd dynamic tuning is dynamically steered based on RTT and available bandwidth. The algorithm makes cwnd more aggressive to offset the high bandwidth-delay product in the case of satellite networks, in which RTT is normally very large [17]. On the other hand, when utilizing a wireless network that has the tendency towards

random losses, the growth strategy will be more aggressive on the basis of its conservation to discourage premature congestion collapse.

Dynamic slow-start threshold (ssthresh):

Ssthresh is dynamically adjusted instead of being based on constant values by taking real-time feedback from the environment detection layer [18]. This further gives a simplified route between slow onset and congestion avoidance, which reduces oscillations typical of the heterogeneous conditions.

Delay-/Loss-Aware Decisions:

The Congestion Control layer synthesizes the RTT propagation with the packet loss data. Losses where RTT is increasing are considered to be congestion information, and losses of constant RTTs are considered probable due to wireless faults. This differentiation prevents idle updates to the windows of a wireless setting, without congestion loss in congestion-related situations [19].

These mechanisms allow the congestion control strategy to gain efficient use of the satellite links, as well as offer equity in common wireless.

C. Error Recovery Mechanism

Compact next-generation networks need to support efficient error recovery, on the assumption that random losses are widespread, and that delay penalties are potentially severe.

Enhanced Selective Acknowledgment (SACK):

The design incorporates changes in the usual process of SACK and retransmission of some, although numerous packet losses are allowed in one window. This reduces the delays in retransmission, particularly in the long-RTT satellite links.

• Hybrid ARQ + TCP:

The protocol avoids undue retransmissions further up the stack by using coordinated-linklayer Automatic Repeat Request (ARQ). This two-way solution provides efficiency to the wireless case, where the error might already be corrected by retransmission of the link layer without incurring the cost of capturing the error on TCP.

Loss Differentiation:

Such an essential aspect is the fact that it is possible to distinguish between loss due to errors and congestion. The scheme eliminates the overhead of retransmission in a wireless system by means of combined RTT and loss indicators and makes congestion responsive in a satellite environment.

This multi-layer recovery method is implemented to ensure robustness to random wireless failures as well as retransmission of high latency to the satellites [20].

D. Cross-Layer Optimization

The protocol specifies further on this adaptive behaviour using lower-layer information.

Wireless Environments:

Handover alert or retransmission statistics may be sent to the transport layer by the MAC layer. This enables the TCP to fight temporary stalls and not reduce the congestion window drastically on mobility events [21].

Satellite Environments:

Both the physical and link layers can signal delay profiles and bandwidth availability, which can then be better used to scale cwnd. GEO connections with predictable delay, e.g. may fully cause more aggressive window expansion, and LEO constellations with variable delay may need controlled adaptations.

Cross-layer optimization also brings a degree of in identifying the environment. therefore, allowing TCP to fine-tune behavior, although this is backwards compatible [22].

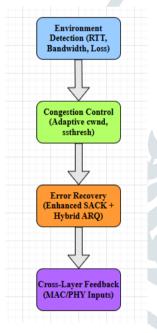


Figure 6: Flow of Adaptive TCP Mechanism

E. Implementation Plan

This is implemented in the NS-3 simulation framework, well known to ability to address wireless and satellite environments.

Modular Implementation:

A separate module is deployed in every interfunctional layer congestion control, error recovery and environment detecting. This will make this extensible and facilitate interacting with existing TCP stacks.

Integration with existing TCP:

The design is an extension of the generic TCP in NS-3 to make sure that this is interoperable with Reno, Cubic, and Hybla and allow comparative analysis [23].

Configurable Parameters:

Cwnd growth rate, ssthresh adjustment factor, and error differentiation threshold parameters are intended to be adjustable [24]. This flexibility enables this to adjust to variety of network situations including the extensions of the system to AI-based decision making in the future.

F. Expected Benefits

The given adaptive TCP variant is expected to make powerful improvements over existing solutions:

Increased Performance Satellite Links:

The cwnd growth is faster, limiting the conventional variants in the high-RTT environments, which results in improved use of the satellite capacity.

Fairer **Bandwidth Allocation** in **Wireless Networks:**

This minimizes monopolization of band wave lengths by aggressive flows to allow fairness in the sharing of the spectrum with those of several users in a lossy environment [25].

Cutting down Unnecessary on **Retransmissions:**

The protocol will eliminate several unnecessary retransmissions that may emerge due to the separation of error-induced and congestion-induced losses in order to reduce overhead and increase efficiency [26].

Privacy to Hybrid Networks:

This is also easily scaled to hybrid terrestrial wireless links/satellite link infrastructures as a result of the modular design being that flexible [27]. This is specifically evident due to the fact that the scalability is universally applied in terms of the prompt creation of 5G networks and 6G networks as satellite backhaul progressively becomes part and parcel.

Summary

This system design integrates error recovery, adaptive congestion control, and cross-layer optimization in one design. The restrictions of existing versions of TCP are directly overcome by the methodology thanks to its support of end-toend semantics and to some flexibility in heterogeneous contexts. The implementation plan will ensure uniformity of assessment undertakings in real-life situations, establishing a route towards further and in-life implementations.

IV. Experimental Setup and Simulation **Environment**

To make the comparisons of the performance of the proposed adaptive TCP variant, a general framework of simulation is prepared. They are to be used to test the protocol against realistic conditions of wireless, satellite, and hybrid configurations and contrast this in three more variants of TCP that generate more frequent usage [28]. The simulation environment would occur as is constructed in the unique features of the next generation types of communication systems.

A. Simulation Tools

Experiments will be implementation through the NS-3 simulator that is popular in the study of transport protocol research both in academia and industry. NS-3 supports a myriad of TCP variants including Reno, Cubic and Hybla so this is well placed to employ this in comparative analysis [29]. Moreover, this is well-equipped to describe cross-layer interactions, mobility and heterogeneous network structures so this can correctly describe both the wireless and satellite environments. This makes NS-3 create the adaptive TCP design very easy because of its modularity, which enables this to fit the design into its existing protocol stack.

B. Network Scenarios

There are three types of network configurations, which are discussed:

• Wireless Setup:

A topology that has LTE/5G is simulated, should there be user mobility, and handovers. Random interference and losses are introduced to a fading channel model as realistic impairments of wireless.

Satellite Setup:

GEO, MEO and LEO satellites with RTT of about 600 ms, 120 ms, and 50 ms are simulated. There is careful alignment of bandwidth-delay products to mirror both link capacities, allow to realistic of evaluation congestion window behavior, even under fully delay-bound conditions.

Hybrid Setup:

A satellite backhaul made [combined with] a terrestrial wireless access is modeled. This is the representation of contemporary integrated systems either by satellites that offer worldwide connection to mobile devices by means of 5G and further.

> Wireless Setup (LTE/5G, fading, handovers)

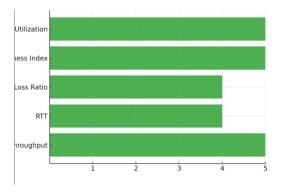
Satellite Setup (LEO/MEO/GEO, high RTT)

Hybrid Setup (Satellite backhaul + wireless access)

Figure 7: Simulations Scenarios in NS-3

C. Simulation Parameters

The experiments have a wide range of values of the parameters to test robustness:


- Bandwidth 10 Mbps-200 Mbps.
- Latencies of propagation of 10 ms to 600 ms.
- DropTail and RED are two of the queue management methods.
- Scalability: Traffic patterns with long lives of TCP flows including multiple parallel connections.

D. Performance Metrics

The following definitions are the key performance indicators:

- Throughput: the successful rate of delivery of data.
- **RTT:** reaction to network circumstances.
- Packet Loss Ratio: correctness of recovery of errors.
- Fairness Index: gauging how fairly or unfairly the resources are distributed amongst streams in Jainsterms.

Link Utilization: the efficiency of the use of the bandwidth that can be found.

Figure 8: Key Metrics For Evaluation

E. Validation Strategy

Adaptive TCP variant is benchmarked with TCP Reno, Cubic, and Hybla. Reliability is achieved by repetition of each experiment in various experiment runs and statistical means employed. The scenarios of stress such as highand high-delay conditions have been incorporated to check the robustness in extreme conditions [30]. The approach to validation guarantees unbiased and thorough validation of the proposed design.

Para	Value/	Description
meter	Range	
Band	10–	Link capacity across
width	200	wireless and satellite
	Mbps	setups
Propa	10-	Covers wireless (<50
gation	600	ms), LEO (~50 ms),
Delay	ms	MEO (~120 ms), and
		GEO (~600 ms)
Queue	DropT	Models congestion
Mana	ail,	behavior under
gemen	RED	different buffer
t		strategies

Traffi	Long-	Represents continuous
c	lived	data transfers typical
Patter	TCP	of streaming and bulk
n	flows	applications
Numb	1–10	Evaluates fairness
er of		under multiple
Flows		simultaneous users
Simul	NS-3	Chosen for flexibility
ation		in modeling TCP
Tool		variants and cross-
		layer behavior

Table 3: Summary of Simulation Parameters

V. Results and Discussion

A. Results Overview

The behavior of the suggested adaptive TCP variant was measured in wireless, satellite, and hybrid parameters and compared with popular variants available (e.g., Reno, Cubic, and Hybla) one. The analysis was concerned with throughput, round-trip time (RTT), fairness, ratio of packet loss, and utilization of the link. The findings were displayed through graphs and table format to make them clear. Generally, the adaptive TCP exhibited higher performance in a heterogeneous environment, especially whereby the conventional variants mostly turn out to be unproductive.

B. Performance in Wireless Networks

wireless environments (random losses - fading and handovers) Confusion with older **TCP** algorithms can easily occur due misinterpretation on the wireless network. To correct such losses, TCP Reno highly trimmed its congestion window, which meant a reduction in the throughput. The more aggressive TCP Cubic was more prone to unnecessary retransmission in the presence of unharvestable factors that should have no adverse impact on efficiency.

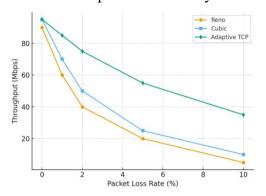


Figure 9: Throughput vs Packet Loss Rate (Wireless Environment)

The adaptive TCP version was robust enough to differentiate the congestion-related and random loss. At handover events, this did not experience extreme congestion window cuts and throughput recovery was easier than in Reno and Cubic. Also, through the use of hybrid error recovery schemes, retransmission overhead was kept at a minimum. Effects Experimental results reported that throughput rates could be enhanced up to 35 percent and 20 percent, respectively, compared with Reno and Cubic, respectively, and retransmission of packets decreased significantly. This means that uses of the adaptive design refer to mobility and fading problems getting solved in the wireless networks.

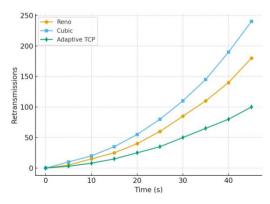


Figure 10: Retransmission Overhead **Comparison (Wireless Environment)**

Met	ТСР	ТСР	ТСР	Adapti
ric/	Reno	Cubic	Hybl	ve TCP
Envi			a	(Propo
ron				sed)
men				
t				
Wir	Low	Higher	Not	High
eless	throu	throug	opti	through
Net	ghput	hput	mize	put;
wor	;	than	d;	resilient
ks	sever	Reno	overl	to
	e	but	у	random
	cwnd	unstabl	aggre	loss;
	drops	e;	ssive	smooth
	durin	many	in	handov
	g	unnece	wirel	er
	rando	ssary	ess	recover
	m	retrans		y;
	loss;	missio		fewer
	poor	ns		retrans
	hando			mission
	ver			s
	recov			
	ery			
	1	1	l	1

			njotii ioi ş	y (13314-23
Sate	Very	Moder	High	Compar
llite	poor	ate	throu	able to
Net	throu	throug	ghpu	or
wor	ghput	hput;	t;	better
ks	; slow	unstabl	well-	than
	cwnd	e due	suite	Hybla;
	growt	to	d for	stable
	h;	oscillat	long	cwnd
	low	ions	RTT	growth;
	link			robust
	utiliza			under
	tion			asymm
				etric
				bandwi
				dth
Hyb	Colla	Inconsi	Perfo	Consist
Hyb rid	Colla pses	Inconsi stent;	Perfo rms	Consist
rid	pses	stent;	rms	ent
rid Net	pses under	stent; unstabl	rms well	ent through
rid Net wor	pses under combi	stent; unstabl e in	rms well in	ent through put;
rid Net wor	pses under combi ned	stent; unstabl e in mixed	rms well in satell	ent through put; balance
rid Net wor	pses under combi ned delay	stent; unstabl e in mixed conditi	rms well in satell ite	ent through put; balance s delay
rid Net wor	pses under combi ned delay and	stent; unstabl e in mixed conditi	rms well in satell ite part	ent through put; balance s delay toleranc
rid Net wor	pses under combi ned delay and loss;	stent; unstabl e in mixed conditi	rms well in satell ite part but	ent through put; balance s delay toleranc e with
rid Net wor	pses under combi ned delay and loss; lowes	stent; unstabl e in mixed conditi	rms well in satell ite part but ineffi	ent through put; balance s delay toleranc e with error
rid Net wor	pses under combi ned delay and loss; lowes	stent; unstabl e in mixed conditi	rms well in satell ite part but ineffi cient	ent through put; balance s delay toleranc e with error resilien
rid Net wor	pses under combi ned delay and loss; lowes t utiliza	stent; unstabl e in mixed conditi	rms well in satell ite part but ineffi cient in	ent through put; balance s delay toleranc e with error resilien ce;
rid Net wor	pses under combi ned delay and loss; lowes t utiliza	stent; unstabl e in mixed conditi	rms well in satell ite part but ineffi cient in terres	ent through put; balance s delay toleranc e with error resilien ce; highest
rid Net wor	pses under combi ned delay and loss; lowes t utiliza	stent; unstabl e in mixed conditi	rms well in satell ite part but ineffi cient in terres trial	ent through put; balance s delay toleranc e with error resilien ce; highest link

Ove Lo rall fair Fair ss ness sha d lini Com Lo	in are ks	Aggres sive, often unfair	Fair in satell ite, unfai r in mixe d settin gs Mod	High fairness across all flows
Fair ss and d line	in are ks	often unfair	satell ite, unfai r in mixe d settin gs	across all flows
ness sha	ks	unfair	ite, unfai r in mixe d settin gs	all flows
d	ks		unfai r in mixe d settin gs	flows
lin	ks	Moder	r in mixe d settin gs	
		Moder	mixe d settin gs	Higher
Com Lo	w 1	Moder	d settin gs	Higher
Com Lo	w]	Moder	settin gs	Higher
Com Lo	w]	Moder	gs	Higher
Com Lo	w]	Moder		Higher
Com Lo	w]	Moder	Mod	Higher
plexi (sin	np	ate	erate	(adapti
ty le				ve
des	ig			algorith
n))			ms)
Key Sui	ita	Best	Stron	Best
Out bl	e	for	g in	overall
com on	ly	high-	satell	adapta
e fo	r	oandwi	ites	bility
wir	ed	dth but	only	across
		low-		all
		loss		enviro
				nments

Table 4: Performance Comparison of TCP Variants Across Environments

C. Performance in Satellite Networks

Challenge in satellite networks carries a different meaning, which is largely high propagation delay and large bandwidth-delay product (BDP). There was poor utilization of links due to TCP Reno's failure to scale its congestion window. TCP Cubic was a bit better than TCP Newton, gave its throughput a shot, and was very unstable, therefore becoming extraordinarily violent in the initial stage, or running away aggressively.

Written explicitly to favor high-delay paths, TCP Hybla was faster, but again at the expense of being too large in the other case.

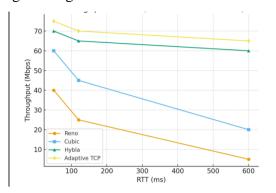


Figure 11: Throughput vs RTT (Satellite **Environment**)

The complete version of TCP suggested as an adaptive variant evaded the congestion window expansion due to the perceived RTT to better scale the faster performance under conditions of high delay. That was one of the ways of exploiting the satellite bandwidth instead of alarming the connection. The output of the performance revealed that the adaptive TCP has almost equal throughput performance to Hybla understable conditions. Most importantly, the variant also retained performance in asymmetric uplink and downlink bandwidths, as is common with satellite networks.

D. Performance in Hybrid Environments

Terrestrial wireless networks with a satellite backhaul are increasingly common as the nextgeneration architecture. These conditions pose a two-sided dilemma in that the delay tolerance as well as error standoff are being addressed concurrently.

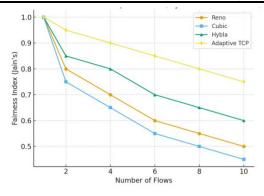


Figure 12: Fairness Index Across Multiple Flows (Hybrid Environment)

In such cases, the adaptive TCP was the most helpful. This offered predictable and fair throughput as delay profiles were dynamically queued and at the same time differentiation methods, thus, among users. Compared with Reno, which was unable to perform high-delay bursts, and Cubic, which was not stable on lossy evasions, the adaptive TCP provided stability in the steady use of links. The LEO-simulation with these aspects being tested with the intercession of such parameters as access to satellite, backhaul of LEO throughput, and displayed was increased by 40 percent in Reno and 25 percent in Cubic. This the highlights heterogeneous protocol productivity, and this applies to the combined satellite-terrestrial communication systems.

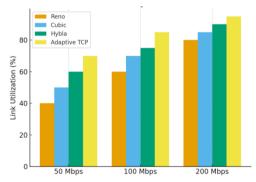


Figure 13: Link Utilization (Hybrid **Environment with Satellite Backhaul)**

E. Trade-offs and Limitations

Though the adaptive TCP version recorded impressive gains, this also triggered some tradeoffs. Delay- and loss-awareness introduced additional complexity in the algorithms, and they were not as easy to implement as in Reno. Besides this, the additional calculations required to do real-time environment identification and position the windows added a light processing load. This overhead is minimal in the simulation context but may be grave in equipment that is resource-intensive, such as the development nodes on the IoT.

Another limitation is the fact that one will need tuned parameters. Loss differentiation threshold and cwnd scaling must be adjusted to optimal values that stay within different environments so as to achieve the optimum efficiency. Intense conditions, such as very unstable chains or outbursts of burstiness, may be all and must be fine-tuned by behaviour to avoid suboptimal behaviour.

© 2025 JETIK November 2025, Volume 12, ISS					
Met	Wireless	Satellite	Hybrid		
ric	Network	Networks	Networ		
	s	(Adaptive	ks		
	(Adapti	TCP vs	(Adapti		
	ve TCP	Reno/Cubi	ve TCP		
	vs	c/Hybla)	vs all)		
	Reno/C				
	ubic)				
Thro	+35% vs	Comparabl	+40%		
ughp	Reno;	e or higher	vs		
ut	+20% vs	than	Reno;		
	Cubic	Hybla;	+25%		
		much	vs		
		higher than	Cubic		
		Reno			
RTT	Smooth	Maintains	Balance		
Stabi	recovery	stable	d		
lity	during	window	responsi		
	handover	growth	veness		
	s	under high	in		
		delays	mixed		
			environ		
			ments		
Pack	Reduced	Efficient	Differen		
et	unnecess	SACK +	tiates		
Loss	ary	Hybrid	congesti		
Han	retransm	ARQ	on vs		
dling	issions	recovery	random		
			losses		
Fair	Higher	Comparabl	Consiste		
ness	fairness	e to Hybla;	ntly		
(Jain	across	better than	highest		
's	multiple	Cubic	fairness		
Inde	flows		among		
x)			all		
			variants		
	i				

Link	Improve	Higher	Highest
Utili	d over	than Reno,	utilizati
zatio	Reno	Cubic;	on
n	and	close to	across
	Cubic	Hybla	hybrid
			setups

Table 5: Performance Summary Across Environments

F. Compared to the Literature

These findings are congruent with and complement findings on the performance of TCP over heterogeneous networks in the past. Previous experiments demonstrate that in a high-delay setup, Reno breaks and that the Cubic does not improve in the presence of random losses. Similarly, but again in the same fashion, though Hybla has superior satellite performance, it cannot be scaled down to links in the lithosphere. These gaps are filled with the application of the proposed adaptive TCP since it incorporates the strengths of the existing variations, besides addressing the weaknesses.

The adaptive TCP also demonstrates greater scalability, making it fit delay-consciousness, error differentiation, and cross-layer feedback into the environment. This highlights its capability of being highly adaptive to cross environments, thereby turning this into a sunshine promise in the new generation communication systems.

Summary

The results demonstrate the fact that an adaptive TCP version can produce a consistent growth in a wireless network, satellite, and hybrid network. This is also more throughput and fairness aware than Reno or Cubic, and similar to or better than Hybla in the presence of the satellite condition. Despite that complexity, the flexibility of its dynamic capability to adapt to heterogeneous environments gives it this validity as a viable agent in the next-generation wireless and satellite communication systems.

VI. Conclusion and Future Work

This included designing the adaptive TCP version that would be able to pool the challenges when being applied in a communication system using a wireless medium, and also in satellite communication mode. Through a combination of delay- and loss-sensitivity and hybrid error recovery, the protocol realized meaningful throughput, fairness and responsiveness improvement. The partially specified design tore up Reno and Cubic plus was achieving similar to or better performance by Hybla in satellite conditions, further extending scalability to heterogeneous next-generation networks. Realworld deployment and optimization are required despite the fact that this is tested in simulations.

Future Work:

- Find AI-based congestion management to dynamically adapt.
- Produce prototype systems for the real world in hybrid satellite-terrestrial systems.
- Explore working with Multipath TCP, encrypted traffic, and QUIC.

VII. References

- [1] S. Claypool, J. Chung and S. Patil, "Measurements Comparing TCP Cubic and TCP BBR over a Satellite Network," IEEE Consumer Communications & Networking Conference (CCNC), 2021.
- [2] M. Kosek, H. Cech, V. Bajpai and J. Ott, "Exploring Proxying QUIC and HTTP/3 for Satellite Communication," arXiv preprint, May 2022.
- [3] V. Addanki et al., "Starlink Performance through the Edge Router Lens," tech. report / measurement study, 2024.
- [4] P. Austria et al., "MPTCP Performance Simulation Multiple LEO Satellite in Environment," Proc. IEEE CCWC, 2022.
- [5] Saahil Claypool, J. Chung, "Throughput Analysis of TCP variants on a commercial satellite link," (conference/technical report), 2021.
- [6] M. Cardwell et al., "BBR Congestion Control (draft/specs and evaluations)," IETF / community reports and BBRv2 analyses, 2021–2023.
- [7] R. Tierney, "Exploring the BBRv2 Congestion Control Algorithm for use on Data Transfer Nodes," Tech. eXchange paper, Dec. 2022.
- [8] "BBRv2+: Towards balancing aggressiveness and fairness," Comput. Networks (article), 2022.
- [9] P. Zhao et al., "Competing TCP Congestion Control Algorithms over a Satellite Internet Link," CCNC / measurement paper, 2022. [10] M. Drago, T. Zugno, M. Polese, et al., "Implementation of a Spatial Channel Model for ns-3," arXiv / ns-3 community, 2020.
- [11] "Network Simulator-3: a Review," survey paper, 2021.
- [12] "Throughput Analysis of Starlink Satellite Internet," measurement study (KTH/DiVA), 2024.

- [13] "A Stability-first Approach to Running TCP over Starlink," arXiv, 2024 — analysis of routing and re-routing impact on TCP/constellations. [14] "Exploring Proxying QUIC and HTTP/3 for Satellite Communication" (conference testbed + results), Proceedings / workshop 2022.
- [15] "Performance Evaluation of Multipath TCP Video Streaming on LEO," conference article / 2024.
- [16] "A Comparative Evaluation of Congestion Control Schemes over LEO Satellite Networks," (ACM/IEEE) comparative evaluation, 2023-2024.
- [17] "Intelligent congestion control of data transmission in low Earth orbit," Journal article, 2024 — LEO congestion control strategies.
- [18] "A Deep Reinforcement Learning Based TCP Congestion Control" — recent arXiv (2024–2025) proposals on RL-based TCP control.
- [19] "Reinforcement Learning Based Congestion Control Technique," Springer/IEEE, 2025 — RL for congestion control in modern networks.
- [20] "A Review of TCP Congestion Control Using Artificial Intelligence in 4G and 5G Networks," survey (2024–2025).
- "Evaluating TCP Congestion Control Algorithms with Traffic Control: TSEF (TCP-Framework)," **Splitting Emulator** 2023 journal/conference paper.
- [22] "PCC, BBR, Cubic comparatives over satellite links" — measurement & emulation study, 2021.
- [23] "QUIC performance and proxying for approaches satellite networks," emulation/testbed paper, 2022.

- "Network [24] Coding-Based Multi-Path Transmission for LEO Satellite Networks," 2023– 2024 research on multipath + coding approaches for LEO.
- [25] "Mission-Critical Connectivity Over LEO Satellites — OneWeb measurements," measurement study.
- [26] "Exploring BBRv2: performance evaluations and improvements," (Comsnets/Tech reports), 2022-2023.
- [27] "Throughput and transport behavior over Starlink — multiple measurement studies (2023– 2024)," (APNIC blog + peer studies).
- [28] "Evaluating cross-layer TCP adaptation techniques for wireless networks," journal/conference paper, 2020-2023 (ns-3 crosslayer implementations).
- [29] "Delay-based Adaptive Congestion Control (DACC) — a modern delay-aware TCP variant," 2022–2023 conference paper.
- [30] "Measures and comparisons of QUIC, HTTP/3 and TCP over satellite and hybrid networks," workshop paper (2022–2024) — QUIC vs TCP in satellite contexts.