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Sign  language is a rich, multidimensional form of communication 
that uses coordinated hand movements, facial expressions, spatial 
organization, and timing to convey meaning. Unlike spoken languages, 
it depends entirely on visual and physical cues. Indian Sign Language 
(ISL), widely used by the Deaf community in India, reflects substantial 
variation across regions and is shaped by diverse gestural expressions. 
While ISL is deeply embedded in the lives of Deaf individuals, 
communication with those unfamiliar with sign language often proves 
challenging, due to the stark contrast between gestural and verbal 
modes of interaction. Bridging this communication gap requires 
intelligent systems capable of interpreting ISL gestures in real-time. 
Despite the growth of computer vision technologies, most studies have 
focused on American Sign Language and isolated signs, leaving 
dynamic ISL sequences less examined. To address this, our research 
presents a ViViT-based framework, optimized with deeper transformer 
layers and fine-tuned attention mechanisms to better capture complex 
spatiotemporal features. The model was trained on VISL-PICT, a 
purpose-built dataset of 508 gesture videos. Our approach attained 
96.69% overall accuracy and 99.55% top-5 accuracy, offering a robust 
solution for automated ISL recognition. 

 

Index Terms— Recognition of Indian Sign Language Gestures, 
Analysis of Temporal and Spatial Hand Movements, Deep Learning 
Using Transformer Architectures, Automated Interpretation of Sign 
Language in Real-Time 

I. INTRODUCTION 

Effective communication is essential for sharing our thoughts 

and interacting with one another. For humans, speech is the 

primary mode of communication. A speaker produces sound 

vibrations through their vocal cords, which listeners hear and 

then process to derive meaning. However, challenges come 

when a speaker is unable to make a sound or a listener is unable 

to hear. Millions of individuals worldwide experience hearing 

or speech impairments, indicating the importance of 

implementing alternate communication strategies for their 

complete social integrationSign language is an important tool 

for individuals who have difficulties with hearing or speech 

impairments, enabling them to express their thoughts and 

feelings through gestures, hand movements, and facial 

expressions. Unfortunately, sign language is not widely 

understood outside of its community, causing difficulties in 

communication with individuals unfamiliar with it and 

potentially causing feelings of marginalization.Recent deep 

learning and NLP improvements have brought us tools for text 

and vocal language translation, such as Long Short-Term 

Memory (LSTM) [1] and Transformers [2]. However, there is a 

lack of computer vision frameworks that can recognize sign 

language, which can enable seamless communication between 

individuals with hearing or speech impairments and the broader 

society. This is quite challenging, especially because most 

computer vision systems become weak to handle out-of-

distribution samples [3]. 

Sign language recognition has been a significant area of 

research, with many studies focusing on American Sign 

Language (ASL) [4]. However, sign language is highly diverse, 

with no universal standard; each region has its own variant. For 

example, there are German Sign Language, British Sign 

Language, Arabic Sign Language, and many others besides 

ASL. These sign languages can also differ because of regional 

languages and dialects. Other than that, every sign language has 

thousands of signs that look the same, with a slight difference 

in each. Computer vision systems face several challenges in 

accurately recognizing these signs due to other factors such as 

variations in lighting, background changes, facial expressions, 

and the speed of signing. Apart from this, some of these signs 

are static in nature, and some are dynamic, so we can’t just use 

a simple image classification framework to recognize the signs; 

we also have to take the semantic information from all the 

previous frames to make sense of a sign. Addressing these 

challenges requires advanced recognition systems capable of 

effectively handling the diversity and nuances of different sign 

languages. 

One of the key challenges in promoting ISL recognition is the 

non-availability of a standard high-quality dataset, which 

restricts research and sometimes even has to rely on datasets of 

ASL. There is an urgent need for a large-scale, high-quality 

dataset in order to enhance ISL recognition frameworks. 333, 

most current methods that use Convolutional Neural Networks 

(CNNs) are limited to static signs, making them less effective 

for real-world applications that involve dynamic signing. 

Recent transformer-based methods show promise with their 

ability to use attention mechanisms to analyze information 

temporally and semantically across video frames. This paper 

tries to fill these gaps, which leaves plenty of room for future 

research in ISL recognition. 

In this paper, we introduce a novel dataset designed for ISL 

recognition and present a new approach utilizing attention 

mechanisms via using a Video Vision Transformer. Our 

proposed method marks a new direction in dynamic sign 
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language recognition, and we believe that both the dataset and 

the approach will significantly advance future research in ISL 

recognition. The key contributions of this paper are as follows: 

• Novel VISL-PICT Dataset: We present a dataset 

comprising 42 dynamic word classes totaling 504 high-

quality videos. These videos were recorded with six 

different signers against a green background to facilitate 

improved processing and augmentation. A few sample 

frames of the proposed dataset are shown in the Fig. 1. 

• Initial Approach Using Attention Mechanisms: We 

propose a preliminary approach that applies the attention 

mechanism, using a Video Vision Transformer for ISL 

recognition. Given the recent advancements in generative 

AI, which have made transformers a top model for a 

number of tasks, we use this advanced framework to 

evaluate its performance for the ISL recognition task. 

II. RELATED WORKS 

Sign language recognition has experienced major 

breakthroughs in recent years, driven by advancements in 

computational resources and the evolution of sophisticated 

deep learning models in computer vision. These improvements 

have played a crucial role in enhancing communication with the 

deaf and hard-of-hearing population. Research in this field 

typically follows two key methodologies: sensor-based systems 

and vision-based systems.  Sensor-Based Approaches: Initially, 

gesture recognition relied heavily on physical sensors, such as 

depth-sensing devices and motion-detecting gloves. Early 

studies, including those by Mehdi and Dipietro, incorporated 

gloves equipped with accelerometers and flex sensors to 

monitor intricate finger and hand movements. These sensors 

translated physical gestures into digital sign interpretations. 

Subsequently, researchers like Kumar developed systems that 

utilized multiple sensors to improve both the accuracy and 

speed of sign recognition. However, these solutions often 

involve expensive hardware, making large-scale or real-world 

deployment financially challenging.  Vision-Based 

Approaches: Alternatively, vision-based methods utilize 

conventional 2D cameras to interpret hand gestures from 

images or video footage. These systems remove the need for 

specialized wearable devices, making them more practical and 

scalable. Their affordability and ease of integration with 

everyday technology—such as webcams and smartphones—

have made vision-based models increasingly attractive for real-

time, accessible sign language recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. frames from the proposed ISL recognition video dataset. These frames 

may come across as static signs, but they are snapshots of dynamic signs 

 The use of standard 2D camera technology has significantly 

simplified the process of data collection and deployment in sign 

language recognition systems. This cost-effective method has 

made the technology more accessible. To boost the performance 

and precision of these systems, researchers have increasingly 

started combining depth data with conventional 2D visuals. 

This integration has led to notable improvements in accuracy. 

Treating sign language recognition as a visual classification 

challenge has allowed the application of various deep learning 

models, driven by rapid advances in computer vision 

techniques. These innovations have made it possible to handle 

complex, continuous sign gestures more efficiently.  In the area 

of American Sign Language (ASL) recognition, Obaid et al. 

developed a hybrid model that combines both spatial and 

temporal analysis. They used the Inception model to capture 

spatial features from video frames and a Recurrent Neural 

Network (RNN) to process motion and sequence information 

over time. The team also created a unique dataset to support 

their approach, enhancing the effectiveness of their system.  

Regarding Indian Sign Language (ISL), Sreemathy et al. carried 

out a comprehensive study exploring deep learning techniques 

used in recent ISL recognition efforts. In addition, Shridhar et 

al. built a large-scale ISL dataset featuring an extensive lexicon. 

Sharma et al. treated ISL as an object detection task and applied 

the YOLO framework. Based on these developments, this study 

puts forward a transformer-based method to further enhance 

ISL recognition performance. 

III. METHODOLOGY 

 In this section, we detail our experimental approach by first 

discussing the dataset. We then describe the ViViT architecture 

that underpins our work. Afterward, we present our proposed 
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model tailored for Indian Sign Language recognition. The 

section concludes with a brief summary of the methodology. 

The Various performance indicators were used to evaluate the 

model. Figure 2 presents the structured framework applied 

throughout the model’s training and evaluation process." 

A. VISL-PICT Dataset Description 

The A significant challenge faced during the development of 

an Indian Sign Language (ISL) recognition system was the lack 

of publicly available benchmark video datasets. As a result, we 

undertook the task of creating a new dataset tailored to our 

research objectives. The data collection process was conducted 

in a controlled lab setting using a Sony a7III DSLR camera to 

ensure high-quality video capture. All recordings were made in 

front of a green screen backdrop, which allowed for consistent 

backgrounds and minimized visual noise, enhancing the clarity 

of the hand gestures and facial expressions.  Six individuals 

with speech and hearing impairments participated voluntarily 

in the recording sessions. Their contributions were essential in 

producing a diverse and authentic dataset. The dataset 

encompasses 42 unique ISL word classes, with each word 

performed multiple times. Specifically, every word was 

recorded in 12 different video samples — two from each 

participant — using three distinct camera angles to capture 

varied visual perspectives. This yielded a total of 504 RGB 

video clip Each video is recorded in high resolution at 

1921x1800 pixels and a frame rate of 25 frames per second, 

ensuring smooth motion representation. Due to the differing 

complexity and duration of individual signs, the video lengths 

vary; the shortest video contains 22 frames, while the longest 

extends to 77 frames. This variability reflects the real-world 

diversity in sign duration and execution styles among 

individuals.Overall, the dataset lays an essential foundation for 

future advancements in ISL gesture recognition. It represents a 

step forward in making sign language technologies more 

accessible and effective, especially for aiding communication 

for the speech and hearing-impaired community. This dataset 

aims to facilitate progress in dynamic video ISL recognition by 

offering a dependable basis for building and assessing 

recognition models. Figure 1 illustrates example frames that 

highlight the dataset’s diversity and structural consistency. 

Augmentation and Preprocessing 

Transformer-based Models based on the transformer 

architecture, such as ViViT, generally demand large-scale 

datasets to achieve optimal accuracy. However, the VISL-PICT 

dataset includes only 504 videos, which limits its capacity to 

train deep learning models effectively. To overcome this 

limitation, an automated augmentation tool was developed to 

expand the dataset. This tool introduced variations by randomly 

adjusting brightness, rotating frames, flipping them 

horizontally, zooming, and altering color properties. Each 

original video was used to generate nine augmented versions, 

substantially increasing the total dataset size. 

 

After augmentation, the dataset underwent preprocessing to 

prepare it for use with the ViViT model. Every video was 

broken down into individual frames and saved as NumPy 

arrays. These frames were then converted to floating-point 

numbers and reshaped to match the format expected by 3D 

 

Fig. 2. Only training videos were augmented; test and validation videos underwent preprocessing and feature extraction before model input, ensuring fair evaluation 

without altering non-training data. 
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convolution layers. The associated labels were also converted 

into float format. To improve training efficiency and 

generalization, the dataset was shuffled before being fed into 

the model for learning. 

 Video Vision Transformer 

Video The Video Vision Transformer (ViViT), presented by 

Arnab et al. [16], extends the capabilities of the Vision 

Transformer (ViT) [17] to accommodate the unique challenges 

posed by video-based tasks. Unlike image models, which 

handle static spatial information, video analysis requires 

understanding both spatial and temporal aspects. ViViT 

achieves this by incorporating spatiotemporal modeling into a 

single transformer framework.  Inspired by transformer models 

originally crafted for natural language processing [2], ViViT 

adapts these architectures to process sequential video frames. It 

leverages the self-attention mechanism to extract spatial details 

from individual frames while also learning the temporal 

relationships between frames. This dual capability allows the 

model to interpret both static and dynamic elements present in 

videos. In our approach, we utilized ViViT as the core structure 

and made specific adjustments to suit the needs of our dataset, 

as visualized in Fig. 3.To prepare the input, ViViT employs 

uniform sampling, extracting a fixed number of frames from 

each video to maintain a consistent input size. This method 

ensures an optimal trade-off between preserving motion 

continuity and keeping computation manageable. Once 

sampled, frames are divided into non-overlapping patches. 

Rather than processing patches from a single frame, ViViT 

stacks patches from successive frames into what are known as 

"tublets," which incorporate spatial and temporal cues into a 

unified format.  These tublets are then processed by transformer 

encoders, where multi-head self-attention identifies 

relationships across both frames and spatial locations. 

Positional encoding is applied to help the model retain the 

sequence of patches and frame order, ensuring that the temporal 

structure is preserved.ViViT supports multiple configurations 

tailored for different tasks. One can apply attention separately 

to spatial and temporal dimensions or fuse them in a joint 

attention scheme. This design flexibility allows ViViT to scale 

efficiently across various video analysis problems.Training 

ViViT typically involves optimization using AdamW, along 

with regularization strategies such as stochastic depth and layer 

normalization, both of which aid in reducing overfitting. The 

integration of uniform sampling and tublet-based embedding 

gives the model a strong foundation to learn intricate 

spatiotemporal patterns, making it effective for large-scale 

video understanding tasks  

 

 

Setups experiment and Network  Perimeters : 

 

http://www.jetir.org/


© 2026 JETIR January 2026, Volume 13, Issue 1                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2601002 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a11 
 

In this This section details the methodology and architectural 

settings utilized in building the proposed model. The approach 

is composed of essential elements aimed at improving 

recognition of sign language from video sequences. Initially, 

the data undergoes preprocessing to standardize the input 

format. As part of data enhancement, the videos are augmented 

through various techniques such as rotation, zoom alterations, 

adjustments in brightness and contrast, and application of color-

based filters to diversify the training set.To maintain uniform 

input dimensions, videos are capped at 22 frames, determined 

by the shortest video in the dataset. Each frame is then resized 

to 320×180 pixels to reduce memory and computation 

requirements. A pixel threshold of 10 is applied to filter out low-

quality visual information.  The dataset is then split into training 

and validation segments, with 20% of the data reserved for 

validation. This setup yields an input array with a shape of (16, 

 

Figure 4. Evaluation matrix: model output against expected labels on the validation set. 
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180, 320, 3), structured for optimal processing.  For feature 

extraction across time and space, a tubelet embedding method 

is adopted. The patch size is set to (16, 8, 8), resulting in 256 

distinct patches for each input sequence. Multiple 

configurations of transformer blocks were tested, altering the 

number of layers and attention heads, while keeping the output 

feature dimension at 128.Training was conducted over 85 full 

passes through the dataset (epochs), utilizing a batch size of 2 

due to hardware limitations. The learning rate was fixed at 

0.0001, with a weight decay factor of 0.00001 applied to reduce 

overfitting risks.  Overall, this pipeline combines effective data 

preparation with a tailored transformer-based model, making it 

highly suitable for Indian Sign Language (ISL) gesture 

recognition. A step-by-step flow of this system is depicted in 

Figure 2 

 Assessment Criteria : 

To 1To gauge the effectiveness of our system, we used two 

primary metrics: classification accuracy and top-5 accuracy. 

These indicators help measure how often the model assigns the 

correct label to each video clip. 

 

 

• of To quantify how well the model performs, we rely on the 

metric known as accuracy, which reflects the proportion of 

total predictions that were correctly classified. The formula 

used to compute accuracy is as follows 

Number of Accurate Predictions 

 Accuracy =  (1) 

Total Predictions Made  

In This metric is central to our evaluation process. It helps us 

understand the frequency with which the model’s top 

predicted class aligns with the actual label. Since our dataset 

has a balanced distribution across classes, accuracy serves as 

a fair and dependable measure of overall performance.  

However, in scenarios involving closely related classes—

like various signs in Indian Sign Language (ISL)—accuracy 

alone may not capture near-correct predictions. To address 

this, we also use Top-5 Accuracy, a metric that examines 

whether the true label is found within the five predictions 

with the highest confidence scores. The formula is expressed 

as: 

•  

Distance where True Label in Top five 

Top-5 Accuracy =  

Total Predictions 

(2

) This approach is especially relevant when dealing with 

similar gesture patterns, as it provides a broader picture of 

how close the model gets to the correct result even if it's 

not ranked first.  

 

 

IV.  PERFORMANCE OUTCOME AND OBSERVATIONS 

 

In This portion outlines the insights gained from our 

experimental results. Among all tested variations, the 

architecture comprising 10 layers and 10 attention heads per 

layer outperformed others. This setup reached a validation 

accuracy of 96.69%, as illustrated in Figure 5. The 

corresponding confusion matrix is presented in Figure 4, while 

Table I compares the performance with alternative designs.  We 

recorded a Top-5 Accuracy of 99.55% at epoch 85. Both the 

loss and accuracy curves stabilized around epoch 65, signaling 

convergence. Training was executed on an NVIDIA RTX 4090 

GPU and took roughly one hour using a batch size of two. The 

accuracy over time is shown in Figure 6, while Figure 7 tracks 

the Top-5 accuracy across epochs. 

 
Fig. 5. This chart illustrates the impact of altering model architecture on 

accuracy and Top-5 accuracy. “Att” denotes the count of attention heads, 

while “layers” signify the network’s depth applied during model assessment. 

 
Performance was evaluated by modifying the count of attention heads and layers. The table 

highlights the most effective results obtained through careful tuning of these architectural 

components during experimentation. 

F 
Attention Heads Layers Accuracy Top5 Accuracy 

1 10 95.15 96.59 
10 8 95.15 99.77 
8 10 96.58 96.44 

 Results show that attention-based architectures have strong 

potential for advancing this research area. Future developments 

may involve redesigning the model to better process longer 

videos while maintaining frame-wise semantic and temporal 

continuity throughout the sequence. 
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Fig. 6. “Top accuracy reached by model in each epoch.” 

 

V. CONCLUSION 

The Communication between individuals who are speech or 

hearing impaired and those unfamiliar with sign language 

remains a significant hurdle due to the limited usage and 

variation of regional sign languages. To bridge this gap, there is 

a growing need for an intelligent system capable of translating 

sign gestures into understandable formats for the general 

population. Our study addresses this issue by employing a 

video-based approach using vision transformers that utilize 

attention mechanisms to learn and interpret gesture sequences 

effectively.  As part of this work, we introduce a dedicated 

dataset titled VISL-PICT, consisting of 508 high-resolution 

video clips that represent 42 commonly used words in Indian 

Sign Language (ISL). This curated dataset aims to support 

future research efforts in ISL recognition. Our model 

demonstrates an impressive performance, achieving 96.69% 

accuracy and 99.55% top-5 accuracy on the validation set, 

highlighting its robustness and potential for real-world 

deployment.  Nevertheless, the approach faces a potential 

limitation in the form of high computational requirements, 

especially when handling extended video sequences with both 

spatial and temporal complexity. Despite this, the results are 

encouraging and mark a step forward in creating practical ISL 

translation tools. 
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