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Abstract—Liver fibrosis is a progressive condition charac- terized 
by the accumulation of scar tissue in the liver, often developing 
silently until advanced stages. Conventional diagnostic methods such 
as liver biopsy, while effective, are invasive, costly, and subject to 
sampling errors. This study proposes a deep learning-based 
framework for noninvasive detection and staging of liver fibrosis 
using ultrasound elastography images. The ap- proach integrates a 
convolutional neural network (CNN) trained to identify subtle 
textural and structural changes associated with fibrotic progression. 
The preprocessing pipeline includes grayscale conversion, noise 
reduction, and high-pass filtering to enhance image clarity. 
Segmentation isolates the liver region, followed by feature extraction 
to generate statistical descriptors for classification. The model 
successfully distinguishes between four fibrosis stages, 
demonstrating high accuracy and recall. This technique offers a 
reliable, scalable alternative to tradi- tional methods, with potential 
for early diagnosis and broader accessibility in clinical settings 

Index Terms—Ultrasound elastography, Noninvasive diagnosis, 
Edge Detection method, Feature extraction, Ultrasound Images, 
Feature extraction, CNN 

I. INTRODUCTION 

Liver fibrosis is a long-term pathological condition marked 

by the excessive deposition of extracellular matrix pro- 

teins—primarily collagen—within the liver’s functional tissue. 

This abnormal buildup alters the liver’s structural integrity 

and hampers its physiological performance, potentially lead- 

ing to life-threatening complications such as cirrhosis, portal 

hypertension, and hepatic failure. Because the disease often 

progresses without noticeable symptoms, many individuals 

remain undiagnosed until it reaches a critical stage. Therefore, 

early and accurate detection is essential to initiate timely 

treatment and improve patient outcomes. 

Historically, liver biopsy has been the primary method for 

evaluating the severity of fibrosis. This technique involves 

collecting a small tissue sample for microscopic analysis, 

Identify applicable funding agency here. If none, delete this. 

offering direct insight into the extent of liver damage. How- 

ever, biopsies are invasive and carry risks such as bleeding, 

infection, and sampling errors. The discomfort and potential 

complications associated with the procedure often deter pa- 

tients from undergoing repeated evaluations, making it less 

practical for ongoing monitoring. These drawbacks have led 

researchers and clinicians to seek noninvasive alternatives that 

are safer, more consistent, and easier to perform. 

One such alternative is ultrasound elastography, which es- 

timates liver stiffness—a key indicator of fibrosis—through 

imaging. This method is painless, relatively inexpensive, and 

suitable for repeated use, making it a valuable tool for track- 

ing disease progression and therapeutic response. Despite its 

advantages, the accuracy of elastography can be affected by 

operator skill, equipment variability, and subjective interpreta- 

tion. These factors contribute to inconsistencies between dif- 

ferent observers and devices, which can undermine diagnostic 

reliability. 

To overcome these limitations, artificial intelligence (AI) 

has emerged as a powerful tool in medical imaging. In partic- 

ular, convolutional neural networks (CNNs) have shown great 

promise in automating image analysis. These deep learning 

models are capable of identifying complex patterns and ex- 

tracting relevant features from visual data, making them ideal 

for interpreting ultrasound elastography scans. By reducing 

reliance on manual evaluation, CNNs can improve diagnostic 

consistency and enable broader application across various 

healthcare settings, including those with limited resources. 

II. RELATED WORK 

In recent years, many researchers have explored the use 

of deep learning and image processing techniques to de- 

tect and stage liver fibrosis in a non-invasive way. Tschand 

and Rinner [1] were among the first to apply convolutional 
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neural networks (CNNs) for classifying liver fibrosis stages, 

proving that deep models can effectively learn and interpret 

complex patterns in medical images. Roehlen et al. [2] and 

Terrault et al. [3] discussed how accurate fibrosis staging 

is essential for managing chronic liver diseases and pointed 

out the limitations of traditional biopsy methods, which are 

invasive and risky. Li et al. [4] showed that CNNs could be 

successfully applied to transient elastography data to assess 

fibrosis levels more precisely. Likewise, Biris et al. [5] used 

ultrasound-based techniques such as 2D-SWE and UGAP, 

demonstrating that non-invasive imaging methods can be both 

reliable and practical. Liu et al. [6] further developed this 

field by combining handcrafted features with deep learning 

in a CNN framework, improving the accuracy of liver fibrosis 

detection using ultrasound images. 

Zhu et al. [7] applied deep learning to MRI ADC images 

to classify different stages of fibrosis, showing the potential 

of diffusion imaging for detailed tissue analysis. Wieczorek et 

al. [8] took an innovative approach by developing an AI-based 

system that detects liver cirrhosis from exhaled breath, proving 

how adaptable deep learning can be across various medical 

data types. Hameed et al. [9] also used CNNs on CT scans 

for liver cancer detection, reinforcing the reliability of deep 

learning for liver-related imaging tasks. Together, these studies 

highlight how artificial intelligence is transforming medical 

imaging — making diagnosis faster, more accurate, and less 

dependent on invasive procedures like biopsies. The growing 

success of AI-driven diagnostic tools shows clear potential 

for improving early detection and better management of liver 

diseases in clinical settings. 

III. METHODOLOGY 

The model follows a systematic approach built around five 

core processing stages: preprocessing, edge detection, segmen- 

tation, feature extraction, and classification. It begins with an 

input image that undergoes preprocessing, where the RGB 

format is converted to grayscale and noise is minimized using 

filtering techniques to enhance image clarity. Once the image 

is refined, edge detection algorithms are applied to highlight 

structural boundaries, which guide the segmentation process 

by dividing the image into meaningful regions. These regions 

are then analyzed to extract essential features that capture the 

visual characteristics relevant to liver fibrosis. As shown in Fig. 

1, these features are fed into a convolutional neural network 

(CNN), which classifies the image based on learned patterns. 

The final output includes the predicted fibrosis stage or a 

normal classification, along with performance metrics such as 

accuracy and precision to evaluate the model’s reliability. 

A. Image Pre-Processing 

a) RGB to Gray Scale: The initial step in the image 

processing pipeline involves converting ultrasound images 

from RGB to grayscale format. This transformation, illustrated 

in Fig. 3, simplifies the image by reducing its color information 

to a single intensity channel. Grayscale images consist of 

256 shades ranging from black (0) to white (255), which 

 

 
 

Fig. 1. Block diagram of liver fibrosis detection. 

 

 
Fig. 2. Input images 

 

 

significantly reduces visual complexity. By compressing the 

image to its essential pixel values, this step not only stream- 

lines subsequent processing but also lowers computational 

demands. Grayscale conversion is a widely adopted practice 

in image analysis, as it enhances efficiency and facilitates 

operations such as thresholding and edge detection. Compared 

to RGB images, grayscale representations are easier to handle 

and more suitable for extracting structural features critical to 

medical diagnostics. 

 

Fig. 3. RGB to Grayscale 

 

b) Noise Removal: Noise in medical images, particularly 

ultrasound scans, poses a significant challenge to accurate 

analysis by introducing unwanted pixel variations that obscure 

important visual details. To ensure reliable results, noise 

reduction is applied early in the processing pipeline to enhance 
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image clarity while preserving structural boundaries. This 

typically involves smoothing techniques that suppress random 

fluctuations across the image, except near edges where critical 

features reside. The relationship between the original image, 

noise, and the resulting distortion can be expressed as f(x, 

y) = g(x, y) + n(x, y), where g(x, y) is the clean image, 

n(x, y) represents the noise, and f(x, y) is the observed 

noisy output. Common types of noise include salt-and-pepper 

artifacts—visible as scattered black and white specks—and 

Gaussian noise, which introduces subtle intensity shifts due 

to sensor limitations or environmental factors. Effectively 

removing these distortions is crucial for downstream tasks such 

as edge detection and segmentation, enabling more accurate 

feature extraction and classification. 

 

B. Segmentation 

Segmentation plays a crucial role in guiding the CNN model 

to focus specifically on liver tissue during classification. To 

begin, the grayscale image generated in earlier steps is used 

as input, ensuring that color distractions are minimized and 

structural details are emphasized. One common method for 

liver segmentation is thresholding, which helps isolate the 

region of interest (ROI)—the part of the image containing 

relevant tissue. This process effectively separates the image 

into two zones: the foreground, which includes the fibrosis 

region, and the background, which is assigned a pixel value 

of zero. 

Once segmented, the resulting matrix acts as a mask to 

extract the fibrosis region from the original RGB image. This 

is achieved by multiplying the grayscale mask with the RGB 

image, allowing only the liver tissue to be retained for further 

analysis. To optimize computational efficiency, the image is 

resized, reducing the matrix dimensions used in the recognition 

process. Finally, the processed image is reshaped into a column 

matrix format, preparing it for feature extraction in the next 

stage of the pipeline. 

 

C. Feature Extraction 

Feature extraction helps in the recognition phase, as it helps 

reduce the complexity of image data by converting high- 

dimensional inputs into a simplified, one-dimensional format. 

This transformation allows for faster and more accurate analy- 

sis, particularly when assessing liver tissue characteristics and 

stratifying risk. As illustrated in Fig. 4, the process begins 

with the segmented matrix, which serves as the foundation 

for extracting meaningful patterns. 

To achieve this, techniques like the Gray-Level Co- 

occurrence Matrix (GLCM) are applied to capture texture- 

based information, followed by statistical analysis using meth- 

ods such as Principal Component Analysis (PCA). These steps 

help distil the image into a compact set of values that retain 

essential features while minimizing redundancy. The extracted 

features may include texture, shape, and color attributes—each 

offering insights into the structural and pathological state of 

the liver. By focusing on these key descriptors, the model 

 

 
 

Fig. 4. Feature extraction from segmented image. 

 

 

becomes more efficient in distinguishing between normal and 

fibrotic tissue, ultimately improving diagnostic precision. 

D. Classification and Detection 

The classification module is represented through a use case 

diagram that includes two primary actors and three distinct 

use cases. The process begins with the system receiving 

input vectors, which are essential for determining the degree 

of liver fibrosis. These vectors help the model assess tissue 

thickness and guide the classification outcome. As the 

workflow progresses, the third use case focuses on generating 

feature vectors for the entire dataset. These computed vectors 

are then compared with those extracted from the input 

image, allowing the system to accurately identify and classify 

characteristics specific to the liver tissue. This structured 

interaction between actors and use cases ensures a reliable 

and interpretable classification process. 

 

Fig. 5. Data Flow Diagram of Classification and Detection Process. 

 

 

 

E. Data Flow Diagram 

A data flow diagram (DFD) visually maps how infor- 

mation travels through a system, from input to processing 

and ultimately to output, helping designers understand data 

origin, movement, and storage. In our model, the process 

starts with an RGB ultrasound elastography image, which 

is converted to grayscale to reduce complexity and enhance 

clarity. This refined image undergoes preprocessing, followed 

http://www.jetir.org/


© 2025 JETIR November 2025, Volume 12, Issue 11                                                       www.jetir.org (ISSN-2349-5162) 

 

JETIR2511576 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f466 
 

by segmentation to isolate liver tissue. Key features are then 

extracted and compared with a dataset of known cases, guiding 

the classification step to determine whether the liver image 

reflects fibrosis or a normal condition. 
 

Fig. 6. Data Flow Diagram for the proposed. 

 

 

IV. RESULTS 

The final outcomes of the model included successful iden- 

tification of advanced stages of liver fibrosis. Built on a CNN 

architecture, the system demonstrated strong performance, 

reaching an accuracy of up to 92detection. Its reliability was 

reinforced through rigorous validation against diverse datasets, 

ensuring consistent quality across different imaging condi- 

tions. The model proved particularly effective at minimizing 

false negatives while retaining true positives, reflected in 

its impressive accuracy and recall scores of 0.94 and 0.91, 

respectively. Additionally, its fast-processing speed makes it 

well-suited for handling and maintaining large volumes of 

medical imaging records efficiently. 

V. CONCLUSION 

This study highlights the promise of deep learn- 

ing—especially convolutional neural networks (CNNs)—in 

detecting and staging liver fibrosis without the need for 

invasive procedures. By leveraging ultrasound elastography 

scans, these models present a viable alternative to liver 

biopsies, which are often painful, costly, and inaccessible 

in many settings. (Insert image showing ultrasound scans 

of healthy and fibrotic livers) Early detection plays a vital 

role in enabling timely treatment and improving long-term 

outcomes for patients. Because this technique is non-invasive, 

it can be deployed even in remote or resource-constrained 

environments, making liver assessment more widely available. 

(Insert image of a portable ultrasound device in use within 

a rural clinic) Incorporating additional data—such as patient 

clinical records and other imaging modalities—could further 

enhance the model’s accuracy and adaptability across diverse 

populations. Broad adoption of this technology could revolu- 

tionize liver care by expanding access to fibrosis screening, 

particularly in areas where specialized diagnostics are limited 

or unavailable. 
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