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Sign language is a rich, multidimensional form of communication
that uses coordinated hand movements, facial expressions, spatial
organization, and timing to convey meaning. Unlike spoken languages,
it depends entirely on visual and physical cues. Indian Sign Language
(ISL), widely used by the Deaf community in India, reflects substantial
variation across regions and is shaped by diverse gestural expressions.
While ISL is deeply embedded in the lives of Deaf individuals,
communication with those unfamiliar with sign language often proves
challenging, due to the stark contrast between gestural and verbal
modes of interaction. Bridging this communication gap requires
intelligent systems capable of interpreting ISL gestures in real-time.
Despite the growth of computer vision technologies, most studies have
focused on American Sign Language and isolated signs, leaving
dynamic ISL sequences less examined. To address this, our research
presents a ViViT-based framework, optimized with deeper transformer
layers and fine-tuned attention mechanisms to better capture complex
spatiotemporal features. The model was trained on VISL-PICT, a
purpose-built dataset of 508 gesture videos. Our approach attained
96.69% overall accuracy and 99.55% top-5 accuracy, offering a robust
solution for automated ISL recognition.

Index Terms— Recognition of Indian Sign Language Gestures,
Analysis of Temporal and Spatial Hand Movements, Deep Learning
Using Transformer Architectures, Automated Interpretation of Sign
Language in Real-Time

I. INTRODUCTION

Effective communication is essential for sharing our thoughts
and interacting with one another. For humans, speech is the
primary mode of communication. A speaker produces sound
vibrations through their vocal cords, which listeners hear and
then process to derive meaning. However, challenges come
when a speaker is unable to make a sound or a listener is unable
to hear. Millions of individuals worldwide experience hearing
or speech impairments, indicating the importance of
implementing alternate communication strategies for their
complete social integrationSign language is an important tool
for individuals who have difficulties with hearing or speech
impairments, enabling them to express their thoughts and
feelings through gestures, hand movements, and facial
expressions. Unfortunately, sign language is not widely
understood outside of its community, causing difficulties in
communication with individuals unfamiliar with it and
potentially causing feelings of marginalization.Recent deep
learning and NLP improvements have brought us tools for text
and vocal language translation, such as Long Short-Term
Memory (LSTM) [1] and Transformers [2]. However, there is a

lack of computer vision frameworks that can recognize sign
language, which can enable seamless communication between
individuals with hearing or speech impairments and the broader
society. This is quite challenging, especially because most
computer vision systems become weak to handle out-of-
distribution samples [3].

Sign language recognition has been a significant area of
research, with many studies focusing on American Sign
Language (ASL) [4]. However, sign language is highly diverse,
with no universal standard; each region has its own variant. For
example, there are German Sign Language, British Sign
Language, Arabic Sign Language, and many others besides
ASL. These sign languages can also differ because of regional
languages and dialects. Other than that, every sign language has
thousands of signs that look the same, with a slight difference
in each. Computer vision systems face several challenges in
accurately recognizing these signs due to other factors such as
variations in lighting, background changes, facial expressions,
and the speed of signing. Apart from this, some of these signs
are static in nature, and some are dynamic, so we can’t just use
a simple image classification framework to recognize the signs;
we also have to take the semantic information from all the
previous frames to make sense of a sign. Addressing these
challenges requires advanced recognition systems capable of
effectively handling the diversity and nuances of different sign
languages.

One of the key challenges in promoting ISL recognition is the
non-availability of a standard high-quality dataset, which
restricts research and sometimes even has to rely on datasets of
ASL. There is an urgent need for a large-scale, high-quality
dataset in order to enhance ISL recognition frameworks. 333,
most current methods that use Convolutional Neural Networks
(CNNSs) are limited to static signs, making them less effective
for real-world applications that involve dynamic signing.
Recent transformer-based methods show promise with their
ability to use attention mechanisms to analyze information
temporally and semantically across video frames. This paper
tries to fill these gaps, which leaves plenty of room for future
research in ISL recognition.

In this paper, we introduce a novel dataset designed for ISL
recognition and present a new approach utilizing attention
mechanisms via using a Video Vision Transformer. Our
proposed method marks a new direction in dynamic sign
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language recognition, and we believe that both the dataset and
the approach will significantly advance future research in ISL
recognition. The key contributions of this paper are as follows:

. Novel VISL-PICT Dataset: We present a dataset
comprising 42 dynamic word classes totaling 504 high-
quality videos. These videos were recorded with six
different signers against a green background to facilitate
improved processing and augmentation. A few sample
frames of the proposed dataset are shown in the Fig. 1.

. Initial Approach Using Attention Mechanisms: We
propose a preliminary approach that applies the attention
mechanism, using a Video Vision Transformer for ISL
recognition. Given the recent advancements in generative
Al, which have made transformers a top model for a
number of tasks, we use this advanced framework to
evaluate its performance for the ISL recognition task.

II. RELATED WORKS

Sign language recognition has experienced major
breakthroughs in recent years, driven by advancements in
computational resources and the evolution of sophisticated
deep learning models in computer vision. These improvements
have played a crucial role in enhancing communication with the
deaf and hard-of-hearing population. Research in this field
typically follows two key methodologies: sensor-based systems
and vision-based systems. Sensor-Based Approaches: Initially,
gesture recognition relied heavily on physical sensors, such as
depth-sensing devices and motion-detecting gloves. Early
studies, including those by Mehdi and Dipietro, incorporated
gloves equipped with accelerometers and flex sensors to
monitor intricate finger and hand movements. These sensors
translated physical gestures into digital sign interpretations.
Subsequently, researchers like Kumar developed systems that
utilized multiple sensors to improve both the accuracy and
speed of sign recognition. However, these solutions often
involve expensive hardware, making large-scale or real-world
deployment  financially  challenging. Vision-Based
Approaches: Alternatively, vision-based methods utilize
conventional 2D cameras to interpret hand gestures from
images or video footage. These systems remove the need for
specialized wearable devices, making them more practical and
scalable. Their affordability and ease of integration with
everyday technology—such as webcams and smartphones—
have made vision-based models increasingly attractive for real-
time, accessible sign language recognition.

Fig. 1. frames from the proposed ISL recognition video dataset. These frames
may come across as static signs, but they are snapshots of dynamic signs

The use of standard 2D camera technology has significantly
simplified the process of data collection and deployment in sign
language recognition systems. This cost-effective method has
made the technology more accessible. To boost the performance
and precision of these systems, researchers have increasingly
started combining depth data with conventional 2D visuals.
This integration has led to notable improvements in accuracy.
Treating sign language recognition as a visual classification
challenge has allowed the application of various deep learning
models, driven by rapid advances in computer vision
techniques. These innovations have made it possible to handle
complex, continuous sign gestures more efficiently. In the area
of American Sign Language (ASL) recognition, Obaid et al.
developed a hybrid model that combines both spatial and
temporal analysis. They used the Inception model to capture
spatial features from video frames and a Recurrent Neural
Network (RNN) to process motion and sequence information
over time. The team also created a unique dataset to support
their approach, enhancing the effectiveness of their system.
Regarding Indian Sign Language (ISL), Sreemathy et al. carried
out a comprehensive study exploring deep learning techniques
used in recent ISL recognition efforts. In addition, Shridhar et
al. built a large-scale ISL dataset featuring an extensive lexicon.
Sharma et al. treated ISL as an object detection task and applied
the YOLO framework. Based on these developments, this study
puts forward a transformer-based method to further enhance
ISL recognition performance.
III. METHODOLOGY

In this section, we detail our experimental approach by first
discussing the dataset. We then describe the ViViT architecture
that underpins our work. Afterward, we present our proposed
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model tailored for Indian Sign Language recognition. The
section concludes with a brief summary of the methodology.

extends to 77 frames. This variability reflects the real-world
diversity in sign duration and execution styles among
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Fig. 2. Only training videos were augmented; test and validation videos underwent preprocessing and feature extraction before model input, ensuring fair evaluation

without altering non-training data.

The Various performance indicators were used to evaluate the
model. Figure 2 presents the structured framework applied
throughout the model’s training and evaluation process."

A. VISL-PICT Dataset Description

The A significant challenge faced during the development of
an Indian Sign Language (ISL) recognition system was the lack
of publicly available benchmark video datasets. As a result, we
undertook the task of creating a new dataset tailored to our
research objectives. The data collection process was conducted
in a controlled lab setting using a Sony a7III DSLR camera to
ensure high-quality video capture. All recordings were made in
front of a green screen backdrop, which allowed for consistent
backgrounds and minimized visual noise, enhancing the clarity
of the hand gestures and facial expressions. Six individuals
with speech and hearing impairments participated voluntarily
in the recording sessions. Their contributions were essential in
producing a diverse and authentic dataset. The dataset
encompasses 42 unique ISL word classes, with each word
performed multiple times. Specifically, every word was
recorded in 12 different video samples — two from each
participant — using three distinct camera angles to capture
varied visual perspectives. This yielded a total of 504 RGB
video clip Each video is recorded in high resolution at
1921x1800 pixels and a frame rate of 25 frames per second,
ensuring smooth motion representation. Due to the differing
complexity and duration of individual signs, the video lengths
vary; the shortest video contains 22 frames, while the longest

individuals.Overall, the dataset lays an essential foundation for
future advancements in ISL gesture recognition. It represents a
step forward in making sign language technologies more
accessible and effective, especially for aiding communication
for the speech and hearing-impaired community. This dataset
aims to facilitate progress in dynamic video ISL recognition by
offering a dependable basis for building and assessing
recognition models. Figure 1 illustrates example frames that
highlight the dataset’s diversity and structural consistency.

Augmentation and Preprocessing

Transformer-based Models based on the transformer
architecture, such as ViViT, generally demand large-scale
datasets to achieve optimal accuracy. However, the VISL-PICT
dataset includes only 504 videos, which limits its capacity to
train deep learning models effectively. To overcome this
limitation, an automated augmentation tool was developed to
expand the dataset. This tool introduced variations by randomly
adjusting  brightness, rotating frames, flipping them
horizontally, zooming, and altering color properties. Each
original video was used to generate nine augmented versions,
substantially increasing the total dataset size.

After augmentation, the dataset underwent preprocessing to
prepare it for use with the ViViT model. Every video was
broken down into individual frames and saved as NumPy
arrays. These frames were then converted to floating-point
numbers and reshaped to match the format expected by 3D
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convolution layers. The associated labels were also converted Setups  experiment and  Network Perimeters
into float format. To improve training efficiency and
generalization, the dataset was shuffled before being fed into

the model for learning.
Video Vision Transformer Transformer Block Labeled
. . .. - _— ¥ MLP ‘
Video The Video Vision Transformer (ViViT), presented by Classes
Arnab et al. [16], extends the capabilities of the Vision (—
Transformer (ViT) [17] to accommodate the unique challenges MHSA

posed by video-based tasks. Unlike image models, which
handle static spatial information, video analysis requires NORMALIZE
understanding both spatial and temporal aspects. ViViT

achieves this by incorporating spatiotemporal modeling into a
single transformer framework. Inspired by transformer models FEN

:

Transformer Encoder

]

originally crafted for natural language processing [2], ViViT —1

adapts these architectures to process sequential video frames. It Transformer Encoder

leverages the self-attention mechanism to extract spatial details NORMALIZE

from individual frames while also learning the temporal (N |
relationships between frames. This dual capability allows the — X | X2 X

model to interpret both static and dynamic elements present in
videos. In our approach, we utilized ViViT as the core structure
and made specific adjustments to suit the needs of our dataset, Frame 1 Frame 2
as visualized in Fig. 3.To prepare the input, ViViT employs

uniform sampling, extracting a fixed number of frames from

each video to maintain a consistent input size. This method

ensures an optimal trade-off between preserving motion

continuity and keeping computation manageable. Once

sampled, frames are divided into non-overlapping patches.

Rather than processing patches from a single frame, ViViT

stacks patches from successive frames into what are known as

"tublets," which incorporate spatial and temporal cues into a

unified format. These tublets are then processed by transformer

encoders, where multi-head self-attention identifies

relationships across both frames and spatial locations.

Positional encoding is applied to help the model retain the

sequence of patches and frame order, ensuring that the temporal

structure is preserved.ViViT supports multiple configurations

tailored for different tasks. One can apply attention separately

to spatial and temporal dimensions or fuse them in a joint

attention scheme. This design flexibility allows ViViT to scale

efficiently across various video analysis problems.Training

ViViT typically involves optimization using AdamW, along

with regularization strategies such as stochastic depth and layer

normalization, both of which aid in reducing overfitting. The

integration of uniform sampling and tublet-based embedding

gives the model a strong foundation to learn intricate

spatiotemporal patterns, making it effective for large-scale

video understanding tasks

JETIR2601002 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | a10


http://www.jetir.org/

© 2026 JETIR January 2026, Volume 13, Issue 1

www.jetir.org (ISSN-2349-5162)

In this This section details the methodology and architectural
settings utilized in building the proposed model. The approach
is composed of essential elements aimed at improving
recognition of sign language from video sequences. Initially,
the data undergoes preprocessing to standardize the input
format. As part of data enhancement, the videos are augmented
through various techniques such as rotation, zoom alterations,
adjustments in brightness and contrast, and application of color-
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based filters to diversify the training set.To maintain uniform
input dimensions, videos are capped at 22 frames, determined
by the shortest video in the dataset. Each frame is then resized
to 320x180 pixels to reduce memory and computation
requirements. A pixel threshold of 10 is applied to filter out low-
quality visual information. The dataset is then split into training
and validation segments, with 20% of the data reserved for
validation. This setup yields an input array with a shape of (16,
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Figure 4. Evaluation matrix: model output against expected labels on the validation set.
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180, 320, 3), structured for optimal processing. For feature
extraction across time and space, a tubelet embedding method
is adopted. The patch size is set to (16, 8, 8), resulting in 256
distinct patches for each input sequence. Multiple
configurations of transformer blocks were tested, altering the
number of layers and attention heads, while keeping the output
feature dimension at 128.Training was conducted over 85 full
passes through the dataset (epochs), utilizing a batch size of 2
due to hardware limitations. The learning rate was fixed at
0.0001, with a weight decay factor of 0.00001 applied to reduce
overfitting risks. Overall, this pipeline combines effective data
preparation with a tailored transformer-based model, making it
highly suitable for Indian Sign Language (ISL) gesture
recognition. A step-by-step flow of this system is depicted in
Figure 2

Assessment Criteria :

To 1To gauge the effectiveness of our system, we used two
primary metrics: classification accuracy and top-5 accuracy.
These indicators help measure how often the model assigns the
correct label to each video clip.

. of To quantify how well the model performs, we rely on the
metric known as accuracy, which reflects the proportion of
total predictions that were correctly classified. The formula
used to compute accuracy is as follows

Number of Accurate Predictions

Accuracy =

(1

Total Predictions Made

In This metric is central to our evaluation process. It helps us
understand the frequency with which the model’s top
predicted class aligns with the actual label. Since our dataset
has a balanced distribution across classes, accuracy serves as
a fair and dependable measure of overall performance.
However, in scenarios involving closely related classes—
like various signs in Indian Sign Language (ISL)—accuracy
alone may not capture near-correct predictions. To address
this, we also use Top-5 Accuracy, a metric that examines
whether the true label is found within the five predictions
with the highest confidence scores. The formula is expressed
as:

Distance where True Label in Top five
Top-5 Accuracy =

Total Predictions
2
) This approach is especially relevant when dealing with
similar gesture patterns, as it provides a broader picture of
how close the model gets to the correct result even if it's
not ranked first.

IV. PERFORMANCE OUTCOME AND OBSERVATIONS

In This portion outlines the insights gained from our
experimental results. Among all tested variations, the
architecture comprising 10 layers and 10 attention heads per
layer outperformed others. This setup reached a validation
accuracy of 96.69%, as illustrated in Figure 5. The
corresponding confusion matrix is presented in Figure 4, while
Table I compares the performance with alternative designs. We
recorded a Top-5 Accuracy of 99.55% at epoch 85. Both the
loss and accuracy curves stabilized around epoch 65, signaling
convergence. Training was executed on an NVIDIA RTX 4090
GPU and took roughly one hour using a batch size of two. The
accuracy over time is shown in Figure 6, while Figure 7 tracks
the Top-5 accuracy across epochs.

Model Performance
B Accuracy B Top-5 accuracy

1
b 99,77%

96,59%

96,44%
99

96
95
90

95

Att =1, Layers=10 Att=10, Layers=10 Att=8, Layers=10

Model Parameters

Fig. 5. This chart illustrates the impact of altering model architecture on
accuracy and Top-5 accuracy. “Att” denotes the count of attention heads,
while “layers” signify the network’s depth applied during model assessment.

Performance was evaluated by modifying the count of attention heads and layers. The table
highlights the most effective results obtained through careful tuning of these architectural
components during experimentation.

F

Attention Heads Layers | Accuracy | Top5 Accuracy
1 10 95.15 96.59
10 8 95.15 99.77
8 10 96.58 96.44

Results show that attention-based architectures have strong
potential for advancing this research area. Future developments
may involve redesigning the model to better process longer
videos while maintaining frame-wise semantic and temporal
continuity throughout the sequence.
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V. CONCLUSION

The Communication between individuals who are speech or
hearing impaired and those unfamiliar with sign language
remains a significant hurdle due to the limited usage and
variation of regional sign languages. To bridge this gap, there is
a growing need for an intelligent system capable of translating
sign gestures into understandable formats for the general
population. Our study addresses this issue by employing a
video-based approach using vision transformers that utilize
attention mechanisms to learn and interpret gesture sequences
effectively. As part of this work, we introduce a dedicated
dataset titled VISL-PICT, consisting of 508 high-resolution
video clips that represent 42 commonly used words in Indian

Sign Language (ISL). This curated dataset aims to support
future research efforts in ISL recognition. Our model
demonstrates an impressive performance, achieving 96.69%
accuracy and 99.55% top-5 accuracy on the validation set,
highlighting its robustness and potential for real-world
deployment. Nevertheless, the approach faces a potential
limitation in the form of high computational requirements,
especially when handling extended video sequences with both
spatial and temporal complexity. Despite this, the results are
encouraging and mark a step forward in creating practical ISL
translation tools.
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