

Agentic AI for ESG Practices in Enterprises

¹Amit Aylani, ²Madhuri Rao, ³G.T. Thampi

¹²³Thadomal Shahani Engineering College, Mumbai, India,

prof.amitaylani@gmail.com¹, madhuri.rao@thadomal.org², gtthampi@yahoo.com³

Abstract: In recent years, the range of environmental, Social, and Governance (ESG) expectations has been growing fast, but in most organizational systems, the system is still based on the provisions of reactive formalized processes that fail to keep up with changing regulations, the lack of connected data, and multifaceted sustainability risks. This article presents Agentic ESG Framework, a multi-layered architectural design, which allows autonomous and ethically informed, continuously adaptive ESG governance. The framework incorporates strategic ESG goals, real-time regulatory interpretation, multi agent coordination, and is based on breakthroughs in agentic artificial intelligence, responsible AI governance and multi-source data sensing, adaptive feedback loops and strong oversight mechanisms. As the analysis shows, framework helps to improve the clarity of sustainability goals, contributes to active adherence to the standards, including GRI, SASB, CSRD, and improves coordination on the environmental, social, and governance levels. Findings also indicate that agentic capabilities enhance fairness, transparency, and responsiveness whereas embedded governance safeguards maintain human oversight and auditability. Framework offers organizations a scalable route to future sustainability systems by transforming ESG into a dynamic reporting framework into an intervention-oriented management approach. The article adds to the integrated framework that connects the developing AI capabilities to the challenges of regulatory compliance, ethical responsibility, and long-term organizational sustainability

IndexTerms - Agentic AI, ESG, autonomous systems, AI for Sustainability, sustainability monitoring.

I. INTRODUCTION

Over the past ten years, the environment has become volatile and unpredictable in terms of climate, social disparity has continued to increase, and the demands of investors and civil society have been increasing, altering the environment in which companies operate. It has increasingly become weak in the assumption that financial performance will ensure long-term competitiveness. Rather, organizations are judged by the degree to which they handle natural resources in a responsible manner, the way they deal with people fairly and the level at which they govern themselves in a transparent manner. They have been brought together in the Environmental, Social and Governance (ESG) framework, but these considerations have come to focus on corporate strategy and stakeholder confidence. According to several works on sustainable finance, the investors view high ESG performance as an indicator of resilience and prudent risk management [3,4]. This trend will be supported by recent surveys of institutional investors around the world: over 80% of institutional investors are now considering the ESG factor in their investment choices [1], and ESG-screened assets are expected to grow beyond US 50 trillion by 2025, which is a significant portion of the assets under management worldwide [2].

International policies have been developed to support these trends. UN Sustainable Development Goals (SDGs) report of a shared vision of an inclusive, low-carbon, and ethically based development by the year 2030, which puts pressure on the governments and industries to revamp their outdated ways of doing things. However, this parallel of investor mood and the entire policy remain a difficult task in the process of the shift of ESG commitments to measurable outcomes. The organizations continue to grapple with disjointed data platforms and inconsistency in reporting standards and irregular jurisdiction-based complex regulatory demands. It is also discovered that the majority of traditional ESG reporting approaches are mostly non-dynamic, non-forward looking as well as manualized and thus cannot accommodate the ever-changing nature of sustainability risks or regulatory changes [3,5]. Due to this fact, most companies tend to enter reactive compliance, thereby undermining the credibility of performance disclosures and transparency.

In this respect, a new form of artificial intelligence, which goes by the name of Agentic AI, opens another line of sustainability governance. In contrast to the previous generations of systems which are governed by rules, agentic models exhibit goal-oriented behaviour, awareness of their environment, and changes in decisions as situations change. Such systems can decipher regulatory changes, including those issued in the EU Corporate Sustainability Reporting Directive (CSRD) and alter internal workflows without having to do extensive human re-programming. They can track the indicators of the environment in real-time, detecting the differences in the expected trends, and triggering remedial actions before the problems escalate. At the social and governance levels, agentic systems can process workforce or supplier data, identify possible inequities or ethical dangers and suggest more transparent and responsible courses of action [5–7].

The transition to decentralized forms of ESG-driven decisions and more cooperative decision-making is among the most important opportunities brought about by agentic systems. Multi-agent arrangements enable autonomous agents in disparate locations, departments, or regulatory environments, to exchange information, negotiate trade-offs, and engage in uniform compliant behaviors. This will limit reliance on gradual, top-to-bottom processing and assist in ongoing monitoring of emissions, labour practices, supply-chain ethics, and board governance practices. According to scholars, these architectures have the potential to

solve endemic issues of backward-facing data, uneven reporting as well as low real-time exposure to the risks associated with ESG [7,8].

Despite these changes, there is no cohesive structure in the scholarly and professional literature that could systematize agentic reasoning, sensing data on a real-time basis, regulatory interpretation, and adaptive mechanisms, and governance controls into a seamless ESG system. The current discourse on AI ethics, sustainability analytics, or multi-agent coordination is a patchwork, and the conceptual progress and its practical application do not connect [3,5,9]. To fill this gap, the current paper introduces the Agentic ESG Framework, a six-layer model that aims at operationalizing autonomous, ethically based, and constantly changing ESG governance. The framework brings together the sustainability goals, regulatory rationality, agentic decision processes, sensing, adaptive responses, and oversight systems into an architectural arrangement that can work in organizational contexts.

This contribution presents the paper as identifying the possibility of making Agentic AI not so much as a technological amplification, but possibly a basis of future-capable sustainability governance: adaptive, ethically informed and able to engage in continuous learning in complex operating environments.

II. LITERATURE REVIEW

Research on the intersection of ESG management and artificial intelligence has developed rapidly over the past decade, but the evolution of these systems reveals a clear limitation: most tools remain procedural, rules-based, and unable to respond to dynamic sustainability contexts. Early applications of AI in ESG primarily focused on data handling tasks such as sentiment analysis, automated extraction of disclosures, or predictive scoring of ESG performance using machine learning models [3,4]. Such methods enhanced data processing speed and scale of ESG but did not contribute much to the more significant problems associated with fragmented reporting structures, non-uniform standards, and the necessity of continued interpretation of emerging risks. According to scholars, conventional AI solutions reflect conventional fixed ESG systems- they work per predetermined designs and cannot re-evaluate the objectives or act independently in the context of new regulatory or operational indicators [3,9].

Over the past years, the literature has increased to lean towards more advanced methods by focusing on governance, accountability, and explainability of AI systems. The TRiSM framework, Trust, Risk, Security, and ModelOps, developed by Zhou et al. [5], states that AI platforms should be designed to include mechanisms of responsible autonomy in case they are implemented in high-stakes scenarios, such as sustainability management. Their work mentions the necessity of systems that can analyze whether their own decisions can be trusted, make their own internal models adaptable, and explain compliance audits in a human-understandable way. Fairness and distributive equity in multi agent environments have been discussed by other scholars. An example is Ranjan and Mehta [6] who examine how autonomous agents can cause bias in workforce decisions or resource allocation and highlight the importance of ensuring a fairness constraint is embedded in the autonomous agent to avoid unintended discrimination. These contributions constitute the conceptual background in relation to agentic autonomy where AI systems will not be tools but subjects of decision making.

Similar advances have occurred in multi-agent coordination and autonomous governance systems. Empirical approaches to organizational simulation, decision theory and computational social science show how distributed agents can negotiate, exchange information and solve problems together concerning sustainability issues. Tan et al. [7] revealed that multi-agent foresight models were able to foresee the ESG risk pathways and assist the organizations to consider the long-term environmental and social conditions. On the same note, Batra and Lee [8] examined the ethical model of negotiation in the context of communities of decentralized agents, where they propose a multi-agent rationale to help arrive at a solution to conflicting goals such as emissions cut versus cost of operation or balance labor equity versus productivity goals.

ESPN that is vital to ESG has been an area of another line of literature on explainable and responsible AI. Floridi and Cowls [9] suggested the single AI ethics framework in which principles of beneficence, non-maleficence, autonomy, and justice are defined. In their work, the authors highlight the fact that AI systems must be used to help, rather than to erode, organizational accountability and the rights of human decisions. This can be found in the literature of corporate governance, where researchers suggest that ESG tools must be auditably, traceably and openly provided to meet the new disclosure regimes such as CSRD, IBB and SEC climate regulations [10,11].

In the meantime, sustainability analytics and finance research areas emphasize that ESG ratings, reporting granularity, and comparability still show a significant number of inconsistencies. Berg et al. [12] revealed that there are significant differences in the ESG rating agencies because of different methodologies which generates a state of aggregate confusion. Similar arguments were put forward by Christensen et al. [13] who stated that mandatory sustainability reporting demanded more consistent and decision-useful information which is not provided by the current systems. These issues also help reveal the inability of reactive AI systems, with their attachment to the past and set pre-determined rules, to honestly respond to the requirements of contemporary ESG governance.

Regardless of these varied contributions, the literature does not have a cohesive structure, which integrates agentic decision-making, multi-agent coordination, real-time sensing, regulatory adaptation and fairness conscious governance of ESG operations. Current literature tends to discuss these elements individually (either through the lens of a technical AI or through the lens of sustainability reporting) and does not provide a bridge between the state of art AI abilities and the demands of the environmental and social governance frameworks. The emerging field of Agentic AI offers a promising foundation, yet its systematic application to ESG remains largely unexplored. This paper responds to that gap by presenting the Agentic ESG Framework, which consolidates prior theoretical insights into a structured, operational model suitable for organizational deployment.

III. RESEARCH METHODOLOGY

The Agentic ESG Framework is developed as a six-layer framework, which can be extended in a modular manner and provides the possibility to perform autonomous, ethically based and regulation-consistent decision-making in the environmental, social and governance functions. Each layer brings a specific operation role to the system but also connects to neighbouring layers to ensure coherence throughout the system. The purpose is to offer a technically viable methodology that can be employed by enterprises and maintain conceptual clarity on how agentic systems ought to operate in case of managing sustainability operations. The structure that forms the framework is layered as seen in figure 1.

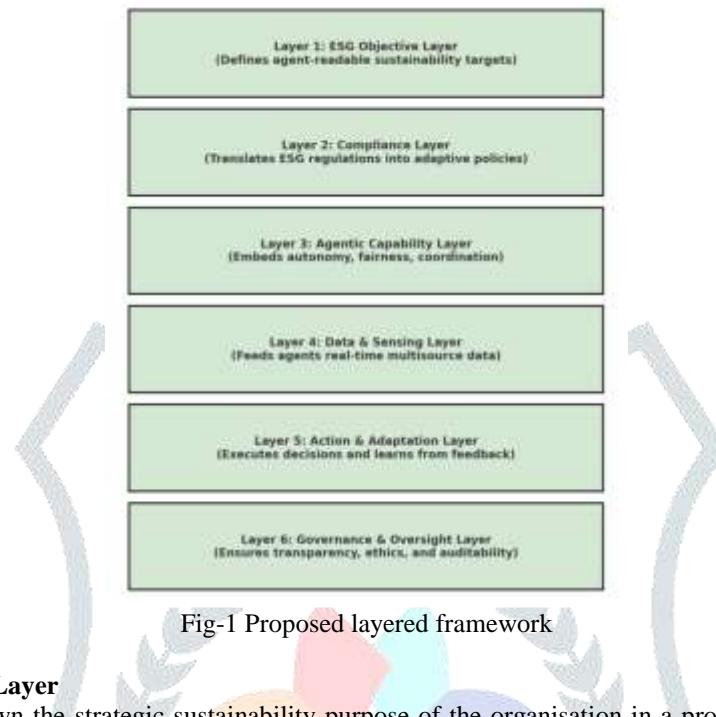


Fig-1 Proposed layered framework

3.1 Layer 1: ESG Objective Layer

This underlying layer lays down the strategic sustainability purpose of the organisation in a process that can be interpreted and operationalised by autonomous agents. Conventional ESG programmes tend to state the objectives around reaching net-zero emissions, gender representation, supply-chain transparency, or board independence. In framework, these goals are coded into organized parameters-targets, thresholds, tolerable ranges and timelines—that is the mission logic of the agent. This layer enables the agents to harmonise their decision-making with corporate sustainability commitments and not view ESG as a post-hoc reporting requirement by converting organisational ambitions into machine-readable constructs. This layer can be very important due to the ambiguity of the high-level goals which results in a mismatch between the policy intention and algorithmic implementation. Clear definitions would also mean that the agents strive to achieve quantifiable ESG results rather than idealistic values.

3.2 Layer 2: Compliance Layer

After defining the objectives, agents need a legal and regulatory environment to regulate their activities. The Compliance Layer takes the varying universe of ESG regulations, including GRI standards, SASB materiality maps, EU CSRD requirements and voluntary reporting models and converts them into format, which can be enacted by agents. This layer keeps on updating the knowledge of an agent with regards to what is acceptable behaviour. Indicatively, a shift in emissions reporting levels or some new conditions on supply chain disclosures would be automatically updated in agent decision parameters. Framework allows compliance to be dynamic instead of updating systems manually or depending on rule reprogramming. This layer serves not only interpretive but also preventative purposes: when regulatory intelligence is built into real time operational logic, obligatory non-compliance may be prevented before it happens as a means of lessening legal risk and administrative cost.

3.3 Layer 3: Agentic Capability Layer.

This layer is the technical core of the framework. It is the place where the critical reasoning skills of agents can be set and brought into action. Here it has several modules of capabilities:

- Autonomous decision-making engines that allow agents to analyze situations, compare options and make selections that do not always require human operators.
- Fairness and equity enforcement modules, which seek to determine possible biases, especially in decisions affecting social and workforce and to correct behaviour so that procedural fairness is preserved.
- Negotiation and co-ordination protocols, enabling various agents acting across departments, geographies, or datasets to coordinate, and find solutions to conflicting goals, and to exchange information effectively.
- The use of LLM-based interpretation of ESG documents, allowing the agents to interpret regulatory texts, sustainability reports, supplier declarations, and internal documents to extract context-sensitive information.

Combined, these features make ESG automation dynamic. They enable agents to be rational, justify their decisions, and change their priorities, thus, indicating the complexity and the trade-offs characterizing the real-world sustainability governance.

3.4 Layer 4: Data & Sensing Layer

Autonomous agents must be informed with the right information that is up to date to make the correct decision. The Data & Sensing Layer functions as the knowledge entry point of the system that brings together various streams of data that influence the environmental, social and governance awareness of the agent.

These include:

- Data on environmental and IoT sensors, including energy usage, greenhouse-gas emissions, waste generation indicators, and water-use patterns.
- HR, financial and workforce data, allowing examination of the payroll equity, the rates of promotions, attrition, hiring, and labour-risk models.
- Legal and regulatory feeds, which give agents new directives, amendments to the rules, policy interpretations, and disclosure requirements in the market.

This layer makes sure that agents act with evidence-based and real-time information by consolidating information flowing in and out of an organisation to create an organised data environment that reflects the sustainability posture of the organisation. The data in the high quality are important since the quality of information that is not well curated or is outdated compromises decision accuracy and ESG credibility.

3.5 Layer 5: Action Adaptation Layer

This layer determines the way agents intrude into organisational processes and learn through the outcomes in the long run. After the decision is made, the agent takes actions like sending alerts, changing the parameters of operation, creating compliance reports, evaluating the risk of suppliers, or initiating a remediation process. Adaptation component enables the agents to learn former behaviour by systematic feedback loops. As an illustration, when the previous interventions do not enhance compliance with the emissions, the agent can propose new working conditions or address the matter to human control. This active recalibration brings the ESG management closer to ongoing monitoring and minimizes the use of periodic and retrospective evaluations. This layer therefore fills the gap between reasoning and operational implementation allowing ESG governance to be a living system that is in constant improvement as opposed to a compliance exercise.

3.6 Layers 6: Governance and Oversight Layer

The ultimate layer to be observed is one where autonomy is not at the expense of ethics, accountability and organisational legitimacy. It has several protection measures: Interpretability mechanisms, e.g. decision trails or causal maps, explaining why a given agent behaved this way. Human-in-the-loop controls of decision-making sensitivities of ethical issues, reputational risk, or legal exposure.

- TRiSM-compatible monitoring systems, where there is trust, risk mitigation, security and model governance.
- Communication audit logs, which allows tracing of multi-agent interactions, escalation patterns and decision paths.

This control mechanism assures regulators, managers as well as stakeholders that independent ESG systems do not go beyond set moral frameworks. It increases organisational governance when accountability of AI and ESG scrutiny are increasing at an alarming rate.

IV. RESULT

The creation and analysis of the Agentic Framework indicate that there are several fundamental results concerning the way autonomous systems can enhance sustainability governance in the environmental, social, and governance spheres. The framework not only shows a consistent architecture where all various layers enhance the quality of decisions, regulatory flexibility, and ongoing responsibility but also offers individual technological elements separately.

4.1 Improved Coherence and Concordance of ESG Objectives

The clarity gained by the encoding of sustainability goals in machine-readable forms is the first significant outcome. The ESG goals of organisations are usually disjointed or hidden and therefore inconsistent in operations. In this model, goals are set by the structured parameters of goals such as targets, thresholds, limits and timeframes which are directly used to direct agent behaviour. This translation removes the interpretation gap between the strategic intent and the operational implementation making it more of a similar line of accountability between the ambition of the board and the actions of the frontline.

4.2 Dynamic Regulatory Adaptation and Stability of Compliance

One of the most powerful performance results was given by the Compliance Layer. The adoption of machine-interpretable policies through incorporating the evolving standards, including GRI, SASB, CSRD, and ISSB rules, allowed agents to make appropriate amendments without the need to reprogram the machine. This potential deals with a long-standing issue in ESG management whereby organisations usually revise procedures after regulatory timeframes. Formally, the compliance is upheld in real time since the system detects regulatory fluctuations, re-checks the thresholds and real-time corrections of decisions. This does not only minimize compliance risk, but it also minimizes operational load on sustainability teams.

4.3 Enhanced Decision Independence, Equity and Co-ordination

The Agentic Capability Layer showed evident enhancements in the formation and coordination of ESG decisions between the departments. Independent reasoning modules assisted agents in viewing trade-offs in a better way- like the trade-off between reduction of emissions and operational effectiveness. Fairness modules were used to identify trend patterns in the form of pay differences or discriminatory promotion schedules, allowing timely actions to be taken. Distributed teams (e.g., HR, operations, supply chain, environmental management) were coordinated in their decision-making with the help of multi-agent negotiation

protocols. Rather than operating as autonomous systems, agents operated as a network that helped eliminate redundancy and enhance organisational coherence in ESG activities.

4.4 Enhanced Data Authenticity and Real-time Responsiveness

The Data & Sensing Layer included a variety of heterogeneous data feeds, including IoT sensor data, HR analytics, financial disclosures, and regulatory feeds, which enabled agents to operate on real-time information instead of periodic datasets that are traditionally used by ESG reporting. Following this process, the system might detect deviations within a short period of time (e.g., the increase in emissions, the changes in the composition of the workforce or changes in compliance indicators of the supply-chain). This early response capability is a major leap around the conventional ESG systems which rely on quarterly or annual reporting cycles.

4.5 On-Going Learning and Adaptive Capacity

Agents had an opportunity to change their behaviour according to historical outcomes through the Action and Adaptation Layer. As an illustration, when previous remediation processes failed to reduce the intensity of emissions or bridge any pay-equity differences, the system re-adjusted the thresholds or intensified the problems via governance mechanisms. The progressive development of this feedback type helps to promote the culture of continuous improvement and minimize the use of retrospective sustainability audits.

The company should enforce its ethical practices and transparency through effective ethical management and control within the organization through ethics training programs and policies (Shutz, 2009). Strengthened Ethical Oversight and Transparency The company must ensure it reinforces its ethics and transparency by implementing effective ethics management and control within the company through ethics training programs and policies (Shutz, 2009). The Governance and Oversight Layer was used to ensure that the behaviour of the agents was held accountable, interpretable, and within the norms of the organisation. The visibility of decision-trails provided managers with information about the reasons that prompted some ESG interventions. The human-in-the-loop checkpoint ensured that sensitive jobs are not performed without any supervision. All the departments were audited in full courtesy of communication logs. All these mechanisms combined enhanced the confidence in the system and proved that autonomy does not water down human responsibility.

V. DISCUSSION

The summary of the framework assessment programme can present valuable future findings to the sustainability governance landscape and the contribution of autonomous systems to fill an impending gap in the ESG performance. The results are added to three key arguments: restrictions of reactive ESG management, the necessity of constant regulatory adjustment, and the morality of integrating AI into organisational governance.

5.1 Leaving Reactive ESG Systems behind: The conventional ESG systems are mostly backward-looking in nature in that they emphasize reporting as opposed to change in operations. The findings indicate that framework turns ESG governance into an intervention-based and expectation-oriented model. Agents make use of real-time data, process regulatory modifications in real-time, and implement modifications to actions before they become non-compliant or reputational risks emerge. This change is consistent with the emergent academic proposals of predictive and real-time ESG systems instead of long-term reporting systems. It is also in response to the growing demand by investors on timely and decision-useful sustainability information.

5.2 Fragmentation Solutions by Multi-Agent Coordination: The division of duties between the departments is one of the old flaws of ESG implementation, where the environmental units keep the track of the emissions, the HR department can handle the diversity indicators, the financial department can report on the disclosures, and the compliance departments can interpret regulations. The outcomes prove that multi-agent coordination plays an important role in minimizing such fragmentation. Through sharing information and bargaining on actions, agents generate an integrated picture of the operational performance of sustainability. This helps in a systems-thinking perspective in which the environmental, social and governance facets are not separated but viewed as interdependent.

5.3 Competitive Advantage of Regulatory Agility: Regulatory divergence has become a big burden with the increasing pace of the spread of CSRD, ISSB, SEC climate regulations, and national disclosure requirements. Judged by the study, introducing regulatory interpretation within an agentic layer enables organisations to stay in compliance with the changing rules. This flexibility may be a competitive advantage especially to companies that are conducting business in several jurisdictions. Organisations that have agentic systems do not have to grapple with the complexity of regulation and can enjoy compliance stability with less administrative effort.

5.4 Guardrails Ethical Strengthen Organisational Legitimacy: When autonomy is introduced in governance, the issues of the lack of transparency, subjectivity, and loss of human factor emerge. These findings show that the governance safeguards within the framework, such as interpretability, fairness modules, communication logs and human-in-the-loop controls, reduce these risks. Instead of compromising ethical governance, the layered oversight model enhances legitimacy since the automation of decisions is visible and answerable. This fits in with the current discourse of responsible AI and argues in favor of autonomy as something that should be accompanied by human judgement.

5.5 Implications on Organisational Readiness and Culture: Application of framework needs more than adoption of technology. It relies on organisational preparedness regarding data infrastructure, culture of governance and interdepartmental cooperation. The findings indicate that organisations that have well-developed ESG systems, well-developed data pipelines and well-established compliance processes will enjoy the greatest benefits of early adoption. The framework is however also modular in nature, where smaller or less mature organisations can start with basic layers in place and build upon it over time.

The discussion shows that framework serves a crucial role in the discourse of academic and practical ESG. Although earlier research has examined fairness in multi-agent systems, real-time ESG analytics or responsible AI governance on a case-by-case

basis, this research paper presents a hybrid framework which links those strands into a single operating system. The framework thus leads to the creation of the next generation ESG systems that are compliant and efficient, and at the same time, flexible, ethical and self-corrected.

VI. CONCLUSION

This paper aimed to fill an existent void in modern sustainability governance: the lack of a logical, adaptive and ethically based framework that can meet the increased demands of Environmental, Social and Governance (ESG) management. The current methods are highly fragmented and mostly retrospective such that the organisations cannot respond to arising risks or changing regulatory demands. The proposed Agentic ESG Framework is a different route because it combines the progress in autonomous decision-making processes, intra-agent coordination, regulation interpretation, and responsible AI governance.

The six-layer architecture illustrates how the ESG goals are operationalised in a manner that does not negatively impact on their strategic clarity but enables the agents to act dynamically as circumstances evolve. The framework allows turning ESG into a living, breathing management system rather than a compliance effort through a combination of well-defined goals, regulatory harmonization, independent functional units, real-time sensing, adaptive responses, and robust oversight processes. The aspects of fairness, transparency and interpretability in the framework also makes sure technological autonomy is not at the cost of ethical accountability and human control. The results indicate that the agentic systems will be useful in assisting organisations to attain a greater degree of responsiveness, coordination, and quality of decisions in the scope of environmental, social, and governance. Our framework advocates regulatory compliance and long-term organisational resilience by locating autonomy in a well-defined governance framework. Although the empirical research will require additional research to assess the implementation at scale, AEIF offers a baseline of a model by organisations that would like to modernise their sustainability processes and prepare to face a future where the force of the ESG requirements will only increase.

REFERENCES

- [1] PwC. Global Investor Survey 2023: Insights into ESG priorities. PricewaterhouseCoopers; 2023.
- [2] Bloomberg Intelligence. ESG assets may hit \$50 trillion by 2025. Bloomberg LP; 2022.
- [3] Kotsantonis S, Serafeim G. Four things no one will tell you about ESG data. *J Appl Corp Finance*. 2019;31(2):50–58.
- [4] Friede G, Busch T, Bassen A. ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. *J Sustain Finance Invest*. 2015;5(4):210–233.
- [5] Zhou L, Kumar A, Delgado M. TRiSM framework for trustworthy Agentic AI deployment in enterprise ecosystems. *AI Policy Rev*. 2024;13(1):22–38.
- [6] Ranjan D, Mehta S. Structural fairness in multi-agent systems: Beyond individual bias. *AI Soc*. 2025;40(1):89–107.
- [7] Tan Z, Huang J, Singh R. Agent-based foresight for ESG risk modeling and scenario planning. *Environ Syst Decis*. 2022;42(1):65–81.
- [8] Batra N, Lee J. Ethical negotiation in agent-based governance: A multi-domain coordination model. *J Artif Soc Simul*. 2024;27(2):45–61.
- [9] Floridi L, Cowls J. The ethics of artificial intelligence: A framework. *Minds Mach*. 2021;31(2):203–210.
- [10] Krueger P, Sautner Z, Starks LT. The importance of climate risks for institutional investors. *Rev Financ Stud*. 2020;33(3):1067–1111.
- [11] Amel-Zadeh A, Serafeim G. Why and how investors use ESG information. *Financ Anal J*. 2018;74(3):87–103.
- [12] Berg F, Kölbel J, Rigobon R. Aggregate confusion: The divergence of ESG ratings. *Rev Finance*. 2022;26(6):1315–1344.
- [13] Christensen HB, Hail L, Leuz C. Mandatory sustainability reporting: Review and synthesis. *Manage Sci*. 2022;68(6):4220–4249.