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Abstract: Environmental Sound Classification (ESC) is a key component in intelligent systems such as smart surveillance, public
safety, and autonomous vehicles. Traditional machine learning approaches relying on handcrafted features like MFCCs and spectral
centroids often underperform in noisy environments. This work employs a Convolutional Neural Network (CNN) trained on Mel-
spectrograms from the UrbanSound8K dataset to enable robust, automatic feature extraction. Beyond classification, the study
evaluates the model’s vulnerability to adversarial audio perturbations generated through the Fast Gradient Sign Method (FGSM)
and Projected Gradient Descent (PGD) attacks. Experimental results reveal that even imperceptible perturbations can significantly
degrade model performance, exposing critical weaknesses in deep audio systems. These findings highlight both the potential of
CNNs for accurate ESC and the necessity of enhancing adversarial robustness to ensure safer and more reliable audio-based Al
applications.
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. INTRODUCTION

In recent years, the integration of Artificial Intelligence (Al) and Deep Learning (DL) into auditory systems has revolutionized how
machines interpret the acoustic world. From smart home assistants like Alexa and Siri to autonomous vehicles and intelligent
surveillance, audio classification models have become fundamental to real-time decision-making. Environmental Sound
Classification (ESC), in particular, has gained significant attention for its role in public safety, industrial monitoring, and urban sound
analytics. However, as these models transition from controlled laboratory settings to complex real-world environments, their
reliability and security are increasingly being questioned.

One of the emerging threats in this domain is the rise of adversarial attacks — deliberate manipulations of input data designed to
deceive machine learning models. In audio systems, such attacks involve adding imperceptible or inaudible perturbations to sound
signals, leading models to make incorrect predictions while the modifications remain undetectable to the human ear. This subtle yet
potent vulnerability exposes a fundamental weakness in deep learning models: their overreliance on numerical feature patterns rather
than perceptual or semantic understanding. For systems deployed in safety-critical scenarios—such as speech-based authentication,
autonomous navigation, or emergency detection—such adversarial manipulations pose severe risks.

Despite extensive research on adversarial robustness in computer vision, the audio domain remains relatively underexplored. Audio
data presents unique challenges: its temporal and frequency structures, the psychoacoustic masking effect, and the inherent sensitivity
to background noise all complicate adversarial modelling and defense. Existing black-box adversarial frameworks primarily test
models without internal access, limiting the precision and interpretability of attacks. In contrast, white-box adversarial frameworks
provide full access to model parameters and gradients, enabling more controlled and transparent experimentation. These setups are
crucial for understanding the fundamental weaknesses of deep models and for developing effective defense mechanisms.

JETIR2511538 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ f118


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

The present study introduces “Inaudible Evasion”, a white-box adversarial simulator designed to evaluate and visualize vulnerabilities
in audio classification systems. Built upon Convolutional Neural Network (CNN) architectures trained on the UrbanSound8K dataset,
this simulator generates adversarial examples using well-established attack methods such as the Fast Gradient Sign Method (FGSM)
and Projected Gradient Descent (PGD). By comparing the model’s behaviour under clean and perturbed conditions, the simulator
offers valuable insights into the extent of adversarial susceptibility in deep audio networks.

Beyond attack generation, this research emphasizes the broader implications of adversarial robustness in the context of trustworthy
Al. The findings not only reveal the ease with which models can be deceived through inaudible modifications but also underscore the
urgent need for resilient learning strategies and defense mechanisms tailored for audio data. Ultimately, “Inaudible Evasion” serves
as both a diagnostic and educational tool—Dbridging the gap between theoretical adversarial research and practical system safety—
contributing to the development of secure, interpretable, and dependable Al-driven sound classification systems.

2. Literature survey

The study of adversarial examples began in the vision community but has rapidly expanded into audio as researchers realized that
perceptual modalities share a common vulnerability: high-capacity machine learning models can be fooled by deliberately crafted,
small perturbations that are often imperceptible to humans. Seminal work in adversarial machine learning showed that deep neural
networks are sensitive to tiny, structured modifications to inputs; follow-on research introduced fast gradient methods and iterative
optimization procedures that formalized how to compute such perturbations. These foundational results established the core idea used
across domains: if an attacker can access a model’s gradients, they can compute minimal changes that substantially alter model output.

Translating these ideas to audio introduced domain-specific challenges and opportunities. Audio signals are temporal and band-
limited, and human hearing imposes perceptual constraints that differ from visual perception. Early audio adversarial work
demonstrated proof-of-concept attacks on speech-recognition systems, revealing that targeted and untargeted misclassification is
feasible by embedding carefully optimized noise into waveform inputs. Two broad research directions emerged: (1) digital, sample-
specific attacks that perturb individual waveforms or spectrogram coefficients, and (2) physical, over-the-air attacks that must survive
playback, room acoustics, microphone responses, and background noise. The latter raised the practical threat model: attacks that work
only in a digital pipeline are concerning, but those robust to real-world transmission are far more dangerous for deployed systems.

Researchers have explored a family of gradient-based white-box methods (single-step and iterative), such as FGSM for quick
evaluation and PGD for stronger, worst-case examples. Optimization-based attacks have also been adapted to audio; these typically
minimize perceptual distortion while achieving misclassification. Complementing gradient approaches, studies on universal
perturbations showed attackers can compute a single signal that, when added to many inputs, causes widespread misbehaviour—an
especially useful strategy for large-scale disruption.

A distinct thread of work focuses on perceptual stealth: how to make perturbations inaudible. Psychoacoustic masking models and
loudness constraints are used to hide adversarial energy beneath the human hearing threshold, and perceptual penalties are
incorporated into optimization objectives to trade attack strength against audibility. These efforts underline an uncomfortable truth:
audio attacks can be engineered to be both effective and essentially undetectable by listeners, which greatly increases their practical
risk.

Defensive research has evolved along complementary axes. The most direct approach—adversarial training—recomputes model
decision boundaries by including adversarial examples during training, yielding significant robustness gains against the attacks used
for training. Input preprocessing (denoising, compression, randomized transforms) and statistical detection methods (anomaly or
spectral detectors) provide lighter-weight defenses that may catch or mitigate certain perturbations. More recently, efforts toward
provable or certified robustness (for limited perturbation norms) and ensemble/hybrid strategies have started to appear in the audio
literature, though these are less mature compared to analogous developments in vision.

Despite meaningful progress, the literature still exhibits fragmentation and several notable gaps. First, much prior work concentrates
on speech recognition and voice-command systems; environmental sound classification (ESC) — the primary focus of many safety
and surveillance applications — has received comparatively less systematic adversarial study. Second, evaluation is often
inconsistent: different papers use different datasets, preprocessing pipelines, perturbation metrics, and perceptual measures, making
apples-to-apples comparisons difficult. Third, realistic over-the-air testing remains limited: while some studies simulate room
acoustics or physically play back attacks, standardized methods and reproducible protocols are uncommon. Finally, trade-offs
between perceptual imperceptibility and robustness remain under-quantified; a stronger focus on perceptual metrics (PESQ, STOI,
human listening tests) is required to assess real-world threat levels.

3. Adversarial attack

Imagine showing a self-driving car a stop sign that you've subtly altered with a few pieces of tape or a splash of paint. To a human,
it's still clearly a stop sign, but the car's Al brain sees it as a speed limit sign and cruises right through the intersection. This isn't a
far-fetched scenario; it's the essence of an adversarial attack—a deliberate attempt to fool artificial intelligence by feeding it
deceptive data.

For the past decade, researchers have been meticulously cataloging how these attacks work, particularly in the realm of vision,
where they manipulate pixels to cause misclassification [Zhang et al., 2024]. But the principle is universal: by adding a specific,
often invisible-to-humans layer of "noise” to an input, an attacker can make an Al model see what isn't there, hear what wasn't
said, or believe a falsehood. This vulnerability reveals that the way Al "perceives" the world is fundamentally different from our
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own, and it highlights a critical weakness as these systems become the "guardians™ of our security and daily routines, from phone
face-unlock to financial fraud detection [Balamurugan, 2024].

The threat landscape is broad and sophisticated. A comprehensive review of machine learning attacks shows they can be launched
in different ways: some require the attacker to have full knowledge of the Al's internal workings, while others, known as "black-
box" attacks, can succeed simply by probing the system and observing its outputs [Ahmed et al., 2024]. This is vividly seen
in query-based audio adversarial attacks, where an attacker might submit thousands of slightly altered audio samples to a speech
recognition system to slowly reverse-engineer a command like "OK Google, open this website" that is hidden within what sounds
like static or music [Guo et al., 2023].

The fight against these attacks is a dynamic arms race. On the defense side, the strategy is shifting from isolated solutions to more
robust, multi-layered approaches. Researchers are developing adaptive unified defense frameworks that combine various
techniques to create a stronger, more versatile shield [Du et al., 2024]. The ultimate goal is to move toward a universal defense—
a single, powerful system capable of protecting against a wide array of evolving attacks, whether they target what an Al sees or
what it hears [Guo et al., 2023].

In short, the field of adversarial attacks uncovers a fascinating and critical flaw in our modern Al. It's a reminder that for all their
power, these systems have a unique kind of "blind spot," and securing them requires us to think not like humans, but like the
machines we are trying to both exploit and protect.

3.1 Adversarial audio attack

Imagine a voice command that is silent to you, but your smart speaker hears it as "unlock the front door.” Or a subtle, inaudible
distortion in a piece of music that tricks an Al into classifying it as someone saying a completely different phrase. This isn't science
fiction; it's the reality of adversarial audio attacks, a rapidly evolving field in cybersecurity where machine learning models are
manipulated through crafted sound

At its core, this threat stems from a broader vulnerability in artificial intelligence. As noted in surveys of the last decade, vision
systems have long been a target [Zhang et al., 2024], but these adversarial tactics are not limited to what Al sees—they also apply
to what it hears [Ahmed et al., 2024]. The fundamental idea is that by adding a carefully engineered, often imperceptible layer of
noise to an original audio signal, an attacker can cause a speech recognition or audio classification system to make a catastrophic
error. This poses a significant risk as Al becomes more integrated into the critical “guardians™ of our digital lives, from biometric
authentication systems to intelligent assistants [Balamurugan, 2024].

These attacks are particularly concerning because they can be highly practical. For instance, query-based attacks involve the
attacker repeatedly probing a system, sending thousands of audio samples and observing the Al's outputs to slowly learn how to
craft a successful malicious audio file [Guo et al., 2023]. This makes them a potent threat against commercial speech recognition
services.

4. Workflow of White-Box Adversarial Audio Classification and Defense
4.1.Audio Input and Preprocessing

The workflow begins with audio input, where sound clips from benchmark datasets such as UrbanSound8K, ESC-50, or Google
Speech Commands are loaded. These datasets encompass a diverse range of environmental and human-made sounds, providing
the foundation for training and evaluating classification models.

Since raw audio signals contain high variability and noise, they are transformed into more structured and machine-readable
representations. The most widely used approach involves converting waveforms into Mel-spectrograms—two-dimensional
representations capturing time—frequency characteristics that align more closely with human auditory perception. Each audio clip
is normalized, resized (commonly to 128x128), and sometimes augmented using techniques like time-shifting or additive
background noise to improve the model’s generalization.

4.2.CNN Model Training

The Convolutional Neural Network (CNN) model employed in this project serves as the core classifier for environmental
sound recognition, trained on Mel-spectrogram representations of audio data. Each audio clip from the UrbanSound8K
dataset is first transformed into a 2D Mel-spectrogram, which acts as the visual input to the model.

e Input Layer: Takes Mel-spectrograms of size (1, 64, 174), capturing both frequency and temporal characteristics of
audio.

e Convolutional Layers: Three successive Conv2D blocks with ReLU activation and MaxPooling operations detect low-
to high-level features—ranging from basic frequency patterns to complex sound textures. Batch normalization is
incorporated to stabilize learning and accelerate convergence.

e Flattening and Dense Layers: The learned feature maps are flattened and passed through a fully connected dense layer
with ReL U activation, enabling the network to interpret and combine abstracted sound features.
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Dropout Regularization: A dropout layer (rate 0.3-0.5) is applied to mitigate overfitting and improve the model’s
generalization on unseen data.

Output Layer: A final dense layer with a Softmax activation function outputs class probabilities corresponding to ten
sound categories.

Training Configuration: The model is optimized using the Adam optimizer (learning rate = 0.001) and trained with a
Cross-Entropy loss function across 10-15 epochs, using a batch size of 16.

4.3.Model Evaluation

Once the CNN is trained, it undergoes evaluation using unseen test samples to validate its generalization capability. The model’s
accuracy, precision, recall, and confusion matrix are generated to quantify its performance on real-world sounds.

This evaluation serves as a control phase, providing a clean performance baseline before introducing adversarial perturbations. By
examining how well the CNN identifies different sound classes, researchers can identify biases, overfitting, or weakly learned
features—insights that become critical when analysing adversarial vulnerability in subsequent steps.

4.4.Adversarial Samples and Attack Strategies
4.4.1 How Attackers Trick Al

Imagine living in a world where a whispered secret, inaudible to you, can command the devices in your home. Where a sticker
on a street sign could confuse a self-driving car. This is the world of adversarial attacks—not a brute-force hack, but a subtle art
of deception aimed at the "brain™ of artificial intelligence.

These attacks exploit a fundamental gap: Al perceives the world differently than we do. It doesn't see a "face™ or hear a "melody";
it processes numerical patterns. By carefully manipulating these patterns, attackers can create illusions—adversarial samples—
that are benign to us but catastrophic for the machine.

4.4.2 Adversarial Samples

1. The ""Hidden Voice" Command (Digital Audio Perturbation)

You're listening to your favourite song on a streaming service. To your ears, it's flawless. But the smart speaker in the
corner hears a secret, hidden command buried within the guitar solo: "Unlock the front door." This is a digital audio
perturbation—a whisper woven into the audio file that is mathematically designed for machines to hear and humans to
miss [Ahmed et al., 2024]. It's the equivalent of a subliminal message for Al.

2. The "'Sonic Smoke Bomb™ (Physical Over-the-Air Attack)

A hacker holds up a phone playing a short, slightly staticky soundbite near a car's infotainment system. To the driver, it's
an annoying glitch. But the car's voice assistant hears and obeys the command: "Disable GPS tracking.” This is a physical
audio attack. It’s a sonic smoke bomb that works in the real world, having to overcome background noise and echoes to
deliver its deceptive payload [Guo et al., 2023]

3. The ""Master Key"" Noise (Universal Perturbation)

An attacker discovers a single, short audio snippet—a specific hum or hiss. When this "Master Key" is played in the
background of any conversation or any song, it consistently tricks voice assistants into visiting a malicious website.
This universal perturbation is a one-size-fits-all key, a powerful weapon because it doesn't need to be custom-made for
each target [Du et al., 2024]

4.4.3 Attack strategies
1. The ""Blueprints Are Stolen' (White-Box Attack)

It’s as if a thief has stolen the complete architectural blueprints and security system schematics of a vault. With this
insider knowledge (the Al's full design), they can engineer a perfect, minimal tool to crack it open without setting off
alarms. In the Al world, this means the attacker knows the model's exact wiring, allowing them to craft a perfectly
efficient, near-invisible attack [Zhang et al., 2024; Ahmed et al., 2024]. This is the ultimate advantage for an attacker.

i. FGSM — Fast Gradient Sign Method
FGSM is the simplest gradient-based white-box attack: take one step in the direction that most increases (or decreases,
for targeted attacks) the model loss. It’s fast, interpretable, and useful as a baseline.
Formulation:
For a clean input x, true label y, loss L(f (x),y), and perturbation budget e(L , norm),

xMN = x + e -sign" "(Vox L(f (x),y)).

JETIR2511538 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ f121


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11 www.jetir.org (ISSN-2349-5162)

Audio considerations.
Operate either on the waveform (sample domain) or on the spectrogram / log-mel domain; each yield different perceptual
and transfer properties.
Normalize waveform to [—1,1]and choose esmall enough to remain imperceptible (typical waveform eps ranges for
initial experiments: 0.001-0.01, tune empirically).
FGSM is useful for rapid sweeps and to evaluate how fragile the model is to a single adversarial step

ii. PGD — Projected Gradient Descent
PGD is an iterative extension of FGSM that performs multiple small gradient steps and projects back into the allowed
perturbation ball. It is widely regarded as a strong “worst-case” white-box attack and is commonly used to evaluate
robustness and to generate adversarial training examples.
Formulation (L .):
Initialize xy = x + U(—¢, €)(optional random start).
Fort=0..T - 1:

Xip1 = Proj g <e(xt + a - sign(Vo L(f (x£), ¥))).

Return x7.

Audio considerations.

Recommended parameter sweep: esmaller than FGSM’s largest values (e.g., 0.002-0.01), @ = €/5 to €/10, and 10-40
steps depending on desired strength.

Use random restarts to avoid getting stuck in local minima and to evaluate worst-case performance.

Because PGD exploits gradients through preprocessing, include full preprocessing (STFT, mel, log scaling) in the
computational graph so gradients reflect true model behaviour.

iii. Psychoacoustic Masking — making perturbations inaudible
Gradient magnitude or small L-p norms do not guarantee inaudibility. Psychoacoustic masking models constrain
perturbations to parts of the signal that humans cannot hear (masked frequencies, temporal masking), producing
perceptually stealthy adversarial examples.
Approaches:
Masking threshold constraints: compute short-time spectra and apply a masking model (e.g., critical-band masking or
perceptual thresholds). Enforce that | AS(f,t) Istays below the local masking threshold in each time—frequency bin.
SNR /loudness constraints: require global or local SNR to exceed a threshold (e.g., SNR > 20 dB) or constrain perceived
loudness change (LUFS).
Perceptual loss penalty: add a term to the optimization objective that penalizes perceptual distortion (e.g., minimize a
perceptual distance or penalize PESQ/STOI proxies).
Band-limited perturbations: restrict 5to frequency bands where the model is sensitive but human hearing is less
sensitive (careful—this may still be audible).
Formulation:

main L(f(x +8), Yiarge) + A - P(x,8)s.t. 1§ l,< €

where Pis a perceptual penalty (masking violation energy, loudness difference, etc.) and Atrades off attack strength vs.
audibility.

2. The "Knob-Twiddling Spy" (Black-Box & Query-Based Attack)

This is the more common, street-smart approach. Imagine a spy doesn't have the blueprints for a secure complex. Instead,
they stand outside the fence, shouting thousands of different passwords (sending query samples) and listening for the
faint click of a lock or watching for a guard's reaction (observing the output). By patiently testing, they slowly deduce
the security rules. This is how query-based attacks work against commercial Al like speech recognition services—the
attacker probes and prods the system until it reveals how to be tricked [Guo et al., 2023].

3. The ""Bait-and-Switch™ (Evasion Attack)

This is the overarching goal. A forger doesn't try to change the entire passport control system; they just create a fake
passport that is convincing enough to slip past the guards at the border. Similarly, an evasion attack doesn't retrain the
Al; it creates a deceptive input—a fake passport for your audio—that slips past the Al's defenses during operation, causing
it to make a wrong turn [Balamurugan, 2024].
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4.5. Defence and Robustness Techniques
In this project, several defense mechanisms were explored to enhance the robustness of the CNN-based audio classification
model against adversarial attacks such as FGSM and PGD. The defense strategy primarily focuses on improving the model’s
ability to resist adversarial perturbations while maintaining classification accuracy on clean audio data. The following methods
were implemented or analyzed as part of the defense framework:

4.5.1 Adversarial Training (Primary Defense Mechanism):
e The most effective and widely adopted defense technique against adversarial perturbations.
e Involves retraining the CNN model using a combination of clean and adversarially perturbed Mel-spectrograms.
e The adversarial examples are generated dynamically during training using the Fast Gradient Sign Method (FGSM) or
Projected Gradient Descent (PGD).
e This process forces the model to learn robust feature representations that are invariant to small, imperceptible perturbations
in the input.
e By repeatedly exposing the model to adversarial inputs, it develops an internal understanding of how such manipulations
appear in the feature space, leading to improved resilience and generalization.
e The adversarially trained model exhibits lower attack success rates and higher accuracy under perturbation compared to
the baseline model.
4.5.2 Noise Regularization and Data Augmentation:
e Random Gaussian noise or background environmental sounds can be added during training to simulate real-world
conditions.
e This encourages the network to focus on more salient and invariant sound features, reducing sensitivity to irrelevant noise
or small adversarial shifts.
e Techniques such as time masking, frequency masking, and pitch shifting (inspired by Spec Augment) are used to improve
model robustness and reduce overfitting.
e These augmentations emulate adversarial-like distortions in a non-malicious way, effectively functioning as a preventive
defense mechanism.
4.5.3 Gradient Masking and Clipping:
o Reduces the effectiveness of white-box attacks that rely on gradient information.
e By clipping or regularizing the gradients during backpropagation, attackers find it harder to compute accurate perturbation
directions.
e While not a complete defense on its own, it helps to limit the impact of FGSM-style single-step attacks.

4.5.4 Model Confidence Calibration:
e The CNN can be trained to output well-calibrated probabilities, avoiding overconfident predictions on uncertain or
adversarial inputs.
e This is achieved through temperature scaling or label smoothing, encouraging the network to represent uncertainty more
accurately.
e Calibrated models can better detect and flag suspicious or low-confidence predictions, assisting in adversarial detection.

4.6. Attack Configurations
To benchmark the effectiveness of the proposed attack simulator, three commonly studied gradient-based white-box attacks were
referred to:

e FGSM (Fast Gradient Sign Method) — single-step, fast perturbation

e PGD (Projected Gradient Descent) — iterative version of FGSM
e CW Attack (Carlini & Wagner) — strong optimization-based attack used as the effectiveness baseline

In our simulator, two additional loss constraints were incorporated:
* A Lysychoacoustic— Prevents perturbations from crossing the human hearing threshold (reference: psychoacoustic hiding

method)

o A Lourasonic— Shifts perturbation energy into higher inaudible frequency ranges
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4.7. Evaluation Metrics
To measure both attack strength and stealth (inaudibility), multiple metrics were used:

MATRIX MEANING PURPOSE
ASR (Atéztt:; Success % of audio samples misclassified Measures attack effectiveness
SNR (Signal-to-Noise Loudness difference between clean | Lower SNR = More audible noise
Ratio) & perturbed signal
ALUFS (perceptual Human-perceived loudness change Evaluates perceptlplllty instead of
raw amplitude
Loudness Change)

AER (Audible Energy | auoof ‘:ﬁretg[]%ﬁgfe”bea”neé gyinside | \ver AER = More “hidden”

Ratio) perturbation
Drop in classifier confidence before
Confidence Drop vs after attack

Indicates classifier vulnerability

5. Conclusion

Inaudible Evasion, a white-box adversarial attack simulator tailored for audio classification that combines gradient-based waveform
optimization with constraints intended to reduce human perception of perturbations. Using iterative optimization (PGD/I-FGSM)
and a psychoacoustically informed penalty or an ultrasonic projection, demonstrated that adversarial perturbations can be found that
substantially degrade classifier performance in the digital domain. However, the practical success of inaudible strategies is heavily
conditioned on the playback/recording hardware chain; prior studies (Dolphin Attack, Hidden VVoice Commands, CommanderSong,
and targeted audio attacks by Carlini et al.) similarly show that digital success does not automatically translate to universal over-
the-air feasibility and that targeted real-world attacks require additional modelling and engineering.

Main conclusions: (1) audio classifiers remain vulnerable to gradient-based white-box methods when attacks are unconstrained, and
(2) achieving inaudible real-world attacks is significantly harder and must explicitly address device responses and perceptual
masking. These findings point to the need for defense methods that are perceptually aware and validated in the physical domain.
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