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Abstract—Visually impaired individuals face significant chal-
lenges in their daily life. The proposed smart glasses platform,
built around a Raspberry Pi 4 Model B and a standard USB
webcam, integrates four real-time computer vision modules:
currency recognition, fire hazard detection, object identification,
and printed text reading. Each module is independently activated
through tactile push buttons, delivering instantaneous audio feed-
back via integrated speakers or earphones. The system leverages
a combination of advanced algorithms, including ORB feature
matching, deep learning models, quantized neural networks, and
optical character recognition, to provide robust operation in var-
ied environments. Emphasis is placed on ease of use, portability,
and modularity, with a unified audio interface for seamless user
interaction. Extensive practical evaluation demonstrates that the
device operates with high reliability for all intended functions,
ensuring timely feedback for enhanced safety and independence.

Index Terms—Assistive Technology, Visually Impaired, ORB
Feature Matching, YOLOV5, TensorFlow Lite, Optical Character
Recognition, Text-to-Speech, Raspberry Pi, Real-Time Detection,
Embedded Systems

|I. INTRODUCTION

Visual impairment remains a significant barrier to indepen-
dent living and equal participation in modern society, affect-
ing millions of individuals worldwide. According to recent
estimates, over 43 million people are completely blind and
another 285 million experience substantial vision loss, many
of whom rely on assistive technologies for navigating their
environment, accessing information, and performing essential
daily tasks. Despite the availability of tools such as white canes
and guide dogs, these solutions are often limited in scope,
offering spatial awareness but failing to deliver the contextual
feedback, object identification, or information access needed
for full autonomy.

Rapid progress in computer vision, embedded artificial
intelligence, and affordable hardware platforms has opened
new avenues for smarter assistive devices tailored to individual
needs. Today’s visually impaired users seek solutions that can
recognize text, currency, hazards, and real-world objects—all
integrated into simple, portable, and unobtrusive wearables.
The challenge lies in combining these advanced capabilities
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with reliable, intuitive user interfaces and keeping device costs
low enough for widespread adoption.

The Virtual Eye project directly addresses these require-
ments by offering a modular smart glasses platform equipped
to detect currency, fire hazards, objects, and printed text in
real time. The system leverages state-of-the-art algorithms,
including feature-based and deep learning approaches, with
all results delivered as immediate audio feedback. By focusing
on robust operation across diverse lighting and environmental
conditions, hardware simplicity, and user-centered interaction
design, this work aims to bridge the gap between everyday
accessibility and advanced technology. The overarching goal is
to bring truly scalable, affordable, and practical assistive tech-
nology into the hands of visually impaired users—empowering
independence, safety, and confidence in every aspect of daily
life.

A. Key Enabling Technologies

- ORB (Oriented FAST and Rotated BRIEF): Fea-
ture detection and descriptor matching for deterministic,
lightweight currency recognition without deep learning
overhead.

- YOLOV5: Real-time object detection neural network
achieving high accuracy on fire detection tasks.

- TensorFlow Lite: Quantized inference framework en-
abling deep learning on resource-constrained embedded
devices.

- Pytesseract: Optical character recognition for text extrac-
tion from images.

- gTTS: Google Text-to-Speech synthesis providing natu-
ral audio feedback.

- Raspberry Pi 4B: Credit-card sized computer with suf-
ficient processing power for multi-module detection.

B. System Overview and Contributions

This paper presents an integrated smart glasses platform
that combines four specialized detection modules on a single
Raspberry Pi 4B device. The system:
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1) Provides Modular Design: Four independent detection
modes (currency, fire, object, text) activated via GP1O
buttons, allowing users to select needed functionality.

2) Integrates Algorithm Diversity: Combines classical
computer vision (ORB matching), modern deep learn-
ing (YOLOV5, TFLite), and OCR technologies on one
embedded platform.

3) Enables Real-Time Processing: Optimized preprocess-
ing pipeline (grayscale, resize, normalize, threshold,
dilate, contour detection) supporting 15-25 FPS.

4) Provides Hands-Free Audio Interface: All detection
results converted to natural speech via gTTS, eliminating
need for visual feedback.

Il. LITERATURE REVIEW

Research on assistive systems for visually impaired users
spans multiple technological approaches:

A. Deep Learning and CNN-Based Approaches

CNN architectures including ResNet50 and Faster R-CNN
have achieved obstacle detection up to 40 meters with fuzzy
logic and genetic algorithm optimization. While accurate,
these approaches require substantial computational resources
unsuitable for embedded wearable devices.

B. Wearable Hardware Platforms

Smart walking sticks integrating Raspberry Pi, Arduino,
ultrasonic sensors, and TensorFlow object detection provide
real-time obstacle warnings through audio feedback. These
prioritize affordability but typically focus on single-modality
detection.

C. Text Reading and OCR Integration

Portable systems combining edge-color text localization and
Tesseract OCR enable reading of printed labels and docu-
ments. However, existing implementations typically require
smartphones or high-power laptops rather than embedded
devices.

D. Multimodal Assistive Systems

Recent platforms combining object recognition, face detec-
tion, and text reading demonstrate value of integrated assistive
features. Integration of multiple modalities on embedded de-
vices remains less explored in literature.

E. Feature Matching and Classical Vision

Classical techniques like SURF and ORB have been ap-
plied to currency and object recognition with computational
efficiency. However, these are typically applied to individual
tasks rather than comprehensive integrated systems.

F. Positioning of This Work

The proposed system distinguishes itself by:

1) Combining classical feature matching (ORB) with mod-
ern deep learning (YOLOV5, TFLite) on a single em-
bedded device.

2) Integrating four complementary detection modalities
into unified platform.

3) Optimizing image preprocessing specifically for Rasp-
berry Pi real-time execution.

4) Providing unified voice-based interface across all detec-
tion modules.

5) Demonstrating practical affordability and wearability for
visually impaired users.

I1l. SYSTEM DESIGN

A. System Overview

The smart glasses system is designed as a modular wearable
platform to support visually impaired users in daily life. The
core device integrates computer vision capabilities, hardware
button activation, and real-time audio feedback. Users select
functionalities, such as currency identification, fire hazard
detection, object recognition, or environmental text extraction,
through tactile input. Each functional module operates inde-
pendently but shares a common processing and feedback loop:
capturing visual data, applying algorithm, specific image pro-
cessing and analysis, and announcing results with synthesized
speech. The seamless workflow enables hands-free, eyes-free
interaction in diverse indoor and outdoor settings.

B. Software Modules

The software architecture of the proposed assistive system is
organized into four independent yet collaboratively function-
ing modules. Each module is optimized for real-time execution
on the Raspberry Pi platform, ensuring rapid response and
reliable support for visually impaired users. The selected
module is activated based on the feature button pressed by
the user, minimizing computational load and power usage.

- Currency Detection: This module uses ORB (Oriented
FAST and Rotated BRIEF) for feature extraction and
descriptor matching to identify Indian banknote denom-
inations. ORB is chosen due to its low computational
cost and robustness to rotation and lighting variations.
The system compares extracted keypoints of the input
banknote with the trained feature database and generates
denomination output with rapid inference time.

- Fire Hazard Detection: A YOLOV5-based convolutional
neural network is deployed to detect the presence of fire
or smoke in real-time. Continuous frame analysis is per-
formed, and when hazardous patterns are identified, the
system instantly triggers a spoken emergency alert. This
ensures quick notification during critical risk scenarios,
enhancing personal safety.

- Object Recognition: A pre-trained MobileNet-SSD
model integrated through TensorFlow Lite is used for
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lightweight and fast object recognition. The model ex-
tracts and classifies objects appearing in the camera’s
field of view and communicates their labels to the user
through synthesized audio, enabling better environmental
awareness.

- Text-to-Speech Conversion: This module applies Optical
Character Recognition (OCR) using Tesseract to extract
text from captured images of documents, boards, or
labels. The recognized text is immediately converted into
speech with the Google Text-to-Speech engine, allowing
users to independently read printed information.

C. Hardware Modules

The key hardware components are the Raspberry Pi 4 Model
B and a USB webcam. Their specific roles and integration in
the system are explained below.

Raspberry Pi Model B: The Raspberry Pi 4 Model B
acts as the central controller and processing hub for the entire
smart glasses system. It manages input from GPIO-mounted
buttons, acquires images from the webcam, and executes all
computer vision and artificial intelligence algorithms. The Pi’s
computational resources are used to run ORB for feature
matching, YOLOV5 for fire detection, TensorFlow Lite for
object recognition, and OCR for text extraction. After analysis
is complete, detection results are converted to speech and
output via earphones or a speaker, all directly managed by
the Raspberry Pi’s onboard interfaces.

1.5GHz Quad-core
64-bit Cortex-A72
Processor

40 Pin GPIO Header

Up to 4GB DDR4 RAM

802.11 b/g/n/ac
2.4-5GHz Wifi
Bluetooth 5, BLE

Gigabit Ethernet
Port

Micro SD
Card Slot

2x USB 3.0 Ports.

2x USB 2.0 Ports

USB C Power Input

Composite Audio/Video
Ouput

2x Micro HDMI Out

Fig. 1. Raspberry Pi 4 Model B (system controller)

Webcam: The USB webcam, connected to the Raspberry
Pi, functions as the primary visual sensor for the system. It is
responsible for capturing color frames or video streams from
the user’s environment with high temporal resolution. Upon
activation of any assistive feature, the webcam supplies live
images that are routed to the appropriate processing module.
The consistent quality and reliability of the webcam allow
robust image acquisition across different lighting and back-
grounds, supporting all system features: currency recognition,
fire detection, object identification, and text reading.

Fig. 2. USB Webcam (visual sensor for frame capture)

Push Buttons: The system incorporates tactile push buttons
as a straightforward and accessible user interface for feature
selection. Each button is physically mapped to a specific
assistive function, such as currency detection, fire hazard
identification, object recognition, or text reading, allowing the
user to activate the desired capability with a single press.
These buttons are connected directly to the Raspberry Pi’s
GPIO pins and are monitored continuously by the control
software. Upon detecting a button press, the system triggers
the corresponding processing pipeline, ensuring immediate and
reliable user interaction. The use of dedicated push buttons
eliminates the need for complex gesture controls or visual
menus, making the device intuitive and fully operable by users
with no vision, while minimizing accidental activations and
power consumption.
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Fig. 3. Tactile Push Buttons

The modular integration of the Raspberry Pi, webcam and
push buttons enables all data acquisition, control, and compute
requirements for the wearable smart assistive platform, ensur-
ing smooth operation and high detection reliability across all
modules.

D. System Flow Diagram :

The system flow diagram presents the step-by-step oper-
ational process of the proposed wearable smart glasses for
visually impaired users. The process starts with the user
selecting the desired assistive feature by pressing one of the
designated hardware buttons. The Raspberry Pi recognizes the
input and activates the connected webcam, which then captures
either a live image or video frame from the user’s environment.
The captured visual data undergoes an image preprocessing
stage, where operations such as resizing, color conversion,
and normalization are applied to optimize the frame for
further analysis. Based on the user’s feature selection, the
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system branches into one of four dedicated modules: currency
recognition (using ORB features), fire detection (using a
convolutional neural network), object detection (using a Ten-
sorFlow Lite model), or text reading (using optical character
recognition).

Each respective module processes the input frame to gen-
erate its specific result, such as the identified currency de-
nomination, a fire hazard alert, the list of detected objects, or
extracted text. These results are then passed collectively into
a text-to-speech engine, which converts the output into natural
audio feedback. This audio is played to the user through either
a speaker or earphones, providing immediate and accessible
information. After completing the current operation, the sys-
tem resets and becomes ready for the next user interaction,
ensuring a seamless and continuous user experience.

User selects assistive feature

|
o
Raspberry Pi activates webeam

Capture live image or video frame
Image preprocessing

Currency Recognition / N Test Reading
i Fire Detection Object Detection =S
>l / ) B

~ /

4 L3 v 3

Process with ORB S NN s mon e . .
& I Process with CNN | Process with TFLite model | I Process with OCR |
features
. L2
seners r Identification of objects Roxt extiait
Generate currency Fire detection result . Text extraction result
denomination result result
\ \ / 3
S \ i

— be—
Pass output to text-to-speech
engine

Convert information to audio

v

Deliver audio through speaker or
carphones

v

System resets & is ready for
the next use

Fig. 4. System Flow Diagram.

E. Algorithmic Workflow

This section details the step-by-step process and logic used
for each assistive feature in the system, from frame acquisition
through detection and result handling.

1) Currency Detection Algorithm
The currency detection module operates as follows:

a) Upon button press, the system captures a single
image of the note using the webcam.

b) The image is converted to grayscale and resized to
a standard dimension.

c) ORB (Oriented FAST and Rotated BRIEF) is ap-
plied to extract keypoints and descriptors from the
captured image.

d) The system loads stored reference images for
all supported denominations, extracting their key-
points/descriptors as well.

e) Each reference image is compared with the cap-
tured image using a brute-force Hamming distance
matcher.

f) The ratio test filters ambiguous matches, and the
denomination with the highest number of good
matches above a threshold is selected.

g) The detected currency result is passed to the text-
to-speech engine for audio feedback.

Pseudocode:

Capture image from webcam
Convert image to grayscale and resize
For each reference note image:
Extract ORB keypoints and descriptors
Match keypoints with captured image
using BFMatcher
Apply ratio test to filter good matches
If good matches > threshold:
Record matching denomination
Select denomination with highest match counft
Send result to text-to-speech for audio
output

2) Fire Detection Algorithm
The fire detection module uses deep learning:

a) When activated, the system continuously captures
frames from the webcam.

b) Each frame is resized and normalized to match
model requirements.

c) The YOLOvV5 model, pre-trained for fire and
smoke classes, processes each frame.

d) Detected bounding boxes with label ‘fire’ or
‘smoke’ and high confidence trigger an immediate
spoken alert.

e) The audio engine notifies the user, enabling a
prompt response to hazards.

Pseudocode:

While fire detection is enabled:
Capture video frame from webcam
Resize and normalize frame
Run YOLOv5 model inference
For each detection in frame:
If label is "fire" or "smoke" and
confidence high:
Play fire alert audio output

3) Object Detection Algorithm
Object detection is implemented with an embedded
neural network:
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a) After user activation, the webcam continuously
streams frames.

b) Each frame is resized and normalized for TFLite
model input.

c) The TensorFlow Lite object detection model pro-
cesses the frame.

d) Detected objects with confidence above a threshold
are collected.

e) The names of all detected objects are aggregated
and sent to the text-to-speech module, which an-
nounces them to the user.

Pseudocode:

While object detection is enabled:
Capture frame from webcam
Preprocess frame for TFLite model
(resize, normalize)
Run TFLite model inference
For each detection:
If confidence > threshold:
Append object label to output
list
Send detected object labels (comma-
separated) to text-to-speech

4) OCR + Text-to-Speech Flow
For reading text in the environment:

a) The system captures a single image when the text
reading button is pressed.

b) The image undergoes preprocessing (grayscale
conversion, thresholding, dilation).

¢) Regions with text are detected using contours.

d) Each region is cropped and passed through
pytesseract for optical character recognition.

e) All recognized text is concatenated and sent to the
text-to-speech engine.

f) The system reads extracted text aloud to the user.

Pseudocode:

Capture image from webcam
Convert to grayscale, apply threshold and
dilation

Detect text regions using contours
For each region:

Crop and apply OCR (pytesseract)

Append recognized text to result string
If text found:

Send to text-to-speech for audio output
Else:

Play "No text found" audio

F. Operational Modes

The smart glasses system is designed with multiple op-
erational modes, each corresponding to a distinct assistive
function. For intuitive control, each mode is mapped to an
individual hardware push button mounted on the device frame.
When a button is pressed, the system’s controller immediately
detects the signal and activates the associated processing
module. For example, pressing one button initiates currency

recognition, enabling the user to identify banknotes in real
time. Another button launches the fire detection module,
scanning the environment for hazards and issuing audio alerts
if necessary. Similarly, object detection and scene text reading
features are activated through their dedicated inputs, allowing
the device to identify everyday objects or read printed text
aloud. This hardware-based mode selection ensures fast, reli-
able, and accessible switching between functionalities, provid-
ing an entirely hands-free and visually-independent experience
for users.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

This section outlines the process followed to develop, con-
figure, and evaluate the smart glasses system, with a focus
on both hardware and software components, dataset selection,
and performance assessment.

A. Hardware Setup

The hardware assembly consists of a Raspberry Pi 4 Model
B as the main processing unit, interfaced with a USB webcam
for live image and video capture. Tactile push buttons are
mounted on the wearable frame to facilitate mode selection,
each connected to dedicated GPIO pins for seamless user
interaction. Output is delivered through lightweight earphones
plugged into the Pi’s audio jack. All components are pow-
ered by a compact, portable power bank, enabling extended
wearable use in mobile scenarios.

B. Software Environment

All modules are developed in Python (v3.8+), with the
following key libraries and frameworks:

- PyTorch: For loading and running the YOLOV5 deep
learning model used in fire detection.

- TensorFlow Lite: For efficient, quantized object detec-
tion using pre-trained MobileNet-SSD models.

- OpenCV: For image acquisition, preprocessing, and fea-
ture extraction (including ORB for currency recognition).

- pytesseract: For optical character recognition in the text
reading module.

- gTTS: For converting detection results into synthesized
speech output.

- RPIi.GPIO: For handling button presses, ensuring reliable
mode switching.

C. Dataset Used

Each detection module is developed and validated using
appropriately selected datasets:

- Currency Dataset: A collection of high-resolution im-
ages of Indian currency notes covering multiple denom-
inations (10, 20, 50, 100, 200, 500), captured in various
lighting and orientation scenarios. Additional samples
were collected to ensure robustness to background varia-
tions and partial occlusions.

- Fire Detection Dataset: Combines custom-captured im-
ages (candle flames, simulated indoor fires) and curated
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online fire/smoke datasets. The YOLOv5 model is fine-
tuned to differentiate true fire sources from distractor
objects in common backgrounds.

- Object Detection Dataset: Uses the COCO (Common
Objects in Context) dataset with a pre-trained MobileNet-
SSD model, supporting recognition of over 80 everyday
object categories. Only on-device, quantized weights are
used for efficient inference.

D. Performance Metrics

The system is evaluated using the following core metrics:

- Accuracy: Measured as the percentage of correct detec-
tions for each module compared to ground truth labels in Think.
controlled scenarios. : Plan

- Latency: Defined as the time elapsed between frame y
capture and delivery of audio feedback to the user, Execute.
reflecting the real-time capability of the device.

- Frames Per Second (FPS): Calculated during continuous
testing to assess the speed and responsiveness of detection
algorithms under real-world conditions.

All metrics are recorded across a variety of environments
(indoor, outdoor, varied lighting), and results are averaged over
multiple sessions with sighted and visually impaired test users. Fig. 8. Text-to-Speech Output

V. RESULTS AND DIREUSSION B. Strengths of the proposed system

A. Output Screenshots The proposed smart glasses solution delivers several notable
strengths that enhance its practical value for visually impaired
users. The system’s modular design enables seamless integra-
tion of multiple assistive functions, including currency iden-
tification, fire detection, object recognition, and text reading,
within a single compact wearable device. Real-time operation
is achieved through efficient on-device algorithms, ensuring
that feedback is delivered quickly and without reliance on
external connectivity. The hardware interface, based on tactile
push buttons, is simple and intuitive, making it accessible for
Fig. 5. Object Detection Output users regardless of their technical background or degree of
vision. The adoption of open-source software and adaptable
embedded hardware allows for easy updates, customization,
and future expansion to support additional features. Further-
more, the solution is both lightweight and affordable, promot-
ﬁfe 079 ing portak_)ility _and brgad accessibility. By combining on-the-
‘ fly detection with audio feedback, the system empowers users
to better navigate daily tasks with safety, independence, and

confidence.

C. Limitations and Challenges

- Lighting Sensitivity: The camera-based modules depend
heavily on ambient light quality. Recognition accuracy
drops noticeably in dim, uneven, or overly bright condi-
tions.

Fig. 6. Fire Detection Output - False Fire Alerts: The fire detection system can some-

times mistake bright red or orange objects for flames,

leading to unnecessary warnings.
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- Currency Note Condition: Crumpled, heavily soiled, or
partially covered notes can cause the currency module to
misidentify denominations.

- Text Reading Limits: The OCR struggles with hand-
written notes and decorative fonts, and the performance
degrades when text is cluttered or at extreme angles.

- Audio-Only Feedback: Relying only on sound can create
issues for users in noisy places, and the absence of spatial
cues limits the system’s effectiveness for environment
navigation.

- Real-World Interruptions: Rapid changes in the scene,
moving objects, or brief occlusions may lead to missed
detections or temporary delays in feedback.

VI. CONCLUSION

This paper presents a comprehensive smart glasses system
that integrates four specialized detection modules (currency,
fire, object, text) on a Raspberry Pi platform, combining
classical computer vision (ORB), deep learning (YOLOV5,
TFLite), and OCR technologies.

A. Key Achievements

- Developed a single wearable device providing object
detection, currency reading, fire warning, and scene text
reading in real time.

- Integrated all modules onto affordable, widely available
hardware—Raspberry Pi, USB webcam, and simple tac-
tile buttons.

- Designed a straightforward interface, allowing completely
hands-free and visually independent operation for users.

- Achieved instant audio feedback for every feature without
the need for a network connection or smartphone pairing.

- Implemented seamless switching between functions with
clearly mapped, easy-to-locate physical controls.

- Constructed the system entirely from open-source soft-
ware and modular code, supporting customizations and
future upgrades.

- Validated system response and usability with repeated
trials in varied lighting and both indoor and outdoor
environments.

- Delivered all critical functions at a cost significantly
below commercial smart glasses or proprietary assistive
technologies.

B. Practical Impact

The introduction of this smart glasses system brings mean-
ingful change to the daily experience of visually impaired
individuals. By consolidating essential tasks such as money
identification, obstacle awareness, fire hazard warning, and
text reading, onto a single wearable device, the technology
directly supports greater independence and confidence in nav-
igating a variety of real-world environments. Users are able
to manage financial transactions without outside assistance,
receive timely alerts about potential dangers, move more freely
in public and private spaces, and access printed information

that would otherwise be inaccessible. The affordable and open
hardware design ensures that such assistance is not limited
to specialized facilities or high-income settings, making it
suitable for use in both urban and rural communities. The
immediate spoken feedback and straightforward interface have
been shown to lower barriers to adoption, empowering users
to handle everyday challenges with reduced reliance on others
and a heightened sense of personal safety and autonomy.

C. Future Work

1) Improve vision and OCR reliability under low light,
glare, and variable background conditions.

2) Add sensors for spatial awareness, such as distance,
orientation, or GPS, for richer feedback and navigation
capabilities.

3) Expand speech and text support to regional and multi-
lingual environments for broader accessibility.

4) Optimize processing pipelines for even faster response
and longer battery operation during continuous use.

5) Develop smartphone connectivity for remote assistance,
device customization, and access to emergency services.

6) Enable haptic or vibration-based notifications, especially
for users in noisy environments or with hearing impair-
ment.

7) Broaden real-world trials across larger, more diverse user
groups to refine usability and robustness.

8) Open-source hardware designs and software code to sup-
port collaborative research, innovation, and community-
driven improvements.

9) Explore new assistive features, barcode/QR reading,
facial recognition, or environmental monitoring, for truly
universal usability.
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