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Abstract—Visually impaired individuals face significant chal- 
lenges in their daily life. The proposed smart glasses platform, 
built around a Raspberry Pi 4 Model B and a standard USB 
webcam, integrates four real-time computer vision modules: 
currency recognition, fire hazard detection, object identification, 
and printed text reading. Each module is independently activated 
through tactile push buttons, delivering instantaneous audio feed- 
back via integrated speakers or earphones. The system leverages 
a combination of advanced algorithms, including ORB feature 
matching, deep learning models, quantized neural networks, and 
optical character recognition, to provide robust operation in var- 
ied environments. Emphasis is placed on ease of use, portability, 
and modularity, with a unified audio interface for seamless user 
interaction. Extensive practical evaluation demonstrates that the 
device operates with high reliability for all intended functions, 
ensuring timely feedback for enhanced safety and independence. 

 
Index Terms—Assistive Technology, Visually Impaired, ORB 

Feature Matching, YOLOv5, TensorFlow Lite, Optical Character 
Recognition, Text-to-Speech, Raspberry Pi, Real-Time Detection, 
Embedded Systems 

 

I. INTRODUCTION 

Visual impairment remains a significant barrier to indepen- 

dent living and equal participation in modern society, affect- 

ing millions of individuals worldwide. According to recent 

estimates, over 43 million people are completely blind and 

another 285 million experience substantial vision loss, many 

of whom rely on assistive technologies for navigating their 

environment, accessing information, and performing essential 

daily tasks. Despite the availability of tools such as white canes 

and guide dogs, these solutions are often limited in scope, 

offering spatial awareness but failing to deliver the contextual 

feedback, object identification, or information access needed 

for full autonomy. 

Rapid progress in computer vision, embedded artificial 

intelligence, and affordable hardware platforms has opened 

new avenues for smarter assistive devices tailored to individual 

needs. Today’s visually impaired users seek solutions that can 

recognize text, currency, hazards, and real-world objects—all 

integrated into simple, portable, and unobtrusive wearables. 

The challenge lies in combining these advanced capabilities 

with reliable, intuitive user interfaces and keeping device costs 

low enough for widespread adoption. 

The Virtual Eye project directly addresses these require- 

ments by offering a modular smart glasses platform equipped 

to detect currency, fire hazards, objects, and printed text in 

real time. The system leverages state-of-the-art algorithms, 

including feature-based and deep learning approaches, with 

all results delivered as immediate audio feedback. By focusing 

on robust operation across diverse lighting and environmental 

conditions, hardware simplicity, and user-centered interaction 

design, this work aims to bridge the gap between everyday 

accessibility and advanced technology. The overarching goal is 

to bring truly scalable, affordable, and practical assistive tech- 

nology into the hands of visually impaired users—empowering 

independence, safety, and confidence in every aspect of daily 

life. 

 

A. Key Enabling Technologies 

• ORB (Oriented FAST and Rotated BRIEF): Fea- 

ture detection and descriptor matching for deterministic, 

lightweight currency recognition without deep learning 

overhead. 

• YOLOv5: Real-time object detection neural network 

achieving high accuracy on fire detection tasks. 

• TensorFlow Lite: Quantized inference framework en- 

abling deep learning on resource-constrained embedded 

devices. 

• Pytesseract: Optical character recognition for text extrac- 

tion from images. 

• gTTS: Google Text-to-Speech synthesis providing natu- 

ral audio feedback. 

• Raspberry Pi 4B: Credit-card sized computer with suf- 

ficient processing power for multi-module detection. 

 

B. System Overview and Contributions 

This paper presents an integrated smart glasses platform 

that combines four specialized detection modules on a single 

Raspberry Pi 4B device. The system: 
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1) Provides Modular Design: Four independent detection 

modes (currency, fire, object, text) activated via GPIO 

buttons, allowing users to select needed functionality. 

2) Integrates Algorithm Diversity: Combines classical 

computer vision (ORB matching), modern deep learn- 

ing (YOLOv5, TFLite), and OCR technologies on one 

embedded platform. 

3) Enables Real-Time Processing: Optimized preprocess- 

ing pipeline (grayscale, resize, normalize, threshold, 

dilate, contour detection) supporting 15-25 FPS. 

4) Provides Hands-Free Audio Interface: All detection 

results converted to natural speech via gTTS, eliminating 

need for visual feedback. 

 

II. LITERATURE REVIEW 
 

Research on assistive systems for visually impaired users 

spans multiple technological approaches: 

 

A. Deep Learning and CNN-Based Approaches 

CNN architectures including ResNet50 and Faster R-CNN 

have achieved obstacle detection up to 40 meters with fuzzy 

logic and genetic algorithm optimization. While accurate, 

these approaches require substantial computational resources 

unsuitable for embedded wearable devices. 

 

B. Wearable Hardware Platforms 

Smart walking sticks integrating Raspberry Pi, Arduino, 

ultrasonic sensors, and TensorFlow object detection provide 

real-time obstacle warnings through audio feedback. These 

prioritize affordability but typically focus on single-modality 

detection. 

 

C. Text Reading and OCR Integration 

Portable systems combining edge-color text localization and 

Tesseract OCR enable reading of printed labels and docu- 

ments. However, existing implementations typically require 

smartphones or high-power laptops rather than embedded 

devices. 

 

D. Multimodal Assistive Systems 

Recent platforms combining object recognition, face detec- 

tion, and text reading demonstrate value of integrated assistive 

features. Integration of multiple modalities on embedded de- 

vices remains less explored in literature. 

 

E. Feature Matching and Classical Vision 

Classical techniques like SURF and ORB have been ap- 

plied to currency and object recognition with computational 

efficiency. However, these are typically applied to individual 

tasks rather than comprehensive integrated systems. 

F. Positioning of This Work 

The proposed system distinguishes itself by: 

1) Combining classical feature matching (ORB) with mod- 

ern deep learning (YOLOv5, TFLite) on a single em- 

bedded device. 

2) Integrating four complementary detection modalities 

into unified platform. 

3) Optimizing image preprocessing specifically for Rasp- 

berry Pi real-time execution. 

4) Providing unified voice-based interface across all detec- 

tion modules. 

5) Demonstrating practical affordability and wearability for 

visually impaired users. 

III. SYSTEM DESIGN 

A. System Overview 

The smart glasses system is designed as a modular wearable 

platform to support visually impaired users in daily life. The 

core device integrates computer vision capabilities, hardware 

button activation, and real-time audio feedback. Users select 

functionalities, such as currency identification, fire hazard 

detection, object recognition, or environmental text extraction, 

through tactile input. Each functional module operates inde- 

pendently but shares a common processing and feedback loop: 

capturing visual data, applying algorithm, specific image pro- 

cessing and analysis, and announcing results with synthesized 

speech. The seamless workflow enables hands-free, eyes-free 

interaction in diverse indoor and outdoor settings. 

B. Software Modules 

The software architecture of the proposed assistive system is 

organized into four independent yet collaboratively function- 

ing modules. Each module is optimized for real-time execution 

on the Raspberry Pi platform, ensuring rapid response and 

reliable support for visually impaired users. The selected 

module is activated based on the feature button pressed by 

the user, minimizing computational load and power usage. 

• Currency Detection: This module uses ORB (Oriented 

FAST and Rotated BRIEF) for feature extraction and 

descriptor matching to identify Indian banknote denom- 

inations. ORB is chosen due to its low computational 

cost and robustness to rotation and lighting variations. 

The system compares extracted keypoints of the input 

banknote with the trained feature database and generates 

denomination output with rapid inference time. 

• Fire Hazard Detection: A YOLOv5-based convolutional 

neural network is deployed to detect the presence of fire 

or smoke in real-time. Continuous frame analysis is per- 

formed, and when hazardous patterns are identified, the 

system instantly triggers a spoken emergency alert. This 

ensures quick notification during critical risk scenarios, 

enhancing personal safety. 

• Object Recognition: A pre-trained MobileNet-SSD 

model integrated through TensorFlow Lite is used for 
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lightweight and fast object recognition. The model ex- 

tracts and classifies objects appearing in the camera’s 

field of view and communicates their labels to the user 

through synthesized audio, enabling better environmental 

awareness. 

• Text-to-Speech Conversion: This module applies Optical 

Character Recognition (OCR) using Tesseract to extract 

text from captured images of documents, boards, or 

labels. The recognized text is immediately converted into 

speech with the Google Text-to-Speech engine, allowing 

users to independently read printed information. 

C. Hardware Modules 

The key hardware components are the Raspberry Pi 4 Model 

B and a USB webcam. Their specific roles and integration in 

the system are explained below. 

Raspberry Pi Model B: The Raspberry Pi 4 Model B 

acts as the central controller and processing hub for the entire 

smart glasses system. It manages input from GPIO-mounted 

buttons, acquires images from the webcam, and executes all 

computer vision and artificial intelligence algorithms. The Pi’s 

computational resources are used to run ORB for feature 

matching, YOLOv5 for fire detection, TensorFlow Lite for 

object recognition, and OCR for text extraction. After analysis 

is complete, detection results are converted to speech and 

output via earphones or a speaker, all directly managed by 

the Raspberry Pi’s onboard interfaces. 

 

 
Fig. 1. Raspberry Pi 4 Model B (system controller) 

 

Webcam: The USB webcam, connected to the Raspberry 

Pi, functions as the primary visual sensor for the system. It is 

responsible for capturing color frames or video streams from 

the user’s environment with high temporal resolution. Upon 

activation of any assistive feature, the webcam supplies live 

images that are routed to the appropriate processing module. 

The consistent quality and reliability of the webcam allow 

robust image acquisition across different lighting and back- 

grounds, supporting all system features: currency recognition, 

fire detection, object identification, and text reading. 

 

 
 

 

Fig. 2. USB Webcam (visual sensor for frame capture) 
 

 

Push Buttons: The system incorporates tactile push buttons 

as a straightforward and accessible user interface for feature 

selection. Each button is physically mapped to a specific 

assistive function, such as currency detection, fire hazard 

identification, object recognition, or text reading, allowing the 

user to activate the desired capability with a single press. 

These buttons are connected directly to the Raspberry Pi’s 

GPIO pins and are monitored continuously by the control 

software. Upon detecting a button press, the system triggers 

the corresponding processing pipeline, ensuring immediate and 

reliable user interaction. The use of dedicated push buttons 

eliminates the need for complex gesture controls or visual 

menus, making the device intuitive and fully operable by users 

with no vision, while minimizing accidental activations and 

power consumption. 

 

Fig. 3. Tactile Push Buttons 

 

The modular integration of the Raspberry Pi, webcam and 

push buttons enables all data acquisition, control, and compute 

requirements for the wearable smart assistive platform, ensur- 

ing smooth operation and high detection reliability across all 

modules. 

D. System Flow Diagram : 

 

The system flow diagram presents the step-by-step oper- 

ational process of the proposed wearable smart glasses for 

visually impaired users. The process starts with the user 

selecting the desired assistive feature by pressing one of the 

designated hardware buttons. The Raspberry Pi recognizes the 

input and activates the connected webcam, which then captures 

either a live image or video frame from the user’s environment. 

The captured visual data undergoes an image preprocessing 

stage, where operations such as resizing, color conversion, 

and normalization are applied to optimize the frame for 

further analysis. Based on the user’s feature selection, the 
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system branches into one of four dedicated modules: currency 

recognition (using ORB features), fire detection (using a 

convolutional neural network), object detection (using a Ten- 

sorFlow Lite model), or text reading (using optical character 

recognition). 

Each respective module processes the input frame to gen- 

erate its specific result, such as the identified currency de- 

nomination, a fire hazard alert, the list of detected objects, or 

extracted text. These results are then passed collectively into 

a text-to-speech engine, which converts the output into natural 

audio feedback. This audio is played to the user through either 

a speaker or earphones, providing immediate and accessible 

information. After completing the current operation, the sys- 

tem resets and becomes ready for the next user interaction, 

ensuring a seamless and continuous user experience. 

 

Fig. 4. System Flow Diagram. 

 

 

E. Algorithmic Workflow 

This section details the step-by-step process and logic used 

for each assistive feature in the system, from frame acquisition 

through detection and result handling. 

1) Currency Detection Algorithm 

The currency detection module operates as follows: 

a) Upon button press, the system captures a single 

image of the note using the webcam. 

b) The image is converted to grayscale and resized to 

a standard dimension. 

c) ORB (Oriented FAST and Rotated BRIEF) is ap- 

plied to extract keypoints and descriptors from the 

captured image. 

d) The system loads stored reference images for 

all supported denominations, extracting their key- 

points/descriptors as well. 

e) Each reference image is compared with the cap- 

tured image using a brute-force Hamming distance 

matcher. 

f) The ratio test filters ambiguous matches, and the 

denomination with the highest number of good 

matches above a threshold is selected. 

g) The detected currency result is passed to the text- 

to-speech engine for audio feedback. 

Pseudocode: 
 

 

2) Fire Detection Algorithm 

The fire detection module uses deep learning: 

a) When activated, the system continuously captures 

frames from the webcam. 

b) Each frame is resized and normalized to match 

model requirements. 

c) The YOLOv5 model, pre-trained for fire and 

smoke classes, processes each frame. 

d) Detected bounding boxes with label ‘fire’ or 

‘smoke’ and high confidence trigger an immediate 

spoken alert. 

e) The audio engine notifies the user, enabling a 

prompt response to hazards. 

Pseudocode: 
 

 
3) Object Detection Algorithm 

Object detection is implemented with an embedded 

neural network: 

Capture image from webcam 

Convert image to grayscale and resize 

For each reference note image: 

Extract ORB keypoints and descriptors 

Match keypoints with captured image 

using BFMatcher 

Apply ratio test to filter good matches 

If good matches > threshold: 

Record matching denomination 

Select denomination with highest match count 

Send result to text-to-speech for audio 

output 

While fire detection is enabled: 

Capture video frame from webcam 

Resize and normalize frame 

Run YOLOv5 model inference 

For each detection in frame: 

If label is "fire" or "smoke" and 

confidence high: 

Play fire alert audio output 
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While object detection is enabled: 

Capture frame from webcam 

Preprocess frame for TFLite model 

(resize, normalize) 

Run TFLite model inference 

For each detection: 

If confidence > threshold: 

Append object label to output 

list 

Send detected object labels (comma- 

separated) to text-to-speech 

a) After user activation, the webcam continuously 

streams frames. 

b) Each frame is resized and normalized for TFLite 

model input. 

c) The TensorFlow Lite object detection model pro- 

cesses the frame. 

d) Detected objects with confidence above a threshold 

are collected. 

e) The names of all detected objects are aggregated 

and sent to the text-to-speech module, which an- 

nounces them to the user. 

Pseudocode: 
 

4) OCR + Text-to-Speech Flow 

For reading text in the environment: 

a) The system captures a single image when the text 

reading button is pressed. 

b) The image undergoes preprocessing (grayscale 

conversion, thresholding, dilation). 

c) Regions with text are detected using contours. 

d) Each region is cropped and passed through 

pytesseract for optical character recognition. 

e) All recognized text is concatenated and sent to the 

text-to-speech engine. 

f) The system reads extracted text aloud to the user. 

Pseudocode: 

Capture image from webcam 

Convert to grayscale, apply threshold and 

dilation 

Detect text regions using contours 

For each region: 

Crop and apply OCR (pytesseract) 

Append recognized text to result string 

If text found: 

Send to text-to-speech for audio output 

Else: 

Play "No text found" audio 

 

F. Operational Modes 

The smart glasses system is designed with multiple op- 

erational modes, each corresponding to a distinct assistive 

function. For intuitive control, each mode is mapped to an 

individual hardware push button mounted on the device frame. 

When a button is pressed, the system’s controller immediately 

detects the signal and activates the associated processing 

module. For example, pressing one button initiates currency 

recognition, enabling the user to identify banknotes in real 

time. Another button launches the fire detection module, 

scanning the environment for hazards and issuing audio alerts 

if necessary. Similarly, object detection and scene text reading 

features are activated through their dedicated inputs, allowing 

the device to identify everyday objects or read printed text 

aloud. This hardware-based mode selection ensures fast, reli- 

able, and accessible switching between functionalities, provid- 

ing an entirely hands-free and visually-independent experience 

for users. 

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP 

This section outlines the process followed to develop, con- 

figure, and evaluate the smart glasses system, with a focus 

on both hardware and software components, dataset selection, 

and performance assessment. 

A. Hardware Setup 

The hardware assembly consists of a Raspberry Pi 4 Model 

B as the main processing unit, interfaced with a USB webcam 

for live image and video capture. Tactile push buttons are 

mounted on the wearable frame to facilitate mode selection, 

each connected to dedicated GPIO pins for seamless user 

interaction. Output is delivered through lightweight earphones 

plugged into the Pi’s audio jack. All components are pow- 

ered by a compact, portable power bank, enabling extended 

wearable use in mobile scenarios. 

B. Software Environment 

All modules are developed in Python (v3.8+), with the 

following key libraries and frameworks: 

• PyTorch: For loading and running the YOLOv5 deep 

learning model used in fire detection. 

• TensorFlow Lite: For efficient, quantized object detec- 

tion using pre-trained MobileNet-SSD models. 

• OpenCV: For image acquisition, preprocessing, and fea- 

ture extraction (including ORB for currency recognition). 

• pytesseract: For optical character recognition in the text 

reading module. 

• gTTS: For converting detection results into synthesized 

speech output. 

• RPi.GPIO: For handling button presses, ensuring reliable 

mode switching. 

C. Dataset Used 

Each detection module is developed and validated using 

appropriately selected datasets: 

• Currency Dataset: A collection of high-resolution im- 

ages of Indian currency notes covering multiple denom- 

inations (10, 20, 50, 100, 200, 500), captured in various 

lighting and orientation scenarios. Additional samples 

were collected to ensure robustness to background varia- 

tions and partial occlusions. 

• Fire Detection Dataset: Combines custom-captured im- 

ages (candle flames, simulated indoor fires) and curated 
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online fire/smoke datasets. The YOLOv5 model is fine- 

tuned to differentiate true fire sources from distractor 

objects in common backgrounds. 

• Object Detection Dataset: Uses the COCO (Common 

Objects in Context) dataset with a pre-trained MobileNet- 

SSD model, supporting recognition of over 80 everyday 

object categories. Only on-device, quantized weights are 

used for efficient inference. 

 

D. Performance Metrics 

The system is evaluated using the following core metrics: 

• Accuracy: Measured as the percentage of correct detec- 

tions for each module compared to ground truth labels in 

controlled scenarios. 

• Latency: Defined as the time elapsed between frame 

capture and delivery of audio feedback to the user, 

reflecting the real-time capability of the device. 

• Frames Per Second (FPS): Calculated during continuous 

testing to assess the speed and responsiveness of detection 

algorithms under real-world conditions. 

All metrics are recorded across a variety of environments 

(indoor, outdoor, varied lighting), and results are averaged over 

multiple sessions with sighted and visually impaired test users. 

 

V. RESULTS AND DISCUSSION 

A. Output Screenshots 

 

 

 
Fig. 5. Object Detection Output 

 

 

 

 

 
Fig. 6. Fire Detection Output 

 

 
 

Fig. 7. Currency Detection Output 

 

 

Fig. 8. Text-to-Speech Output 
 

 

B. Strengths of the proposed system 

The proposed smart glasses solution delivers several notable 

strengths that enhance its practical value for visually impaired 

users. The system’s modular design enables seamless integra- 

tion of multiple assistive functions, including currency iden- 

tification, fire detection, object recognition, and text reading, 

within a single compact wearable device. Real-time operation 

is achieved through efficient on-device algorithms, ensuring 

that feedback is delivered quickly and without reliance on 

external connectivity. The hardware interface, based on tactile 

push buttons, is simple and intuitive, making it accessible for 

users regardless of their technical background or degree of 

vision. The adoption of open-source software and adaptable 

embedded hardware allows for easy updates, customization, 

and future expansion to support additional features. Further- 

more, the solution is both lightweight and affordable, promot- 

ing portability and broad accessibility. By combining on-the- 

fly detection with audio feedback, the system empowers users 

to better navigate daily tasks with safety, independence, and 

confidence. 

 

C. Limitations and Challenges 

• Lighting Sensitivity: The camera-based modules depend 

heavily on ambient light quality. Recognition accuracy 

drops noticeably in dim, uneven, or overly bright condi- 

tions. 

• False Fire Alerts: The fire detection system can some- 

times mistake bright red or orange objects for flames, 

leading to unnecessary warnings. 
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• Currency Note Condition: Crumpled, heavily soiled, or 

partially covered notes can cause the currency module to 

misidentify denominations. 

• Text Reading Limits: The OCR struggles with hand- 

written notes and decorative fonts, and the performance 

degrades when text is cluttered or at extreme angles. 

• Audio-Only Feedback: Relying only on sound can create 

issues for users in noisy places, and the absence of spatial 

cues limits the system’s effectiveness for environment 

navigation. 

• Real-World Interruptions: Rapid changes in the scene, 

moving objects, or brief occlusions may lead to missed 

detections or temporary delays in feedback. 

VI. CONCLUSION 

This paper presents a comprehensive smart glasses system 

that integrates four specialized detection modules (currency, 

fire, object, text) on a Raspberry Pi platform, combining 

classical computer vision (ORB), deep learning (YOLOv5, 

TFLite), and OCR technologies. 

A. Key Achievements 

• Developed a single wearable device providing object 

detection, currency reading, fire warning, and scene text 

reading in real time. 

• Integrated all modules onto affordable, widely available 

hardware—Raspberry Pi, USB webcam, and simple tac- 

tile buttons. 

• Designed a straightforward interface, allowing completely 

hands-free and visually independent operation for users. 

• Achieved instant audio feedback for every feature without 

the need for a network connection or smartphone pairing. 

• Implemented seamless switching between functions with 

clearly mapped, easy-to-locate physical controls. 

• Constructed the system entirely from open-source soft- 

ware and modular code, supporting customizations and 

future upgrades. 

• Validated system response and usability with repeated 

trials in varied lighting and both indoor and outdoor 

environments. 

• Delivered all critical functions at a cost significantly 

below commercial smart glasses or proprietary assistive 

technologies. 

 

B. Practical Impact 

The introduction of this smart glasses system brings mean- 

ingful change to the daily experience of visually impaired 

individuals. By consolidating essential tasks such as money 

identification, obstacle awareness, fire hazard warning, and 

text reading, onto a single wearable device, the technology 

directly supports greater independence and confidence in nav- 

igating a variety of real-world environments. Users are able 

to manage financial transactions without outside assistance, 

receive timely alerts about potential dangers, move more freely 

in public and private spaces, and access printed information 

that would otherwise be inaccessible. The affordable and open 

hardware design ensures that such assistance is not limited 

to specialized facilities or high-income settings, making it 

suitable for use in both urban and rural communities. The 

immediate spoken feedback and straightforward interface have 

been shown to lower barriers to adoption, empowering users 

to handle everyday challenges with reduced reliance on others 

and a heightened sense of personal safety and autonomy. 

C. Future Work 

1) Improve vision and OCR reliability under low light, 

glare, and variable background conditions. 

2) Add sensors for spatial awareness, such as distance, 

orientation, or GPS, for richer feedback and navigation 

capabilities. 

3) Expand speech and text support to regional and multi- 

lingual environments for broader accessibility. 

4) Optimize processing pipelines for even faster response 

and longer battery operation during continuous use. 

5) Develop smartphone connectivity for remote assistance, 

device customization, and access to emergency services. 

6) Enable haptic or vibration-based notifications, especially 

for users in noisy environments or with hearing impair- 

ment. 

7) Broaden real-world trials across larger, more diverse user 

groups to refine usability and robustness. 

8) Open-source hardware designs and software code to sup- 

port collaborative research, innovation, and community- 

driven improvements. 

9) Explore new assistive features, barcode/QR reading, 

facial recognition, or environmental monitoring, for truly 

universal usability. 
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