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Abstract—L.iver fibrosis is a progressive condition charac- terized
by the accumulation of scar tissue in the liver, often developing
silently until advanced stages. Conventional diagnostic methods such
as liver biopsy, while effective, are invasive, costly, and subject to
sampling errors. This study proposes a deep learning-based
framework for noninvasive detection and staging of liver fibrosis
using ultrasound elastography images. The ap- proach integrates a
convolutional neural network (CNN) trained to identify subtle
textural and structural changes associated with fibrotic progression.
The preprocessing pipeline includes grayscale conversion, noise
reduction, and high-pass filtering to enhance image clarity.
Segmentation isolates the liver region, followed by feature extraction
to generate statistical descriptors for classification. The model
successfully  distinguishes  between  four fibrosis  stages,
demonstrating high accuracy and recall. This technique offers a
reliable, scalable alternative to tradi- tional methods, with potential
for early diagnosis and broader accessibility in clinical settings

Index Terms—Ultrasound elastography, Noninvasive diagnosis,
Edge Detection method, Feature extraction, Ultrasound Images,
Feature extraction, CNN

. INTRODUCTION

Liver fibrosis is a long-term pathological condition marked
by the excessive deposition of extracellular matrix pro-
teins—primarily collagen—within the liver’s functional tissue.
This abnormal buildup alters the liver’s structural integrity
and hampers its physiological performance, potentially lead-
ing to life-threatening complications such as cirrhosis, portal
hypertension, and hepatic failure. Because the disease often
progresses without noticeable symptoms, many individuals
remain undiagnosed until it reaches a critical stage. Therefore,
early and accurate detection is essential to initiate timely
treatment and improve patient outcomes.

Historically, liver biopsy has been the primary method for
evaluating the severity of fibrosis. This technique involves
collecting a small tissue sample for microscopic analysis,
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offering direct insight into the extent of liver damage. How-
ever, biopsies are invasive and carry risks such as bleeding,
infection, and sampling errors. The discomfort and potential
complications associated with the procedure often deter pa-
tients from undergoing repeated evaluations, making it less
practical for ongoing monitoring. These drawbacks have led
researchers and clinicians to seek noninvasive alternatives that
are safer, more consistent, and easier to perform.

One such alternative is ultrasound elastography, which es-
timates liver stiffness—a key indicator of fibrosis—through
imaging. This method is painless, relatively inexpensive, and
suitable for repeated use, making it a valuable tool for track-
ing disease progression and therapeutic response. Despite its
advantages, the accuracy of elastography can be affected by
operator skill, equipment variability, and subjective interpreta-
tion. These factors contribute to inconsistencies between dif-
ferent observers and devices, which can undermine diagnostic
reliability.

To overcome these limitations, artificial intelligence (Al)
has emerged as a powerful tool in medical imaging. In partic-
ular, convolutional neural networks (CNNs) have shown great
promise in automating image analysis. These deep learning
models are capable of identifying complex patterns and ex-
tracting relevant features from visual data, making them ideal
for interpreting ultrasound elastography scans. By reducing
reliance on manual evaluation, CNNs can improve diagnostic
consistency and enable broader application across various
healthcare settings, including those with limited resources.

Il. RELATED WORK

In recent years, many researchers have explored the use
of deep learning and image processing techniques to de-
tect and stage liver fibrosis in a non-invasive way. Tschand
and Rinner [1] were among the first to apply convolutional
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neural networks (CNNs) for classifying liver fibrosis stages,
proving that deep models can effectively learn and interpret
complex patterns in medical images. Roehlen et al. [2] and
Terrault et al. [3] discussed how accurate fibrosis staging
is essential for managing chronic liver diseases and pointed
out the limitations of traditional biopsy methods, which are
invasive and risky. Li et al. [4] showed that CNNs could be
successfully applied to transient elastography data to assess
fibrosis levels more precisely. Likewise, Biris et al. [5] used
ultrasound-based techniques such as 2D-SWE and UGAP,
demonstrating that non-invasive imaging methods can be both
reliable and practical. Liu et al. [6] further developed this
field by combining handcrafted features with deep learning
in a CNN framework, improving the accuracy of liver fibrosis
detection using ultrasound images.

Zhu et al. [7] applied deep learning to MRI ADC images
to classify different stages of fibrosis, showing the potential
of diffusion imaging for detailed tissue analysis. Wieczorek et
al. [8] took an innovative approach by developing an Al-based
system that detects liver cirrhosis from exhaled breath, proving
how adaptable deep learning can be across various medical
data types. Hameed et al. [9] also used CNNs on CT scans
for liver cancer detection, reinforcing the reliability of deep
learning for liver-related imaging tasks. Together, these studies
highlight how artificial intelligence is transforming medical
imaging — making diagnosis faster, more accurate, and less
dependent on invasive procedures like biopsies. The growing
success of Al-driven diagnostic tools shows clear potential
for improving early detection and better management of liver
diseases in clinical settings.

I1l. METHODOLOGY

The model follows a systematic approach built around five
core processing stages: preprocessing, edge detection, segmen-
tation, feature extraction, and classification. It begins with an
input image that undergoes preprocessing, where the RGB
format is converted to grayscale and noise is minimized using
filtering techniques to enhance image clarity. Once the image
is refined, edge detection algorithms are applied to highlight
structural boundaries, which guide the segmentation process
by dividing the image into meaningful regions. These regions
are then analyzed to extract essential features that capture the
visual characteristics relevant to liver fibrosis. As shown in Fig.
1, these features are fed into a convolutional neural network
(CNN), which classifies the image based on learned patterns.
The final output includes the predicted fibrosis stage or a
normal classification, along with performance metrics such as
accuracy and precision to evaluate the model’s reliability.

A. Image Pre-Processing

a) RGB to Gray Scale: The initial step in the image
processing pipeline involves converting ultrasound images
from RGB to grayscale format. This transformation, illustrated
in Fig. 3, simplifies the image by reducing its color information
to a single intensity channel. Grayscale images consist of
256 shades ranging from black (0) to white (255), which

Segmentation Classification
Using CNN
Feature
Extraction

Classification
Using CNN

Fig. 2. Input images

significantly reduces visual complexity. By compressing the
image to its essential pixel values, this step not only stream-
lines subsequent processing but also lowers computational
demands. Grayscale conversion is a widely adopted practice
in image analysis, as it enhances efficiency and facilitates
operations such as thresholding and edge detection. Compared
to RGB images, grayscale representations are easier to handle
and more suitable for extracting structural features critical to
medical diagnostics.

Fig. 3. RGB to Grayscale

b) Noise Removal: Noise in medical images, particularly
ultrasound scans, poses a significant challenge to accurate
analysis by introducing unwanted pixel variations that obscure
important visual details. To ensure reliable results, noise
reduction is applied early in the processing pipeline to enhance

JETIR2511576 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | f464


http://www.jetir.org/

© 2025 JETIR November 2025, Volume 12, Issue 11

www.jetir.org (ISSN-2349-5162)

image clarity while preserving structural boundaries. This
typically involves smoothing techniques that suppress random
fluctuations across the image, except near edges where critical
features reside. The relationship between the original image,
noise, and the resulting distortion can be expressed as f(x,
y) = g(X, y) + n(X, y), where g(x, y) is the clean image,
n(x, y) represents the noise, and f(x, y) is the observed
noisy output. Common types of noise include salt-and-pepper
artifacts—visible as scattered black and white specks—and
Gaussian noise, which introduces subtle intensity shifts due
to sensor limitations or environmental factors. Effectively
removing these distortions is crucial for downstream tasks such
as edge detection and segmentation, enabling more accurate
feature extraction and classification.

B. Segmentation

Segmentation plays a crucial role in guiding the CNN model
to focus specifically on liver tissue during classification. To
begin, the grayscale image generated in earlier steps is used
as input, ensuring that color distractions are minimized and
structural details are emphasized. One common method for
liver segmentation is thresholding, which helps isolate the
region of interest (ROI)—the part of the image containing
relevant tissue. This process effectively separates the image
into two zones: the foreground, which includes the fibrosis
region, and the background, which is assigned a pixel value
of zero.

Once segmented, the resulting matrix acts as a mask to
extract the fibrosis region from the original RGB image. This
is achieved by multiplying the grayscale mask with the RGB
image, allowing only the liver tissue to be retained for further
analysis. To optimize computational efficiency, the image is
resized, reducing the matrix dimensions used in the recognition
process. Finally, the processed image is reshaped into a column
matrix format, preparing it for feature extraction in the next
stage of the pipeline.

C. Feature Extraction

Feature extraction helps in the recognition phase, as it helps
reduce the complexity of image data by converting high-
dimensional inputs into a simplified, one-dimensional format.
This transformation allows for faster and more accurate analy-
sis, particularly when assessing liver tissue characteristics and
stratifying risk. As illustrated in Fig. 4, the process begins
with the segmented matrix, which serves as the foundation
for extracting meaningful patterns.

To achieve this, techniques like the Gray-Level Co-
occurrence Matrix (GLCM) are applied to capture texture-
based information, followed by statistical analysis using meth-
ods such as Principal Component Analysis (PCA). These steps
help distil the image into a compact set of values that retain
essential features while minimizing redundancy. The extracted
features may include texture, shape, and color attributes—each
offering insights into the structural and pathological state of
the liver. By focusing on these key descriptors, the model
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Fig. 4. Feature extraction from segmented image.

becomes more efficient in distinguishing between normal and
fibrotic tissue, ultimately improving diagnostic precision.

D. Classification and Detection

The classification module is represented through a use case
diagram that includes two primary actors and three distinct
use cases. The process begins with the system receiving
input vectors, which are essential for determining the degree
of liver fibrosis. These vectors help the model assess tissue
thickness and guide the classification outcome. As the
workflow progresses, the third use case focuses on generating
feature vectors for the entire dataset. These computed vectors
are then compared with those extracted from the input
image, allowing the system to accurately identify and classify
characteristics specific to the liver tissue. This structured
interaction between actors and use cases ensures a reliable
and interpretable classification process.
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Fig. 5. Data Flow Diagram of Classification and Detection Process.

E. Data Flow Diagram

A data flow diagram (DFD) visually maps how infor-
mation travels through a system, from input to processing
and ultimately to output, helping designers understand data
origin, movement, and storage. In our model, the process
starts with an RGB ultrasound elastography image, which
is converted to grayscale to reduce complexity and enhance
clarity. This refined image undergoes preprocessing, followed
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by segmentation to isolate liver tissue. Key features are then
extracted and compared with a dataset of known cases, guiding
the classification step to determine whether the liver image
reflects fibrosis or a normal condition.
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IV. RESULTS

The final outcomes of the model included successful iden-
tification of advanced stages of liver fibrosis. Built on a CNN
architecture, the system demonstrated strong performance,
reaching an accuracy of up to 92detection. Its reliability was
reinforced through rigorous validation against diverse datasets,
ensuring consistent quality across different imaging condi-
tions. The model proved particularly effective at minimizing
false negatives while retaining true positives, reflected in
its impressive accuracy and recall scores of 0.94 and 0.91,
respectively. Additionally, its fast-processing speed makes it
well-suited for handling and maintaining large volumes of
medical imaging records efficiently.

V. CONCLUSION

This study highlights the promise of deep learn-
ing—especially convolutional neural networks (CNNs)—in
detecting and staging liver fibrosis without the need for
invasive procedures. By leveraging ultrasound elastography
scans, these models present a viable alternative to liver
biopsies, which are often painful, costly, and inaccessible
in many settings. (Insert image showing ultrasound scans
of healthy and fibrotic livers) Early detection plays a vital
role in enabling timely treatment and improving long-term
outcomes for patients. Because this technique is non-invasive,
it can be deployed even in remote or resource-constrained
environments, making liver assessment more widely available.
(Insert image of a portable ultrasound device in use within
a rural clinic) Incorporating additional data—such as patient
clinical records and other imaging modalities—could further
enhance the model’s accuracy and adaptability across diverse
populations. Broad adoption of this technology could revolu-
tionize liver care by expanding access to fibrosis screening,
particularly in areas where specialized diagnostics are limited
or unavailable.
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