JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Intelligent Liver Fibrosis Assessment with Deep Learning

Mr. Chethan P. J.

Computer Science and Engineering
PESITM
Shivamogga, India

Mr. Rakshath T. R.

Computer Science and Engineering
PESITM
Shivamogga, India

Ms. Shreya Hebbar

Computer Science and Engineering PESITM
Shivamogga, India

Ms. Sindhu M. N.

Computer Science and Engineering
PESITM
Shivamogga, India s

Mr. Varun D. S.

Computer Science and Engineering
PESITM
Shivamogga, India

Abstract—Liver fibrosis is a progressive condition charac- terized by the accumulation of scar tissue in the liver, often developing silently until advanced stages. Conventional diagnostic methods such as liver biopsy, while effective, are invasive, costly, and subject to sampling errors. This study proposes a deep learning-based framework for noninvasive detection and staging of liver fibrosis using ultrasound elastography images. The ap- proach integrates a convolutional neural network (CNN) trained to identify subtle textural and structural changes associated with fibrotic progression. The preprocessing pipeline includes grayscale conversion, noise reduction, and high-pass filtering to enhance image clarity. Segmentation isolates the liver region, followed by feature extraction to generate statistical descriptors for classification. The model distinguishes between four fibrosis demonstrating high accuracy and recall. This technique offers a reliable, scalable alternative to tradi- tional methods, with potential for early diagnosis and broader accessibility in clinical settings

Index Terms—Ultrasound elastography, Noninvasive diagnosis, Edge Detection method, Feature extraction, Ultrasound Images, Feature extraction, CNN

I. INTRODUCTION

Liver fibrosis is a long-term pathological condition marked by the excessive deposition of extracellular matrix proteins—primarily collagen—within the liver's functional tissue. This abnormal buildup alters the liver's structural integrity and hampers its physiological performance, potentially leading to life-threatening complications such as cirrhosis, portal hypertension, and hepatic failure. Because the disease often progresses without noticeable symptoms, many individuals remain undiagnosed until it reaches a critical stage. Therefore, early and accurate detection is essential to initiate timely treatment and improve patient outcomes.

Historically, liver biopsy has been the primary method for evaluating the severity of fibrosis. This technique involves collecting a small tissue sample for microscopic analysis,

Identify applicable funding agency here. If none, delete this.

offering direct insight into the extent of liver damage. However, biopsies are invasive and carry risks such as bleeding, infection, and sampling errors. The discomfort and potential complications associated with the procedure often deter patients from undergoing repeated evaluations, making it less practical for ongoing monitoring. These drawbacks have led researchers and clinicians to seek noninvasive alternatives that are safer, more consistent, and easier to perform.

One such alternative is ultrasound elastography, which estimates liver stiffness—a key indicator of fibrosis—through imaging. This method is painless, relatively inexpensive, and suitable for repeated use, making it a valuable tool for tracking disease progression and therapeutic response. Despite its advantages, the accuracy of elastography can be affected by operator skill, equipment variability, and subjective interpretation. These factors contribute to inconsistencies between different observers and devices, which can undermine diagnostic reliability.

To overcome these limitations, artificial intelligence (AI) has emerged as a powerful tool in medical imaging. In particular, convolutional neural networks (CNNs) have shown great promise in automating image analysis. These deep learning models are capable of identifying complex patterns and extracting relevant features from visual data, making them ideal for interpreting ultrasound elastography scans. By reducing reliance on manual evaluation, CNNs can improve diagnostic consistency and enable broader application across various healthcare settings, including those with limited resources.

II. RELATED WORK

In recent years, many researchers have explored the use of deep learning and image processing techniques to detect and stage liver fibrosis in a non-invasive way. Tschand and Rinner [1] were among the first to apply convolutional neural networks (CNNs) for classifying liver fibrosis stages, proving that deep models can effectively learn and interpret complex patterns in medical images. Roehlen et al. [2] and Terrault et al. [3] discussed how accurate fibrosis staging is essential for managing chronic liver diseases and pointed out the limitations of traditional biopsy methods, which are invasive and risky. Li et al. [4] showed that CNNs could be successfully applied to transient elastography data to assess fibrosis levels more precisely. Likewise, Biris et al. [5] used ultrasound-based techniques such as 2D-SWE and UGAP, demonstrating that non-invasive imaging methods can be both reliable and practical. Liu et al. [6] further developed this field by combining handcrafted features with deep learning in a CNN framework, improving the accuracy of liver fibrosis detection using ultrasound images.

Zhu et al. [7] applied deep learning to MRI ADC images to classify different stages of fibrosis, showing the potential of diffusion imaging for detailed tissue analysis. Wieczorek et al. [8] took an innovative approach by developing an AI-based system that detects liver cirrhosis from exhaled breath, proving how adaptable deep learning can be across various medical data types. Hameed et al. [9] also used CNNs on CT scans for liver cancer detection, reinforcing the reliability of deep learning for liver-related imaging tasks. Together, these studies highlight how artificial intelligence is transforming medical imaging — making diagnosis faster, more accurate, and less dependent on invasive procedures like biopsies. The growing success of AI-driven diagnostic tools shows clear potential for improving early detection and better management of liver diseases in clinical settings.

III. METHODOLOGY

The model follows a systematic approach built around five core processing stages: preprocessing, edge detection, segmentation, feature extraction, and classification. It begins with an input image that undergoes preprocessing, where the RGB format is converted to grayscale and noise is minimized using filtering techniques to enhance image clarity. Once the image is refined, edge detection algorithms are applied to highlight structural boundaries, which guide the segmentation process by dividing the image into meaningful regions. These regions are then analyzed to extract essential features that capture the visual characteristics relevant to liver fibrosis. As shown in Fig. 1, these features are fed into a convolutional neural network (CNN), which classifies the image based on learned patterns. The final output includes the predicted fibrosis stage or a normal classification, along with performance metrics such as accuracy and precision to evaluate the model's reliability.

A. Image Pre-Processing

a) RGB to Gray Scale: The initial step in the image processing pipeline involves converting ultrasound images from RGB to grayscale format. This transformation, illustrated in Fig. 3, simplifies the image by reducing its color information to a single intensity channel. Grayscale images consist of 256 shades ranging from black (0) to white (255), which

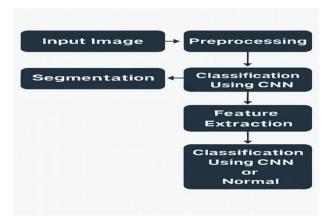


Fig. 1. Block diagram of liver fibrosis detection.

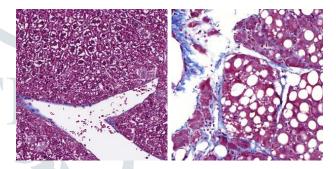


Fig. 2. Input images

significantly reduces visual complexity. By compressing the image to its essential pixel values, this step not only streamlines subsequent processing but also lowers computational demands. Grayscale conversion is a widely adopted practice in image analysis, as it enhances efficiency and facilitates operations such as thresholding and edge detection. Compared to RGB images, grayscale representations are easier to handle and more suitable for extracting structural features critical to medical diagnostics.

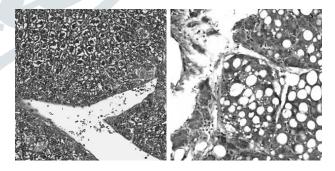


Fig. 3. RGB to Grayscale

b) Noise Removal: Noise in medical images, particularly ultrasound scans, poses a significant challenge to accurate analysis by introducing unwanted pixel variations that obscure important visual details. To ensure reliable results, noise reduction is applied early in the processing pipeline to enhance

image clarity while preserving structural boundaries. This typically involves smoothing techniques that suppress random fluctuations across the image, except near edges where critical features reside. The relationship between the original image, noise, and the resulting distortion can be expressed as f(x, y) = g(x, y) + n(x, y), where g(x, y) is the clean image, n(x, y) represents the noise, and f(x, y) is the observed noisy output. Common types of noise include salt-and-pepper artifacts—visible as scattered black and white specks—and Gaussian noise, which introduces subtle intensity shifts due to sensor limitations or environmental factors. Effectively removing these distortions is crucial for downstream tasks such as edge detection and segmentation, enabling more accurate feature extraction and classification.

B. Segmentation

Segmentation plays a crucial role in guiding the CNN model to focus specifically on liver tissue during classification. To begin, the grayscale image generated in earlier steps is used as input, ensuring that color distractions are minimized and structural details are emphasized. One common method for liver segmentation is thresholding, which helps isolate the region of interest (ROI)—the part of the image containing relevant tissue. This process effectively separates the image into two zones: the foreground, which includes the fibrosis region, and the background, which is assigned a pixel value of zero.

Once segmented, the resulting matrix acts as a mask to extract the fibrosis region from the original RGB image. This is achieved by multiplying the grayscale mask with the RGB image, allowing only the liver tissue to be retained for further analysis. To optimize computational efficiency, the image is resized, reducing the matrix dimensions used in the recognition process. Finally, the processed image is reshaped into a column matrix format, preparing it for feature extraction in the next stage of the pipeline.

C. Feature Extraction

Feature extraction helps in the recognition phase, as it helps reduce the complexity of image data by converting high-dimensional inputs into a simplified, one-dimensional format. This transformation allows for faster and more accurate analysis, particularly when assessing liver tissue characteristics and stratifying risk. As illustrated in Fig. 4, the process begins with the segmented matrix, which serves as the foundation for extracting meaningful patterns.

To achieve this, techniques like the Gray-Level Cooccurrence Matrix (GLCM) are applied to capture texturebased information, followed by statistical analysis using methods such as Principal Component Analysis (PCA). These steps help distil the image into a compact set of values that retain essential features while minimizing redundancy. The extracted features may include texture, shape, and color attributes—each offering insights into the structural and pathological state of the liver. By focusing on these key descriptors, the model

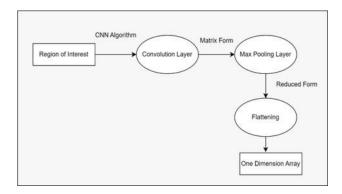


Fig. 4. Feature extraction from segmented image.

becomes more efficient in distinguishing between normal and fibrotic tissue, ultimately improving diagnostic precision.

D. Classification and Detection

The classification module is represented through a use case diagram that includes two primary actors and three distinct use cases. The process begins with the system receiving input vectors, which are essential for determining the degree of liver fibrosis. These vectors help the model assess tissue thickness and guide the classification outcome. As the workflow progresses, the third use case focuses on generating feature vectors for the entire dataset. These computed vectors are then compared with those extracted from the input image, allowing the system to accurately identify and classify characteristics specific to the liver tissue. This structured interaction between actors and use cases ensures a reliable and interpretable classification process.

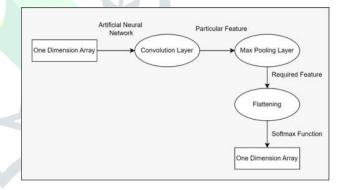


Fig. 5. Data Flow Diagram of Classification and Detection Process.

E. Data Flow Diagram

A data flow diagram (DFD) visually maps how information travels through a system, from input to processing and ultimately to output, helping designers understand data origin, movement, and storage. In our model, the process starts with an RGB ultrasound elastography image, which is converted to grayscale to reduce complexity and enhance clarity. This refined image undergoes preprocessing, followed

by segmentation to isolate liver tissue. Key features are then extracted and compared with a dataset of known cases, guiding the classification step to determine whether the liver image reflects fibrosis or a normal condition.

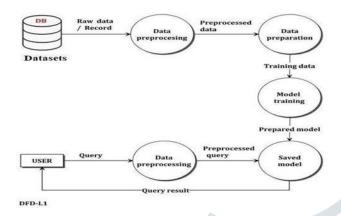


Fig. 6. Data Flow Diagram for the proposed.

IV. RESULTS

The final outcomes of the model included successful identification of advanced stages of liver fibrosis. Built on a CNN architecture, the system demonstrated strong performance, reaching an accuracy of up to 92detection. Its reliability was reinforced through rigorous validation against diverse datasets, ensuring consistent quality across different imaging conditions. The model proved particularly effective at minimizing false negatives while retaining true positives, reflected in its impressive accuracy and recall scores of 0.94 and 0.91, respectively. Additionally, its fast-processing speed makes it well-suited for handling and maintaining large volumes of medical imaging records efficiently.

V. CONCLUSION

This study highlights the promise of deep learning—especially convolutional neural networks (CNNs)—in detecting and staging liver fibrosis without the need for invasive procedures. By leveraging ultrasound elastography scans, these models present a viable alternative to liver biopsies, which are often painful, costly, and inaccessible in many settings. (Insert image showing ultrasound scans of healthy and fibrotic livers) Early detection plays a vital role in enabling timely treatment and improving long-term outcomes for patients. Because this technique is non-invasive, it can be deployed even in remote or resource-constrained environments, making liver assessment more widely available. (Insert image of a portable ultrasound device in use within a rural clinic) Incorporating additional data—such as patient clinical records and other imaging modalities—could further enhance the model's accuracy and adaptability across diverse populations. Broad adoption of this technology could revolutionize liver care by expanding access to fibrosis screening, particularly in areas where specialized diagnostics are limited or unavailable.

REFERENCES

- [1] Tschand P., Rinner, C. (2015). "Deep Learning for the Classification of Liver Fibrosis Stages". In Proceedings of the International Confer- ence on Medical Image Computing and Computer-Assisted Intervention (MICCAI).
- [2] Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020; 9:875.
- [3] Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and Treatment of chronic hepatitis B: AASLD 2020 hepatitis BIguidance. Hepatology 2020; 67:1560–99.
- [4] Y. Li, Q. He and J. Luo, "A Deep Learning Trial on Transient Elastography for Assessment of Liver Fibrosis," 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 2018, pp. 1-4, doi: 10.1109/ULTSYM.2018.8579992.
- [5] Biris, Andreas I Karamatzanis, Ioannis Biri, Despoina Biris, Ioannis A and Maravegias, Nikolaos 2024. Non-Invasive Ultrasound Diagnostic Techniques for Steatotic Liver Disease and Focal Liver Lesions: 2D, Colour Doppler, 3D, Two-Dimensional Shear Wave Elastography (2D- SWE), and Ultrasound-Guided Attenuation Parameter (UGAP). Cureus.
- [6] Z. Liu et al., "Automatic Diagnosis of Significant Liver Fibrosis From Ultrasound B-Mode Images Using a Handcrafted-Feature-Assisted Deep Convolutional Neural Network," in IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 10, pp. 4938-4949, Oct. 2023, doi: 10.1109/JBHI.2023.3295078.keywords.
- [7] Zhu Z, Lv D, Zhang X, Wang SH, Zhu G. Deep Learning in the Classification of Stage of Liver Fibrosis in Chronic Hepatitis B with Magnetic Resonance ADC Images. Contrast Media Mol Imaging.2021- Dec- 22;2021: 2015780.doi:10.1155/2021/2015780.PMID:35024010; PMCID: PMC8716233.
- [8] Wieczorek, Mikolaj, et al. "A deep learning approach for detecting liver cirrhosis from volatolomic analysis of exhaled breath." Frontiers in Medicine 9 (2022): 992703.Wieczorek, M., Weston, A., Ledenko, M., Thomas, J. N., Carter, R., Patel, T. (2022). A deep learning approach for detecting liver cirrhosis from volatolomic analysis of exhaled breath. Frontiers in Medicine, 9, 992703.
- [9] Hameed, Usman, et al. "A deep learning approach for liver cancer detection in CT scans." Computer Methods in Biomechanics and Biomedical Engineering: Imaging Visualization 11.7 (2024).